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1) Introduction
Mechanism of Landau damping
A single oscillator with resonant frequency
w, reacts to a pulse excitation with a free
oscillation. A harmonic excitation with w,
after some transient, gives forced oscillation
at the same frequency but a phase which
depends on w, —w. For w = w, the oscillation
amplitude grows linear with time.
We take a set of oscillators having resonant
frequencies w,; with distribution f(w,). A
pulse excitation gives each oscillator the
same initial velocity #(0) followed by a free
oscillation with w,;. For impedances or beam
observation the center-of-mass motion
is relevant. Due to their different w,; the
oscillating particles change phase with respect
to each other and the center-of-mass motion
is slowly reduced.
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The coherent center-of-mass motion is
'‘damped’ while the incoherent motion of
the particles continues. This damping is faster
the larger the spread of resonant frequencies.
It differs from other damping mechanisms and
the decay is usually not exponential.

For a harmonic excitation the phases of the
individual oscillations are different and depend
on w — w,; leading to some cancelation which
reduces the amplitude of the center-of-mass
motion.



Treatment of Landau damping

Landau damping can be understood from dif-
ferent points of view. We treat it here in a
manner close to beam observation and exper-
Iment.

The fields induced by the center-of-mass mo-
tion are modified by the beam surroundings
(impedance) and act back on the beam. This
can lead to an instability with a threshold de-
termined by the beam response. Below this
threshold the frequency spread eliminates any
coherent motion at infinitesimal small
amplitudes. Above, the voltage induced in
the resistive part of the impedance leads to
an increase of initial coherent motion and we
have an instability.
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The amount of Landau damping depends on
the frequency distribution f(w,) or its deriv-
ative at the frequency w of the instability.
It can happen that the coherent (center-of-
mass) motion has a different frequency than
the individual particles and Landau damping
becomes ineffective.



2) Response of an oscillator-set to excitation
Response to a pulse excitation

J U NSNS Set of oscillators j with w,; get at
0<xj> M@M t Flw,) t = 0 kick with a:](0+) = I to and do
| free oscillations with different w,;

0 Tt and fixed amplitude =, = &y /wy;
(@) |

N e o L T ey a— T(t) = 2o cos(wy;t)
0N/ T [ fw)de =1 ;= & sin(wy;t)
Response of single particle and center-of-mass with inverse Fourier integrals
() =@ cos(w,t), x; = (To/wy;)sin(wy;t) (1) = [ f(Aw,) cos(Dw,t)dw,
((t)) :;i.;o /f(cur) cos(wyt)dw, o< inv. FT ]2 t=— [ f(Aw,))sin(Awt)dw,
nz.arrow d?strlbutlon Aw, = W, — Wro <K Wy g(t) COS( (Aw,)) cos(wyot)
(z(t)) =20 | flwro+ Aw,) cos((wro + Awyo)t)dw, _

: : : sin ( ( )) Sln(wr()t>
g(t) = (x(t)) /o = cos(wyot)I1(t) + sin(w,o)I2(1) — () + I2(1)
= cos(wyot — @) E(t), (E(t) = envelope)

The center-of-mass velocity response g(t) of frequency distribution f(Aw,) to a pulse excitation
is proportional to its inverse Fourier transform times oscillation at w,y.
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Single oscillator response to harmonic excitation

g i Done by small kicks with harmonic modulation
to 't , da
| dxg = — cos(wty)dty = Gdty = G cos(wtg)dt
Velocity response of single oscillator with dto
w, to a pulse excitation at a time { is with acceleration G(t). Velocity at time ¢ is
t(t) = g cos(wy(t — tg)). T(t) = é’/ti cos(wtp) cos(w,.(t — to))dty.

Use harmonic excitation at w starting at ¢; || Call T' =t — ¢y, 11 =t — 1,
and lasting to observation time ¢. develop cos(w(t —T))

:i:(f) = /191 cos(w(t — 1)) cos(w, T')dT = /o cos(wt) cos(wT') + sin(wt) sinwT)) cos(w, T)dT,

G
1 sin((w, —w)T1) | 1 — cos((w, — w)T7)
=5 cos(wt) P — sin(wt) o — , (used (W, —w)/w, < 1

= cos(wt)rs, (wy) + sin(wt)rg(wy).

Velocity and acceleration are in phase for the first, resistive, term, but out of phase for the
second, reactive, term.
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resistive response reactive response
| L | L | L | L | L |

We plot the single oscillator response
as a function of Aw = w, — w for dif-
ferent excitation times 7} It becomes
concentrated around w, = w where its
resistive part has a maximum and the
reactive one goes through zero.

The fast oscillation for large T} aver-
ages while integrating over f(w,) giv-
ing with /°_dzsin(ax)/z =7

240 1raw L — 80 40 raw ~ WT =s80[

sin((w, — w)T1) 00, W = W
T'sr = ~
2w, — w) 0,w # w,

%%5((.@ —w)

1 — cos((w, —w)Th) 0 ,w=uw
Tsi = — ~ 1
2(w, — w) o)W T Wr

i = G cos(wt)rg(wy) + sin(wt)rg(w,)a(t) & 2

asterien —o) s (15)
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Oscillator set response to harmonic excitation

f(wr)
1 dN
f(wr> o Ndwr
b flw)dw, =1
A 1
T(t) ~ C; os(wt)md(w, — w) — sin(wt) (
Wy

S
H.
A/~
~
—
~—"
|

(wy)dw,

@

twr

.

(:1:((;5)) = ; (cos(wt)ﬂﬂ ) — sin(wt)PV [7 fifri%jr)
= cos(wt)r,(w) + sin(wt)r;(w)
T2

The velocity of the center-of-mass
motion is obtained by integrating
the single oscillator response over
the distribution

This response to harmonic excita-
tion is called transfer function.
lts resistive part is proportional to
the distribution at w and vanishes
therfore if the excitation frequency
lies outside the distribution f(w,).

Remember: w, is the resonant frequency of a particle in the distribution,

w the frequency of excitation.
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Short derivation using complex notation

W —Jw wi
cos(wt) = e/t 4 eI _ e — 0 < w < oo || Use complex notation with positive and
2 2 - negative frequencies.
G . G .
itwir = (—w'+wie = §ej°"t
Croiot Crodit | | Displacement response, single oscillator.
T = 5 5= ( — ) For w > 0 only first and for w < 0 only
2(%; w?) WoAWr —.w Wr T W second term is large. Taking the first and
<97A>+ _ e/ /oo f(wr) do <517A>+ _ w<97A>+ integrating over f(w,)
G o w—w @G G Integration over pole gives PV (princi-
o Jlwr)dw, f(wy)dw, ple value) integral plus imaginary residue.
[ Wy —w Ejmf(w) + PV W, — W Resolve sign ambiguity by 2(—o00) = 0
(@) _ & oy oo F(wr)
f >0 -—— = — PV dw,
or w 5 | T f(w)+ 7 /_oowr—w w
(@) _ e oy oo (W)
f <0-—=— = — jPV dw,
or w - Tf(w)—7 /_OOCUT—CU w
' C) 1 ~ . .
<:2+ + <32 =3 os(wt)m f(w) — sin(wt)PV [~ Ci(_ i}dwr , (agrees with previous)
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Response for a Gaussian frequency distribution

Al
f(wr> € 20% ) /—oo

1
Vo f(Aw,)dw, =1

cos(w,t _Awp _ot?
g(t) = \/2(—#;3 /_OOOO e 206 cos(Aw,t)dw, = e
A“’% —Aw?/202
202, Awt w=[a0,
re(w)= ;" e 2% cos(Awt)dt \/%O-w
—Awr 2 Aw? /
— [ e 205 gin(Awt)dt = £e 203 f"“’ et dt’
I
0w

2 cos(wyot)

frequency distribution

pulse response
g(t) = E(t) cos(wyt)

transfer function, from FT of
E(t), Dawson integral
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Landau damping of oscillator set

Center-of-mass motion of oscillator set is mea-
sured by detector, amplified signal is fed to a
kicker which produces an acceleration G in
phase with velocity. Can lead to growing os-

cillation, i.e. negative feed-back system.

() f(Aw,) Center-of-mass velocity re-
G e+ i) = Wf( ) +JPV | Wy — W dw, sgonsgto acceleration
— ot
_ (” —a2p20d | V2 (Bufen? 2 Al (V) 2 gy expljet)
Vi 27r(7w T, 0
(#) = G 0 for Aw — 0 Take excitation at central
o V2o, orew = frequency Aw = 0. r; =0

(&) = h{d) o=

2
k< \l/O'w, stable.
™
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Replace external G by the one of feed-back G5 = k(&), assume
a gain k just sufficient to keep oscillation going.
This maximum gain £ still giving stability is proportional to
frequency spread. Landau damping suppresses an accidental
coherent oscillation at infinitesimally small levels.




3) Transverse coasting beam instability
Oscillation modes

A coasting beam of IV particles circulates with
wo, current I = eNwy/(27) in a ring of uni-
form focusing. Each particle executes a beta-
tron oscillation of Qwy

0; = 0 +wot , yi(t) = ycos(Quo(t —t;)).

Depending on the phases QQwt; between ad-
jacent particles we have different modes. We
choose a form as seen at fixed location 6

y(t) = g cos(nd — wt) , y(0) = ycos(nb).
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Frozen in time t = 0 gives closed wave with
n periods. Following a particle 0,(t) = 6, +
wot gives betatron oscillation with frequency
Quwo.
ys = 1 cos(nby — (w — nwy)t)
= g cos(nfs — Quyt)

giving for the frequency w seen by stationary
observer

w= (n+Q)wy = wg with —oo < n < 0.

Divide modes into fast and slow waves ac-
cording to sign of phase difference between
adjacent particle

Wgf = (nf+Q)w0, ng > —Q)
Wps = (nS — Q)WO y Mg > Q




Effect of momentum spread

Betatron frequencies of beam with nominal momentum:
war = (nf+ Qo , wgs = (ns — Q)uw,

for wss close to wgs, ny # ns. Through

AE A 2A A
25 Qﬁ:_ﬁ_ﬂjand AQ = =P
p

L p Ne Wo
they are affected by a momentum deviation
Ap
Awgr = (Q = nelny + Q))wo?
Ap

Awﬁs - (Q/ — 776(”8 — Q))WO?

resulting in two frequency distributions f(wsr), f(wss).
F(wo)

F(wss) /\ f(wsr)
P \

_________ . s - - -

Awﬂs wo AWﬁf
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Response of narrow particle string

Excite a ring of monoenergetic particles
i+ woQ%y = G cos(wt)

Seek solution y(t) = y cos(nf — w), drive particles
not at wy() but close to either the fast or slow wave

ny=mns=n.

wgr = (nf + Q)wy or wgs =

(ns — Q)wo, here

(—(nwy — w)? + Q%}S) § cos(nf — wt) = G cos(wt)

substituting into diff. equa-
tion

. G -G
Y= Q% — (nwy — ) (w — woln + Q)@ — wo(n — Q) excite and observe at 6 = 0
G e 1 1 gives response,
N (W — wgp)(w — wgs) T 2wQ (w — Wgs C w— wﬁf) excite fast wave w ~ wgy,

first term much smaller
than second and vice versa,
responses have opposite
sign, discussed later.

cas071d-13




Response of the whole beam

The whole beam has frequency distribution
flwgy) and f(wgs) Using G(t) = Gejwt The
center of mass responses in displacement and ve-
locity are related (y) = jw(y)

0 ) éw w
_ / flwsy)
2Qwy” wgf — w
Guw

wgf)

= (Wf(w) + jPV/M) dwg g

_QQwo F—w
. ; Gw / flwss)
2Qwy” wgs — w
Guw
- 2Qwo

dwgs

n1(w)+3PV | L

wﬁs —(.(.)
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The term 7 f(w) is real, exciting accelera-
tion and responding velocity are in phase
resulting in an absorption of energy and
damping, called Landau damping. It is
only present if the excitation frequency w
is within the frequency distribution of the
individual particles. The second term is
imaginary and gives the out-of-phase re-
sponse being of less interest.

The spread in betatron frequencies is given
by the momentum spread and the depen-
dence of revolution frequency wy and be-
tatron tune () on momentum deviation
Ap/p. Itis therefore determined by an ex-
ternal parameter which is not affected
by the excitation of betatron oscillations.



Measuring the

beam response

kicker

Vertical TF of an unbunched beam in the ISR
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network analyzer

The center of mass displacement response
can directly be measured with a network
analyzer. Here, we derived the velocity re-
sponse which is more transparent for un-
derstanding the resistive and reactive be-
havior of the beam. In measurements the
displacement is observed and our equation
have to be converted to analyze the results.
Due to cable delays the real and imaginary
part of the response are often mixed. It
Is easier to measure amplitude and phase
response and correct the latter off-line.



Beam response measurement at upper and lower side-band

TRANSVERSE
G) ompl. and phase vs. Frequency
R vt e RV e ) 2262
° f > n¢ nf'! = 2%
G

A
274,

~——

J : ; r\:fﬂ.( f

A
l

L Jl 1'11\ ‘ A 5""1 =L Wg_;.

TkHz 7 1 ™\ OkHz 1 Af
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Transverse impedance
Ly =5 ’ ol Ziw)
= — B - T\W) = ]
e ':_f@::iﬁ@ii‘:_‘ EEglvin. el o faw)
<= —_ oNoNol w/(E(w)Jr[fUX B(w)])Tds
longitudinal transverse transverse ]5(3((,(})
Response to applied G of fast énd slow wave (Aw,)
= PV dw,
()1 = o (1) + 3PV 5
Gw Awr)
C)s = — 3PV dw,
@) 2Qwy (Wf( )= / —w )
induced fields in Zp give G averaged over 27 R
ef (Ew) +[8x Bw)),ds  —eZrl(i)
- ymy2r Rw

G, =
27TRm()’7
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Stability limit

ZTfr <

1 —
4/ 210, Qmoc?y’ - ecl

W response of the slow wave
(i) = —ngO (w flw)—jPV | i: iﬁ_wi dw) p
- Gw e_%%z ‘1 N ji \/%;uw) et/th’] take Gaussm;\ dlstrli);tlon
2Quwy /210, N4 flw,) = e 20, Aw=w—uw,
Zr = (Bw) + [ x Bw)), ds Voo,
(T)(w) T voltage induced in Zp gives accelera-
O eZrl(x) tion G, If G, = G, self sustained os-
§ ymy2m Rw cillation without drive, threshold.
(i) = — Gw m ecZr,1(1) use Aw = 0, get only real response
2Quy /210, 4 Qmoc?y
ecZr,1 4210 ,Qmoc?y

stability condition
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Stability diagram

For the general complex response and impedance

the stability condition can be expressed as a dia-
gram by relating the beam parameter against the
inverse response of the beam, i.e. inverse ampli- | upper

tude plotted against the negative phase, inverse 1 sideband
Nyquist diagram. _

eclZ 1
slow wave: Jee T<w> <

Zix-2 lower
sideband

O AiTQE  — ff(%)dwﬁs

Wgs—w
jecl Zp(w) S —1
ArQQE  — ff(wﬁf)d(.Uﬁf.
u)ﬁf—w
Relation between complex impedance and com-
plex beam response to excitation. If impedances |

fast wave:

inside central curve we have stability, outside an
instability. Curve itself represents threshold.
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4) Longitudinal coasting beam instability
Dynamics

E|:E0+AE
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n. AL
B E
fo(AE) — F0<ACU()>

At t = 0 we pulse ex-
cite mode

]

= 0Fycos(nf), att =0, pulse excite mode

— [(AE +0E) ~ fo(AE) + W(SE
= Jo+ 3]25E0 cos(nb),
= fo+ ;ljg cos(nf — w,t)

= Wy — CU()T]CAE/E

= Newy | f(AE)E = Iy + I;(t) current.

3y T EF 2
—— [>@E=ﬂ>
=S
0 [ 2

Y

1)

Zn @

2E) 2aN 2 2F=0.3 e

e —— AR,
& "Wﬁ% (S5
Y %y 2 Y

I(*%)T\_/\_/
T

0 * o7 0
2L ) 27N L 244=0.6 Gt
="
0 * poa




Response to a harmonic excitation

E|:E0+AE

Ld® ue) = e - 180
- 90
A 1 Awy - 0
—— = ——— Awg=w, —wy C 90
b e @0 180
I(t) = Newy [ f(AE)dE = I+ I1(t)
L(t) o< ' = U(t)(r,(w) + jri(w))

_ —iNe2wU(t) , dFy/dwy

d
2r02E /w — nwy 0

0.0 1.0 2.0 30 Owt 40
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Longitudinal stability limit

Ne2w3U(t) ( dFy | dFy(wy)/dt Response is perturbed current
L(t) = o1 32E (deo(w> —JjPv ] W — NWy dwO) Li(t) =U@)(rr(w) + jri(w))
Ne2winZ(w) (wdF, dFy(wo) /dt Stability limit if I1(¢) induces in
1= 27T052E ( T (w)—PVj/ i dwo) Z(w) just voltage used to ex-
1 ! ! cite beam U(t) = [1(t)Z(w)
] | Mapping between complex impedance and complex response
S v || presented as stability diagram.
—2 ry =2 Separate beam and distribution form parameters.
N
. : Iy = -0 5p = half width half height
201
g op ! Wy — W W — NWy
= Nwy— spread, T = T =
0 1 LAY 0 p breath s 7 nS
i 2 S Fy(w,
IR (R go(z) = ]\?( >> [ go(z)dx = 1.
~1 0 1
. dgy . o | elyZ(w)/n
1=~V +iU'] |7 — PV [ —dz V' +4U'] =
VoA m g (o) = /:r:—:r:1 o) ViUl 21 32 Egn(Ap/p)?
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Longitudinal stability criterion (Keil-Schnell)

fU Y e-x2/2a2

Stability diagrams, (A. Ruggiero, V. Vaccaro)
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We separate effects due the distribution form and the
ones due to beam and accelerator parameters and got
the normalized stability diagram

elyZ(w)/n
2132 Eone(0p/p)?
dgo af !

900y —iP
wdx(ajl) i V/x_xlda:

VI 44U =

Approximate these diagrams by circel of radius 0.6,
get Keil-Schnell stability criterion

Z| _ 2mB*En.(0p/p)’
- 6[0 .




Measured coasting beam responses
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TRANSVERSE
c) ompl. ond phose vs. frequency
slow_wave fast wave
K;o AL 0)
2
i
27(5” 1

o A e 9=
- 0 Hz © A SkHz

1 af
~Tresl)
4 {
1 '
(0] . /l .'j]j& A 1;*" ;‘L "gv
1 0 TkHz 7 ) \‘ on?”] Af

b) resistive response vs frequency (" ’.f;
%‘f’ Tres.
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: 4
I s
Sl A
v
i . - Smarircat ey !
1
§>\-
. :

-
£
N
’

-
N

S v
~ =
~e

-

s
\

ompl.vs. phase
( Nyquist diogrom)

( inv.ampl vs. phase
(stability diagram)

measurement normalized
“

LONGITUDINAL

d) ompl. and phose vs. frequency
$= 36 fev

-as 0 05 kHz 1 Af

-1
T Jred) _
11 / ()
Cd

n] §‘_ 11 —‘1 e —

3 05 05 kHz 184f
e) 4 resistive response vs {req.
=

% \

omplitude vs. phase

f) inv.ampl v phose

ond corrected for woll impedonce

REPRESENTATIONS Of MEASURED TRANSFER FUNCTIONS

Transverse: In each side-band the
phase changes by m. The resistive re-
sponse in is positive for the slow and
negative for the fast wave.
Longitudinal: Each revolution har-
monics gives a 27 phase change.



6) POTENTIAL WELL BUNCH LENGTHENING

dL/ds
— === === === mf\ufmﬂ—

+++

Vil

Ry !
b, = _d—LdL de[b
V= —/Bde =L

[ Budz= L%
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We take a parabolic bunch form

A T 3l T
I = 1|1—— 1 ——
i7) ( %2> 2w0%( %2)
dly 3mlyT
— = — Iy = (I
dr word T Y ).
. 3mlyL
V = V{(sin ¢s + hwycos ¢s7) + 1 0A37'7 Lwy =
woT
. 3|2 /n|ol,
V = V |siné + cos ¢shwg (1+ 3miZ/mlo v
hV cos ¢s(wyT)3
5 w% hncef/ COS @y
Weo = —
2k
3m|Z/nlol
wg = wgo{lJr ~ T2/l OA
hVgr cos ¢s(woT)?
Aws  Ws—ws 3m|Z /nloly

Ws0

-~ QhVRF cos Ps(woTp)?

SN




w? 3m|Z /nloly

w2, " hWVrr cos ds(woT)3

31| Z/n|ody

ws 2RV cos ¢s(woTp)?
Only incoherent frequency of single particles
is changed (reduced for v > ~7, increased for

v < ~r), but not the coherent dipole (rigid

bunch) mode. This separates the two.

V(1)
74 R

WS - (.(.)30 AWS

Ws0
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Reduction of w, reduces longitudinal focusing
and increases the bunch length

Me/Ws

rel. energy spread €, long. emitt. & = 7¢
Protons: &= constant, 7 x 1/, /wj

AT Aws 37T|Z/n’0]()
small: — ~ N ——— —
4hV cos ¢s(woTp)?

70 2WSO
371 Z [ T
’ /n|0 0 ( ) 1 O

F=enws, T = TN ws =

AN

24
or: (A) +
70

WV cos ¢ (woTn)? \Fo
Electrons: é= const. by syn. rad. 7 o< 1/wy
AT Aws 37T|Z/n’0[0
smal: — ~ — N ——— —
T0 Ws0 2hV cos ¢8(w070)3

AN

(7’)3 ’7A' 37r]Z/n|0[0
or: (| ———+ = -
7o hV cos ¢s(woTp)?

- =0
70



5) Bunched beams - Landau damping by non-linearities

In bunched beams the frequency spread is mostly
due to non-linearities which make the oscillation fre-
quency dependent on amplitude. The calculation is
more complicated but usually only the amount of
spread is of interest.

Example: synchrotron oscillation with parameters £,
Ty = 2m/wy and ¢s = hwots = 7 with deviations
e =AF/FEy~ Ap/py and ¢ = hwyT.

next approximation, developing sin¢ ~ ¢ — ¢3/6,
seeking solution of the form ¢ = ggcos(wst)

(—w? + W) cos(wit) — Pw? cos®(wit) /6 = 0

using cos’x = (3cosx + cos(3x))/4, neglecting

higher harmonics gives

12
Ys _ 1_1$2%1_i$27 Aws ¢
Ws0 8 16 Ws0) 16
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V(o)
V ___________
bunch
N\
RN
Os e
linear:

w4, _ neheV
w% 27TE()

d<1— o+ w2 ¢ =0 solution

€ = €cos(wgt) , T = T sin(wsot)

q5+wgosingb:0,

1{ frequency distribution :
1 . -
] exp(—R)
1 R = 8 Auw,
0 l l a0
—6 —4 -2 0 2




Increase Landau damping - double RF-system

Single RF-system

Two RF-systems wrr and nwrr, ¢ ~ , ¢5+ w20n2 _ 1¢3 = (0, ws X q@
V(p) = -V sin ¢ + v sin(nqb) with Vn/ ‘71/72 <b2 n26_ 1
A 3 N33 LA ¢* = H = constant
. n-—1

wyo and wy are synchrotron frequencies of basic and double RF-system. There strong amplltude
dependence gives large spread and Landau damping. The flat voltage leads to a long bunch.
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Landau damping by double RF

bunois 12 ; 13

2.0+
time after
injection

2-54-

3,01
8
3.5
i
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Frequency spread and shift
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