Electron dynamics with Synchrotron Radiation

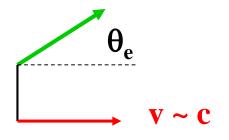
Lenny Rivkin

Paul Scherrer Institute (PSI)

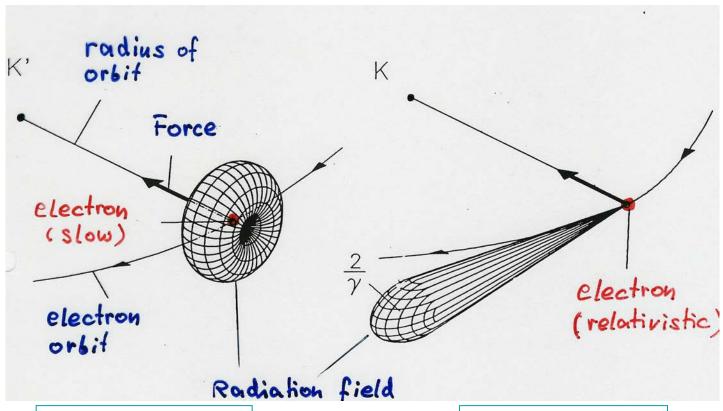
and

Swiss Federal Institute of Technology Lausanne (EPFL)

Radiation is emitted into a narrow cone



$$\theta = \frac{1}{\gamma} \cdot \theta_{e}$$



V << C

V ≈ C

Synchrotron radiation power

Power emitted is proportional to:

$$P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \cdot \frac{E^4}{\rho^2}$$

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3} \right]$$

$P \propto E^2 B^2$

$$P_{\gamma} = \frac{2}{3} \alpha \hbar c^2 \cdot \frac{\gamma^4}{\rho^2}$$

$$\alpha = \frac{1}{137}$$

Energy loss per turn:

$$U_0 = C_{\gamma} \cdot \frac{E^4}{\rho}$$

$$\hbar c = 197 \text{ Mev} \cdot \text{fm}$$

$$U_0 = \frac{4\pi}{3} \alpha \hbar c \frac{\gamma^4}{\rho}$$

Radiation effects in electron storage rings

Average radiated power restored by RF $U_0 \cong 10^{-3}$ of E_0

$$U_0 \cong 10^{-3} \text{ of } E_0$$

Electron loses energy each turn to synchrotron radiation

$$V_{RF} > U_0$$

RF cavities accelerate electrons back to the nominal energy

Radiation damping

 Average rate of energy loss produces DAMPING of electron oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations

 Statistical fluctuations in energy loss (from quantized emission of radiation) produce **RANDOM EXCITATION** of these oscillations

Equilibrium distributions

The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam

Radiation damping

Transverse oscillations

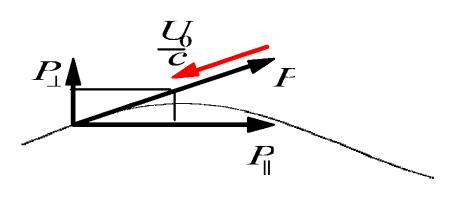
Average energy loss and gain per turn

 Every turn electron radiates small amount of energy

$$E_1 = E_0 - \frac{U_0}{E_0} = E_0 \left(1 - \frac{\frac{U_0}{E_0}}{E_0} \right)$$

 only the amplitude of the momentum changes

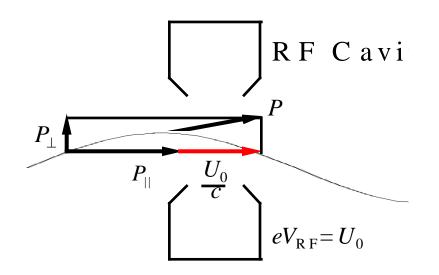
$$P_1 = P_0 - \frac{U_0}{C} = P_0 \left(1 - \frac{U_0}{E_0} \right)$$



- Only the longitudinal component of the momentum is increased in the RF cavity
- Energy of betatron oscillation

$$E_{\rm B} \propto A^2$$

$$A_1^2 = A_0^2 \left(1 - \frac{U_0}{E_0} \right)$$
 or $A_1 \cong A_0 \left(1 - \frac{U_0}{2E_0} \right)$



Damping of vertical oscillations

But this is just the exponential decay law!

$$\frac{\Delta A}{A} = -\frac{U_0}{2E}$$

$$A = A_{\circ} \cdot e^{-t/\tau}$$

 The oscillations are exponentially damped with the damping time (milliseconds!)

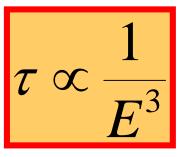
$$\tau = \frac{2ET_0}{U_0}$$

 $\tau = \frac{2ET_0}{U_0}$ the time it would take particle to 'lose all of its energy'

In terms of radiation power

$$au = rac{2E}{P_{\gamma}}$$
 and since $P_{\gamma} \propto E^4$

$$P_{\!\scriptscriptstyle \gamma} \propto E^4$$



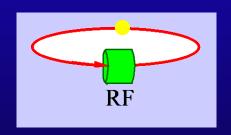
Adiabatic damping in linear accelerators

In a linear accelerator:

$$x' = \frac{p_{\perp}}{p}$$
 decreases $\propto \frac{1}{E}$

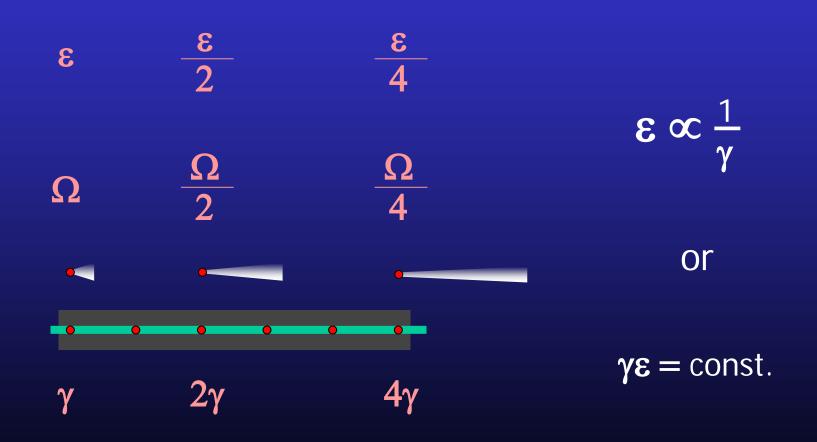
$$\downarrow_p^{p_{\perp}}$$

In a **storage ring** beam passes many times through same RF cavity



- Clean loss of energy every turn (no change in x')
- Every turn is re-accelerated by RF (x' is reduced)
- Particle energy on average remains constant

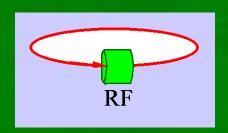
Emittance damping in linacs:



Radiation damping

Longitudinal oscillations

Longitudinal motion: compensating radiation loss U₀



 RF cavity provides accelerating field with frequency

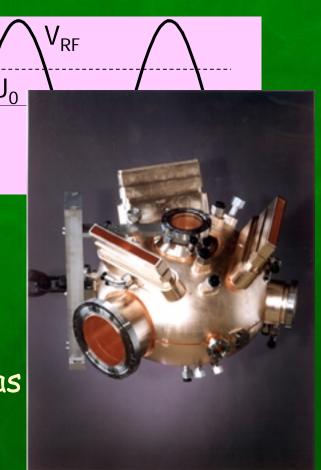
$$f_{RF} = h \cdot f_0$$

· h - harmonic number

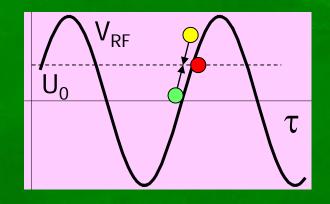
The energy gain:

$$U_{RF} = eV_{RF}(\tau)$$

- Synchronous particle:
 - has design energy
 - $^{\bullet}$ gains from the RF on the average as as it loses per turn U_0



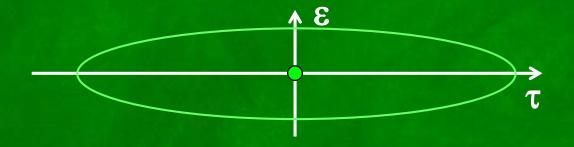
Longitudinal motion: phase stability



- Particle ahead of synchronous one
 - · gets too much energy from the RF
 - goes on a longer orbit (not enough B)
 >> takes longer to go around
 - · comes back to the RF cavity closer to synchronous part.
- Particle behind the synchronous one
 - gets too little energy from the RF
 - goes on a shorter orbit (too much B)
 - catches-up with the synchronous particle

Longitudinal motion: energy-time oscillations

energy deviation from the design energy, or the energy of the synchronous particle

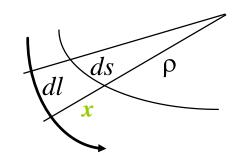


longitudinal coordinate measured from the position of the synchronous electron

Orbit Length

Length element depends on x

$$dl = \left(1 + \frac{x}{\rho}\right)ds$$



Horizontal displacement has two parts:

$$x = x_{\beta} + x_{\varepsilon}$$

- To first order x_{β} does not change L
- x_{ϵ} has the same sign around the ring

Length of the off-energy orb
$$L_{\varepsilon} = \int dl = \int \left(1 + \frac{x_{\varepsilon}}{\rho}\right) ds = L_0 + \Delta L$$

$$\Delta L = \delta \cdot \oint \frac{D(s)}{\rho(s)} ds$$
 where $\delta = \frac{\Delta p}{p} = \frac{\Delta E}{E}$

$$\frac{\Delta L}{L} = \alpha \cdot \delta$$

Something funny happens on the way around the ring...

Revolution time changes with energy

$$T_0 = \frac{L_0}{c\beta}$$

$$\frac{\Delta T}{T} = \frac{\Delta L}{L} - \frac{\Delta \beta}{\beta}$$

■ Particle goes faster (not much!)
$$\frac{d\beta}{\beta} = \frac{1}{\gamma^2} \cdot \frac{dp}{p}$$
 (relativity)

• while the orbit length increases (more!) $\frac{\Delta L}{I} = \alpha \cdot \frac{dp}{n}$

$$\frac{\Delta L}{L} = \alpha \cdot \frac{dp}{p}$$

■ The "slip factor" $\eta \cong \alpha$ since $\alpha >> \frac{1}{\sqrt{2}}$

$$\frac{\Delta T}{T} = \left(\alpha - \frac{1}{\gamma^2}\right) \cdot \frac{dp}{p} = \eta \cdot \frac{dp}{p}$$

■ Ring is above "transition energy" $\alpha = \frac{1}{\sqrt{2}}$

$$\alpha = \frac{1}{\gamma_{tr}^2}$$

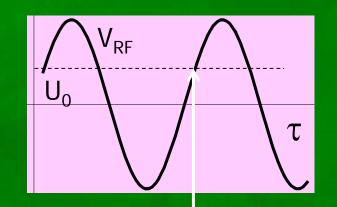
isochronous ring:
$$\eta = 0$$
 or $\gamma = \gamma_{tr}$

Not only accelerators work above transition

Dante Aligieri Divine Comedy

RF Voltage

$$V(\tau) = \hat{V} \sin(h\omega_0 \tau + \psi_s)$$



here the synchronous phase

$$\psi_s = \arcsin\left(\frac{U_0}{e\hat{V}}\right)$$

Momentum compaction factor

$$\alpha = \frac{1}{L} \oint \frac{D(s)}{\rho(s)} ds$$

Like the tunes Q_x , Q_y - α depends on the whole optics

A quick estimate for separated function guide field:

$$\alpha = \frac{1}{L_0 \rho_0} \int_{\text{mag}} D(s) ds = \frac{1}{L_0 \rho_0} \langle D \rangle \cdot L_{mag} \quad \begin{array}{l} \rho = \rho_0 & \text{in dipoles} \\ \rho = \infty & \text{elsewhere} \end{array}$$

$$\rho = \rho_0$$
 in dipoles $\rho = \infty$ elsewhere

 $L_{mag} = 2\pi \rho_0$ But

$$\alpha = \frac{\langle D \rangle}{R}$$

Since dispersion is approximately

$$D \approx \frac{R}{O^2} \implies \alpha \approx \frac{1}{O^2}$$
 typically < 1%

and the orbit change for ~ 1% energy deviation

$$\frac{\Delta L}{L} = \frac{1}{Q^2} \cdot \delta \approx 10^{-4}$$

Energy balance

Energy gain from the RF system: $U_{RF} = eV_{RF}(\tau) = U_0 + eV_{RF} \cdot \tau$

$$U_{RF} = eV_{RF}(\tau) = U_0 + eV_{RF} \cdot \tau$$

- \blacksquare synchronous particle ($\tau = 0$) will get exactly the energy loss per turn
- we consider only linear oscillations
- Each turn electron gets energy from RF and loses energy to radiation within one revolution time T₀

$$\Delta \varepsilon = (U_0 + eV_{RF} \cdot \tau) - (U_0 + U' \cdot \varepsilon) \qquad \frac{d\varepsilon}{dt} = \frac{1}{T_0} (eV_{RF} \cdot \tau - U' \cdot \varepsilon)$$

$$\frac{d\tau}{dt} = -\alpha \frac{\varepsilon}{E_0}$$

An electron with an energy deviation will arrive after one turn at a different time with respect to the synchronous particle

Synchrotron oscillations: damped harmonic oscillator

Combining the two equations

$$\frac{d^2\varepsilon}{dt^2} + 2\alpha_\varepsilon \frac{d\varepsilon}{dt} + \Omega^2 \varepsilon = 0$$

- where the oscillation frequency $\Omega^2 = \frac{\alpha e V_{RF}}{T_0 E_0}$
- the damping is slow: $\alpha_{\varepsilon} = \frac{U'}{2T_0}$ typically $\alpha_{\varepsilon} << \Omega$
- the solution is then:

$$\varepsilon(t) = \hat{\varepsilon}_0 e^{-\alpha_{\varepsilon}t} \cos(\Omega t + \theta_{\varepsilon})$$

similarly, we can get for the time delay:

$$\tau(t) = \hat{\tau}_0 e^{-\alpha_{\varepsilon} t} \cos(\Omega t + \theta_{\tau})$$

Synchrotron (time - energy) oscillations

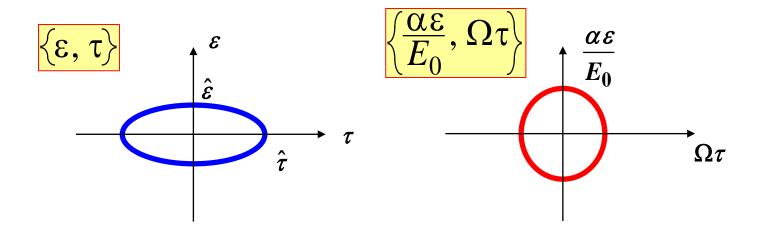
The ratio of amplitudes at any instant

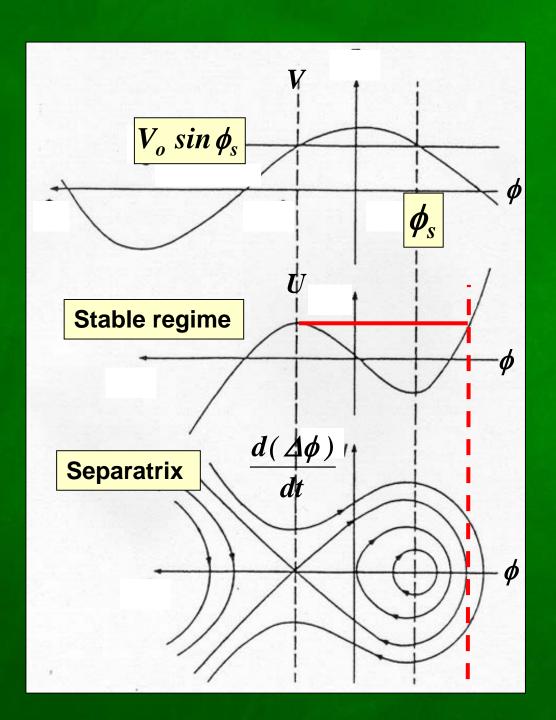
$$\hat{\tau} = \frac{\alpha}{\Omega E_0} \hat{\varepsilon}$$

Oscillations are 90 degrees out of phase

$$\theta_{\epsilon} = \theta_{\tau} + \frac{\pi}{2}$$

The motion can be viewed in the phase space of conjugate variables



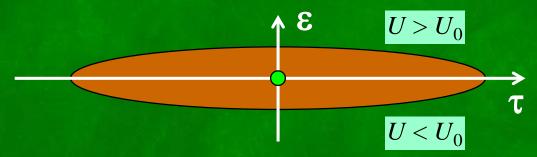


Longitudinal Phase Space

Longitudinal motion: $P_{\gamma} \propto E^2 B^2$ damping of synchrotron oscillations

During one period of synchrotron oscillation:

 when the particle is in the upper half-plane, it loses more energy per turn, its energy gradually reduces



• when the particle is in the lower half-plane, it loses less energy per turn, but receives U_0 on the average, so its energy deviation gradually reduces

The synchrotron motion is damped

- the phase space trajectory is spiraling towards the origin

Robinson theorem: Damping partition numbers

- Transverse betatron oscillations are damped with
- Synchrotron oscillations are damped twice as fast

$$\tau_{x} = \tau_{z} = \frac{2ET_{0}}{U_{0}}$$

$$\tau_{\varepsilon} = \frac{ET_0}{U_0}$$

The total amount of damping (Robinson theorem) depends only on energy and loss per turn

$$\frac{1}{\tau_x} + \frac{1}{\tau_y} + \frac{1}{\tau_\varepsilon} = \frac{2U_0}{ET_0} = \frac{U_0}{2ET_0} (J_x + J_y + J_\varepsilon)$$

the sum of the partition numbers $J_x + J_z + J_\epsilon = 4$

$$J_{x} + J_{z} + J_{\varepsilon} = 4$$

Radiation loss

Displaced off the design orbit particle sees fields that are different from design values

- energy deviation &
 - > different energy:

$$P_{\!_{\gamma}} \propto E^2$$

 \triangleright different magnetic field **B** particle moves on a different orbit, defined by the **off-energy** or **dispersion** function D_x

both contribute to linear term in

$$P_{\gamma}(\varepsilon)$$

betatron oscillations: zero on average

Radiation loss

 $\mathbf{P}_{\gamma} \propto \mathbf{E}^2 \mathbf{B}^2$

To first order in ε

$$\mathbf{U}_{\mathrm{rad}} = \mathbf{U}_{0} + \mathbf{U}' \cdot \boldsymbol{\varepsilon}$$

electron energy changes slowly, at any instant it is moving on an orbit defined by $\mathbf{D}_{\mathbf{x}}$

after some algebra one can write

$$\mathbf{U}' \equiv \frac{\mathbf{d}\mathbf{U}_{\mathrm{rad}}}{\mathbf{d}\mathbf{E}} \bigg|_{\mathbf{E}_0}$$

$$U' = \frac{U_0}{E_0} (2 + \mathbf{D})$$

$$\mathcal{D} \neq 0$$
 only when $\frac{k}{\rho} \neq 0$

Damping partition numbers

$$J_{x} + J_{z} + J_{\varepsilon} = 4$$

Typically we build rings with no vertical dispersion

$$J_z = 1$$

$$|J_z = 1| \qquad |J_x + J_\varepsilon = 3|$$

 Horizontal and energy partition numbers can be modified via **1**:

$$|J_x = 1 - \mathbf{D}|$$

$$J_{\varepsilon} = 2 + \mathbf{D}$$

- Use of combined function magnets
- Shift the equilibrium orbit in quads with RF frequency

Equilibrium beam sizes

Radiation effects in electron storage rings

Average radiated power restored by RF $U_0 \cong 10^{-3}$ of E_0

$$U_0 \cong 10^{-3} \text{ of } E_0$$

Electron loses energy each turn to synchrotron radiation

$$V_{RF} > U_0$$

RF cavities accelerate electrons back to the nominal energy

Radiation damping

 Average rate of energy loss produces **DAMPING** of electron oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations

 Statistical fluctuations in energy loss (from quantized emission of radiation) produce **RANDOM EXCITATION** of these oscillations

Equilibrium distributions

The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam

Quantum nature of synchrotron radiation

Damping only

- If damping was the whole story, the beam emittance (size) would shrink to microscopic dimensions!*
- Lots of problems! (e.g. coherent radiation)

How small? On the order of electron wavelength

$$E = \gamma mc^2 = hv = \frac{hc}{\lambda_e} \implies \lambda_e = \frac{1}{\gamma} \frac{h}{mc} = \frac{\lambda_C}{\gamma}$$

$$\lambda_C = 2.4 \cdot 10^{-12} m$$
 – Compton wavelength

Diffraction limited electron emittance

$$\varepsilon \ge \frac{\lambda_C}{4\pi\gamma} (\times N^{\frac{1}{3}} - \text{ fermions})$$

Quantum nature of synchrotron radiation

Quantum fluctuations

- Because the radiation is emitted in quanta, radiation itself takes care of the problem!
- It is sufficient to use quasi-classical picture:
 - » Emission time is very short
 - » Emission times are statistically independent (each emission - only a small change in electron energy)

Purely stochastic (Poisson) process

Visible quantum effects

I have always been somewhat amazed that a purely quantum effect can have gross macroscopic effects in large machines;

and, even more,

that Planck's constant has just the right magnitude needed to make practical the construction of large electron storage rings.

A significantly larger or smaller value of

would have posed serious -- perhaps insurmountable -- problems for the realization of large rings.

Mathew Sands

Quantum excitation of energy oscillations

Photons are emitted with typical energy $u_{ph} \approx \hbar \omega_{typ} = \hbar c \frac{\gamma^3}{\rho}$ at the rate (photons/second) $\mathcal{N} = \frac{P_{\gamma}}{u_{ph}}$

Fluctuations in this rate excite oscillations

During a small interval Δt electron emits photons

 $N = \mathcal{N} \cdot \Delta t$

losing energy of

 $N \cdot u_{ph}$

Actually, because of fluctuations, the number is

 $N \pm \sqrt{N}$

resulting in spread in energy loss

$$\pm \sqrt{N} \cdot u_{ph}$$

For large time intervals RF compensates the energy loss, providing damping towards the design energy E_{θ}

Steady state: typical deviations from E_0 \approx typical fluctuations in energy during a damping time τ_{ε}

Equilibrium energy spread: rough estimate

We then expect the rms energy spread to be $\sigma_{\varepsilon} \approx \sqrt{N \cdot \tau_{\varepsilon} \cdot u_{ph}}$

$$\sigma_{\varepsilon} \approx \sqrt{N \cdot \tau_{\varepsilon}} \cdot u_{ph}$$

$$au_{\varepsilon} pprox rac{E_0}{P_{\gamma}}$$

and since
$$\tau_{\varepsilon} \approx \frac{E_0}{P_{\gamma}}$$
 and $P_{\gamma} = N \cdot u_{ph}$

$$\sigma_{\varepsilon} \approx \sqrt{E_0 \cdot u_{ph}}$$

 $\sigma_{\varepsilon} \approx \sqrt{E_0 \cdot u_{ph}}$ geometric mean of the electron and photon energies!

Relative energy spread can be written then as:

$$\frac{\sigma_{\varepsilon}}{E_0} \approx \gamma \sqrt{\frac{\hat{\pi}_e}{\rho}}$$

$$\frac{\sigma_{\varepsilon}}{E_0} \approx \gamma \sqrt{\frac{\hbar e}{\rho}} \qquad \qquad \hat{\pi}_e = \frac{\hbar}{m_e c} \approx 4 \cdot 10^{-13} m$$

it is roughly constant for all rings

• typically
$$\rho \propto E^2$$

$$\frac{\sigma_{\varepsilon}}{E_0} \sim const \sim 10^{-3}$$

Equilibrium energy spread

More detailed calculations give

• for the case of an 'isomagnetic' lattice

$$\rho(s) = \begin{cases} \rho_0 & \text{in dipoles} \\ \infty & \text{elsewhere} \end{cases}$$

$$\left(\frac{\sigma_{\varepsilon}}{E}\right)^2 = \frac{C_q E^2}{J_{\varepsilon} \rho_0}$$

with
$$C_q = \frac{55}{32\sqrt{3}} \frac{\hbar c}{(m_e c^2)^3} = 1.468 \cdot 10^{-6} \left[\frac{\text{m}}{\text{GeV}^2} \right]$$

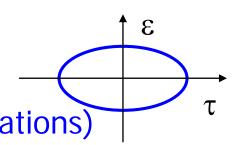
It is difficult to obtain energy spread < 0.1%

limit on undulator brightness!

Equilibrium bunch length

Bunch length is related to the energy spread

 Energy deviation and time of arrival (or position along the bunch)
 are conjugate variables (synchrotron oscillations)



• recall that $\Omega_{_{\!S}} \propto \sqrt{V_{RF}}$

$$\sigma_{\tau} = \frac{\alpha}{\Omega_{s}} \left(\frac{\sigma_{\varepsilon}}{E} \right)$$

$$\hat{\tau} = \frac{\alpha}{\Omega_{\rm s}} \left(\frac{\hat{\varepsilon}}{E} \right)$$

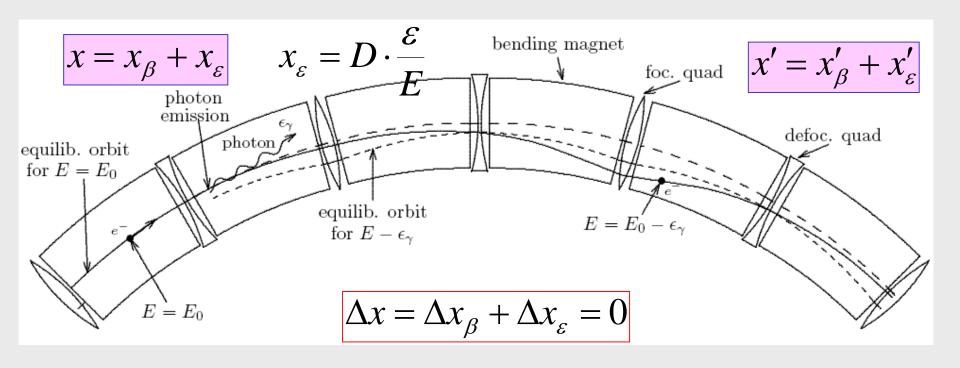
Two ways to obtain short bunches:

RF voltage (power!)

$$\sigma_{ au} \propto 1/\sqrt{V_{RF}}$$

■ Momentum compaction factor in the limit of $\alpha=0$ isochronous ring: particle position along the bunch is frozen $\sigma_{\tau} \propto \alpha$

Excitation of betatron oscillations



$$\Delta x_{\beta} = -D \cdot \frac{\varepsilon_{\gamma}}{E}$$

 $\Delta x_{\beta} = -D \cdot \frac{\mathcal{E}_{\gamma}}{E}$ Courant Snyder invariant $\Delta x_{\beta}' = -D' \cdot \frac{\mathcal{E}_{\gamma}}{E}$

$$\Delta x_{\beta}' = -D' \cdot \frac{\varepsilon_{\gamma}}{E}$$

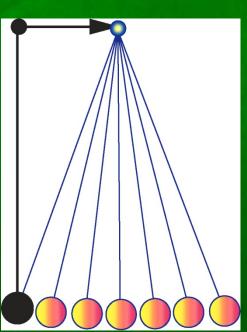
$$\Delta \varepsilon = \gamma \Delta x_{\beta}^{2} + 2\alpha \Delta x_{\beta} \Delta x_{\beta}' + \beta \Delta x_{\beta}'^{2} = \left[\gamma D^{2} + 2\alpha DD' + \beta D'^{2} \right] \cdot \left(\frac{\varepsilon_{\gamma}}{E} \right)^{2}$$

Excitation of betatron oscillations

Electron emitting a photon

- · at a place with non-zero dispersion
- starts a betatron oscillation around a new reference orbit

$$x_{\beta} \approx D \cdot \frac{\varepsilon_{\gamma}}{E}$$



Horizontal oscillations: equilibrium

Emission of photons is a random process

- Again we have random walk, now in x. How far particle will wander away is limited by the radiation damping
- The balance is achieved on the time scale of the damping time $\tau_x = 2 \tau_\epsilon$

$$\sigma_{x\beta} \approx \sqrt{\mathcal{N} \cdot \tau_x} \cdot D \cdot \frac{\varepsilon_{\gamma}}{E} = \sqrt{2} \cdot D \cdot \frac{\sigma_{\varepsilon}}{E}$$

Typical horizontal beam size ~ 1 mm

Quantum effect visible to the naked eye!

Vertical size - determined by coupling

Beam emittance

Betatron oscillations

Area = $\pi \cdot \varepsilon$

 Particles in the beam execute betatron oscillations with different amplitudes.

Transverse beam distribution

- Gaussian (electrons)
- "Typical" particle: 1σ ellipse (in a place where $\alpha = \beta' = 0$)

Units of ε $[m \cdot rad]$

Emittance
$$\equiv \frac{\sigma_x^2}{\beta}$$

$$\sigma_{x} = \sqrt{\epsilon \beta}$$

$$\sigma_{x'} = \sqrt{\epsilon / \beta}$$

$$\varepsilon = \sigma_{x} \cdot \sigma_{x'}$$

$$\beta = \frac{\sigma_x}{\sigma_{x'}}$$

Equilibrium horizontal emittance

Detailed calculations for isomagnetic lattice

$$\varepsilon_{x0} \equiv \frac{\sigma_{x\beta}^2}{\beta} = \frac{C_q E^2}{J_x} \cdot \frac{\langle \mathcal{H} \rangle_{mag}}{\rho}$$

where

$$\mathcal{H} = \gamma D^2 + 2\alpha DD' + \beta D'^2$$
$$= \frac{1}{\beta} [D^2 + (\beta D' + \alpha D)^2]$$

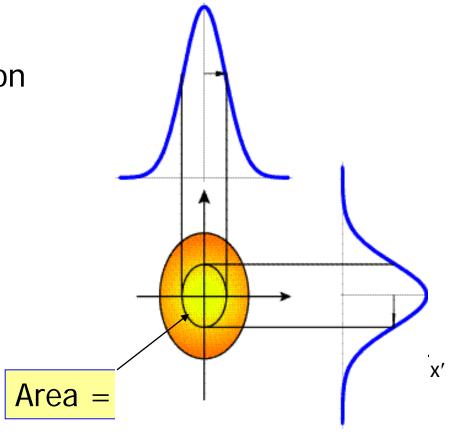
and $\langle \mathcal{H} \rangle_{mag}$ is average value in the bending magnets

2-D Gaussian distribution

Electron rings emittance definition

1 - σ ellipse

$$n(x)dx = \frac{1}{\sqrt{2\pi}\sigma}e^{-x^2/2\sigma^2}dx$$



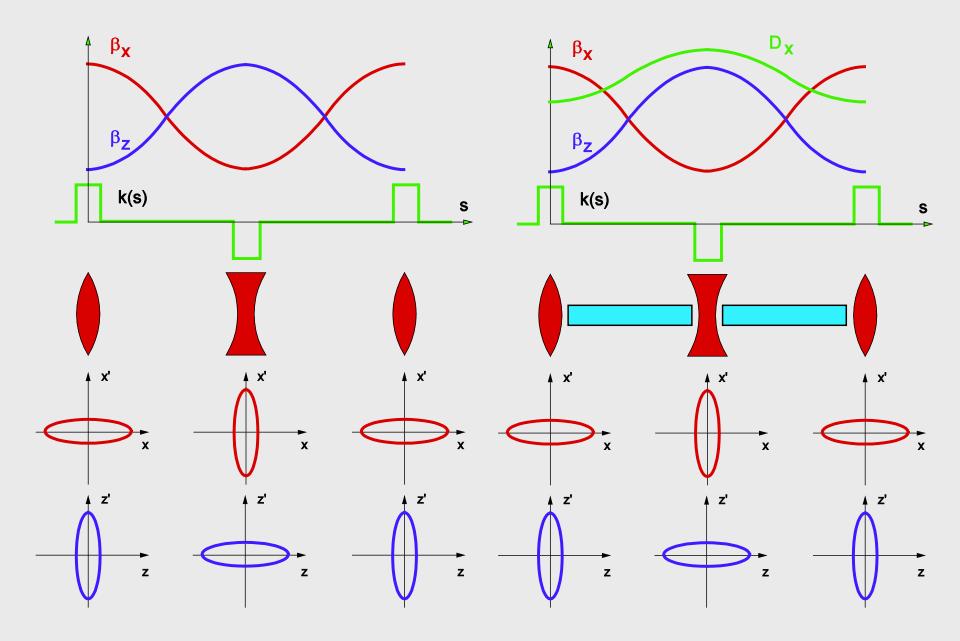
■ Probability to be inside $1-\sigma$ ellipse

$$P_1 = 1 - e^{-1/2} = 0.39$$

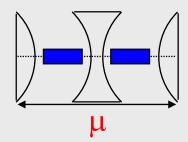
Probability to be inside n-σ ellipse

$$P_n = 1 - e^{-n^2/2}$$

FODO cell lattice



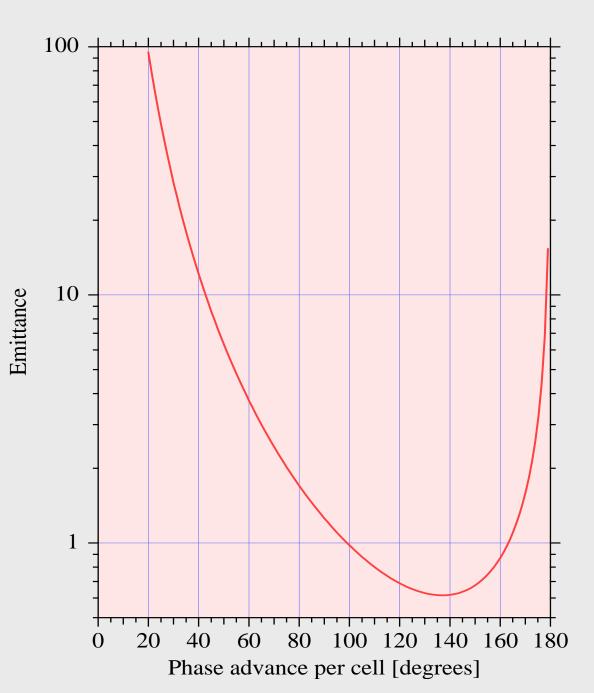
FODO lattice emittance



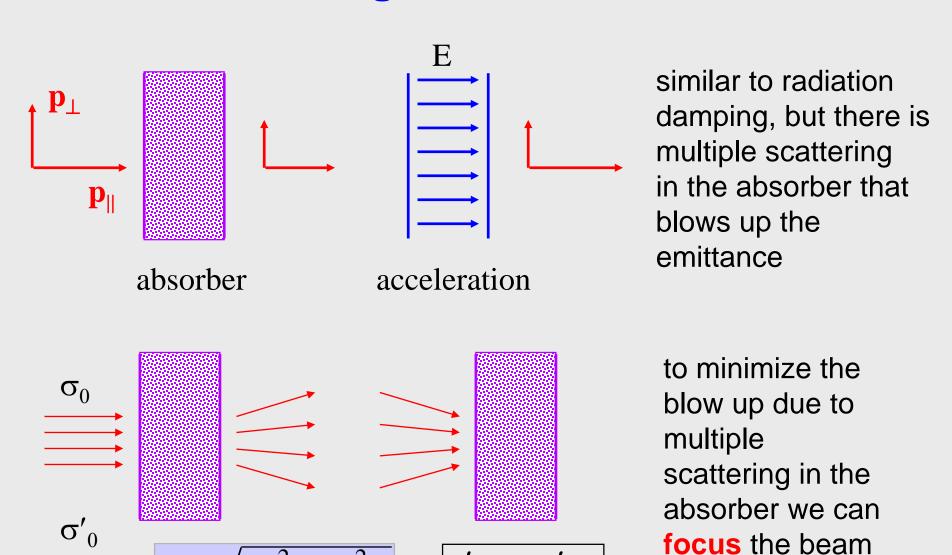
$$\mathcal{H} \sim \frac{D^2}{\beta} \sim \frac{R}{Q^3}$$

$$\varepsilon_{x0} \approx \frac{C_q E^2}{J_x} \cdot \frac{R}{\rho} \cdot \frac{1}{Q^3}$$

$$\epsilon \propto \frac{\mathbf{E}^2}{\mathbf{J}_{\mathbf{x}}} \theta^3 F_{\text{FODO}}(\mu)$$

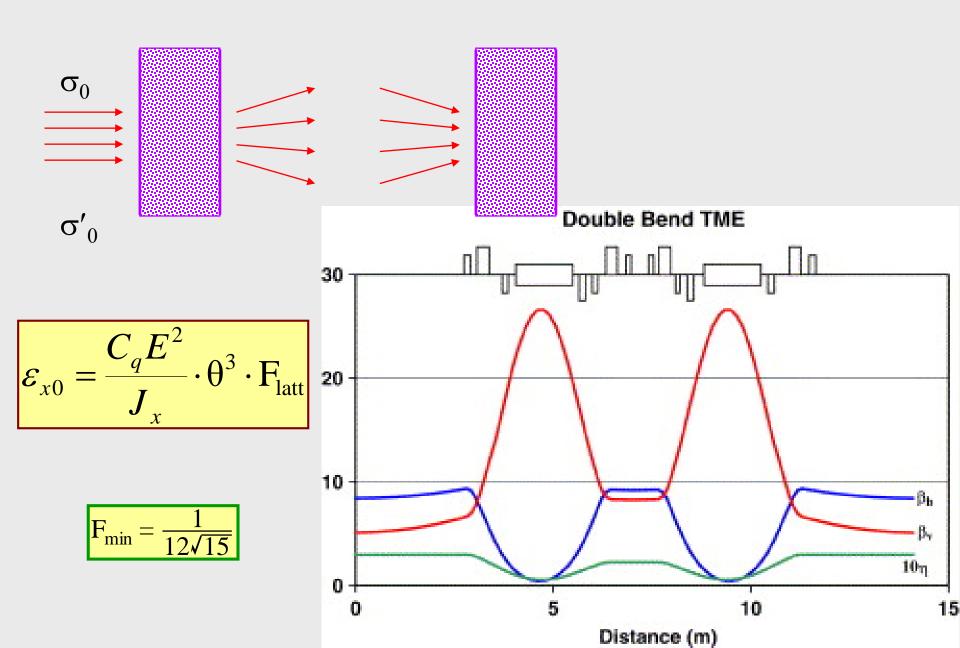


Ionization cooling



 $|\sigma'_0>>\sigma'_{MS}|$

Minimum emittance lattices



Quantum limit on emittance

- Electron in a storage ring's dipole fields is accelerated, interacts with vacuum fluctuations: «accelerated thermometers show increased temperature»
- synchrotron radiation opening angle is $\sim 1/\gamma->$ a lower limit on equilibrium vertical emittance
- independent of energy

$$\epsilon_y = \frac{13}{55} C_q \frac{\oint \beta_y(s) |G^3(s)| ds}{\oint G^2(s) ds}$$

G(s) =curvature, C_q = 0.384 pm

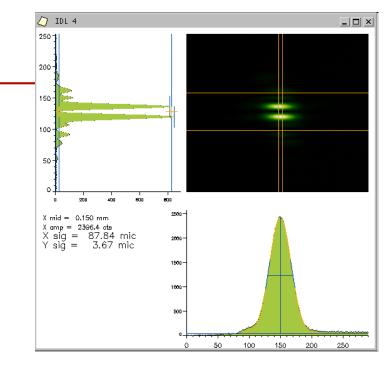
■ in case of SLS: 0.2 pm

isomagnetic lattice
$$\varepsilon_{y} = 0.09 \, \text{pm} \cdot \frac{\left\langle \beta_{y} \right\rangle_{\text{Mag}}}{\rho}$$

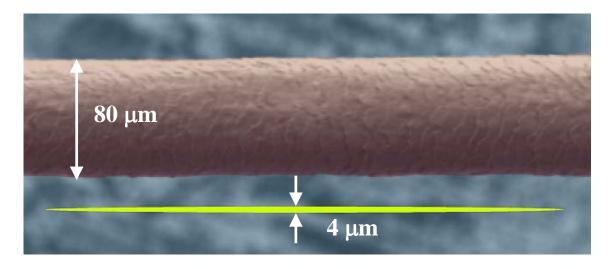
Vertical emittance record

Beam size $3.6 \pm 0.6 \mu m$

Emittance $0.9 \pm 0.4 \text{ pm}$



SLS beam cross section compared to a human hair:



Summary of radiation integrals

Momentum compaction factor

$$\alpha = \frac{I_1}{2\pi R}$$

Energy loss per turn

$$U_0 = \frac{1}{2\pi} C_{\gamma} E^4 \cdot I_2$$

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3} \right]$$

$$I_{1} = \oint \frac{D}{\rho} ds$$

$$I_{2} = \oint \frac{ds}{\rho^{2}}$$

$$I_{3} = \oint \frac{ds}{|\rho^{3}|}$$

$$I_{4} = \oint \frac{D}{\rho} \left(2k + \frac{1}{\rho^{2}}\right) ds$$

$$I_{5} = \oint \frac{\mathcal{H}}{|\rho^{3}|} ds$$

Summary of radiation integrals (2)

Damping parameter $\mathcal{D} = \frac{I_4}{I}$

$$\mathcal{D} = \frac{I_4}{I_2}$$

Damping times, partition numbers

$$J_{\varepsilon} = 2 + \mathcal{D}$$
, $J_{x} = 1 - \mathcal{D}$, $J_{y} = 1$

$$au_{i} = rac{ au_{0}}{J_{i}}$$

$$\tau_i = \frac{\tau_0}{J_i}$$

$$\tau_0 = \frac{2ET_0}{U_0}$$

Equilibrium energy spread

$$\left(\frac{\sigma_{\varepsilon}}{E}\right)^2 = \frac{C_q E^2}{J_{\varepsilon}} \cdot \frac{I_3}{I_2}$$

Equilibrium emittance

$$\varepsilon_{x0} = \frac{\sigma_{x\beta}^2}{\beta} = \frac{C_q E^2}{J_x} \cdot \frac{I_5}{I_2}$$

$$I_{1} = \oint \frac{D}{\rho} ds$$

$$I_{2} = \oint \frac{ds}{\rho^{2}}$$

$$I_{3} = \oint \frac{ds}{|\rho^{3}|}$$

$$I_{4} = \oint \frac{D}{\rho} \left(2k + \frac{1}{\rho^{2}}\right) ds$$

$$I_{5} = \oint \frac{\mathcal{H}}{|\rho^{3}|} ds$$

$$C_q = \frac{55}{32\sqrt{3}} \frac{\hbar c}{(m_e c^2)^3} = 1.468 \cdot 10^{-6} \left[\frac{\text{m}}{\text{GeV}^2} \right]$$

$$\mathcal{H} = \gamma D^2 + 2\alpha DD' + \beta D'^2$$

Damping wigglers

Increase the radiation loss per turn U₀ with WIGGLERS

reduce damping time

$$\tau = \frac{E}{P_{\gamma} + P_{wig}}$$

emittance control

wigglers at high dispersion: blow-up emittance

e.g. storage ring colliders for high energy physics

wigglers at zero dispersion: decrease emittance

e.g. damping rings for linear colliders

e.g. synchrotron light sources (PETRAIII, 1 nm.rad)

END