Beam Instrumentation & Diagnostics Part 1 CAS Introduction to Accelerator Physics Constanţa, 27th of September 2018 Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Instrumentation: Functionality of devices & basic applications

Beam Diagnostics: Usage of devices for complex measurements

Demands on Beam Diagnostics

Diagnostics is the 'sensory organs' for the beam in the real environment.

(Referring to Volker Ziemann's lecture: 'Detecting imperfections to enable corrections')

Different demands lead to different installations:

- ➤ Quick, non-destructive measurements leading to a single number or simple plots
 Used as a check for online information. Reliable technologies have to be used
 Example: Current measurement by transformers
- Complex instruments for severe malfunctions, accelerator commissioning & development
 The instrumentation might be destructive and complex

 Example: Emittance determination, chromaticity measurement

General usage of beam instrumentation:

- Monitoring of beam parameters for operation, beam alignment & accelerator development
- Instruments for automatic, active beam control

 Example: Closed orbit feedback at synchrotrons using position measurement by BPMs

Non-destructive ('non-intercepting' or 'non-invasive') methods are preferred:

- \triangleright The beam is not influenced \Rightarrow the **same** beam can be measured at several locations
- ➤ The instrument is not destroyed due to high beam power

Outline of the Lectures

The ordering of the subjects is oriented by the beam quantities:

Part 1 of the lecture on electro-magnetic monitors:

- **Current measurement:** Transformers, Faraday cups, particle detectors
- **Pick-ups for bunched beams**: Principle of rf pick-ups& relevant beam measurements

Part 2 of the lecture on transverse and longitudinal diagnostics:

- **Profile measurement:** Various methods depending on the beam properties
- > Transverse emittance measure: Destructive devices, linear transformations
- ➤ Measurement of longitudinal parameters: time structure of bunches, beam energy spread energies, longitudinal emittance

Lecture on Machin Protection System on Friday:

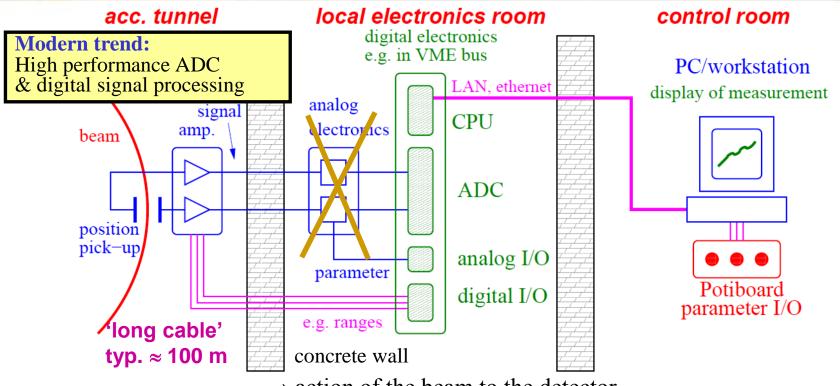
Beam loss detection: Secondary particle detection for optimization and protection

Some instruments must be different for:

- \triangleright Transfer lines with single pass \leftrightarrow synchrotrons with multi-pass
- ➤ Electrons are (nearly) always relativistic ↔ protons are at the beginning non-relativistic

Remark: Most instrumentation is installed outside of rf-cavities to prevent for signal disturbance

Typical Installation of a Beam Instrument



accelerator tunnel:
→ action of the beam to the detector

→ low noise pre-amplifier and first signal shaping

→ analog treatment, partly combining other parameters

local electronics room:

→ digitalization, data bus systems (GPIB, VME, cPCI, µTCA...)

control room:
→ visualization and storage on PC farm

→ parameter setting of the beam and the instruments

Measurement of Beam Current

The beam current and its time structure the basic quantity of the beam.

- ➤ It this the first check of the accelerator functionality
- > It has to be determined in an absolute manner
- ➤ Important for transmission measurement and to prevent for beam losses.

Different devices are used:

- Transformers: Measurement of the beam's magnetic field
 They are non-destructive. No dependence on beam energy
 They have lower detection threshold.
- **Faraday cups:** Measurement of the beam's **electrical charges**

Magnetic field of the beam and the ideal Transformer

Beam current of
$$N_{part}$$
 charges with velocity β

$$I_{beam} = qe \cdot \frac{N_{part}}{t} = qe \cdot \beta c \cdot \frac{N_{part}}{l}$$

- > cylindrical symmetry
- → only azimuthal component

$$\vec{B} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{e_{\varphi}}$$

Example: $I = 1 \mu A$, $r = 10 \text{cm} \Rightarrow B_{beam} = 2 \text{pT}$, earth $B_{oarth} = 50 \mu T$

Idea: Beam as primary winding and sense by sec. winding.

⇒ Loaded current transformer

$$I_1/I_2 = N_2/N_1 \Rightarrow I_{sec} = 1/N \cdot I_{beam}$$

 \triangleright Inductance of a torus of μ_r

$$L = \frac{\mu_0 \mu_r}{2\pi} \cdot lN^2 \cdot \ln \frac{r_{out}}{r_{in}}$$

and guiding of field lines.

Definition: $U = L \cdot dI/dt$

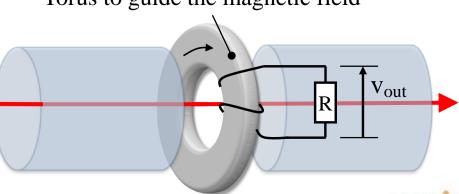
Torus to guide the magnetic field

magnetic field B

at radius r:

 $B \sim 1/r$

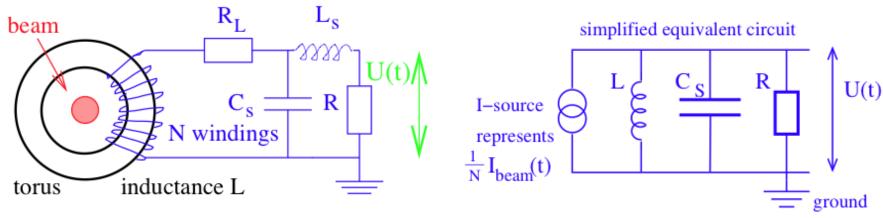
 $\overrightarrow{B} \parallel \overrightarrow{e}_{0}$



Fast Current Transformer FCT (or Passive Transformer)

Simplified electrical circuit of a passively loaded transformer:

passive transformer



A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with S sensitivity [V/A], equivalent to transfer function or transfer impedance Z

Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)

Response of the Passive Transformer: Rise and Droop Time

U(t)

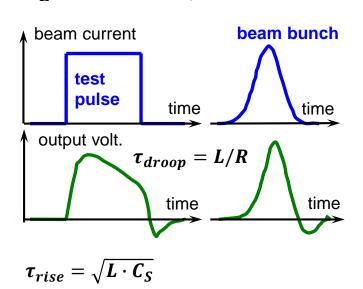
Time domain description:

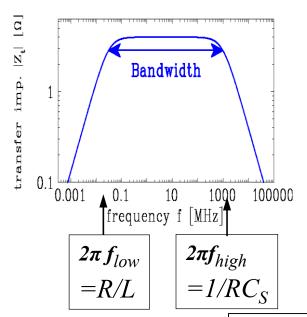
Droop time: $\tau_{droop} = 1/(2\pi f_{low}) = L/R$

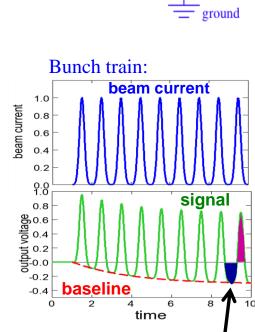
Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = 1/RC_S$ (ideal without cables)

Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_S C_s}$ (with cables)

 R_L : loss resistivity, R: for measuring.







simplified equivalent circuit

I-source

represents

Baseline: $U_{base} \propto 1 - \exp(-t/\tau_{droop})$ positive & negative areas are equal

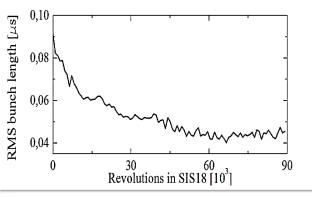
Example for Fast Current Transformer

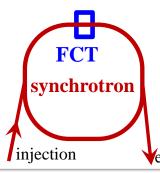
For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz

 \Leftrightarrow 10 ns $< t_{hunch} < 1$ µs is well suited

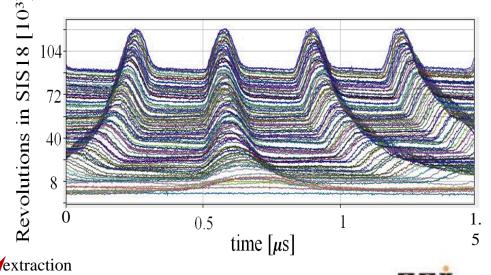
Example GSI type:

Inner / outer radius	70 / 90 mm
Torus thickness	16 mm
Permeability	$\mu_r \approx 10^5$ for $f < 100$ kHz
	$\mu_{\rm r} \propto 1/{\rm f}$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{\text{rise}} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz





Example: U^{73+} from 11 MeV/u (β = 15 %) to 350 MeV/u within 300 ms (displayed every 0.15 ms)



Example for Fast Current Transformer

For bunch beams e.g. transfer between synchrotrons typical bandwidth of 2 kHz < f < 1 GHz

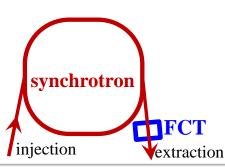
 \Leftrightarrow 1 ns < t_{batch} < 200 µs is well suited

Example GSI type:

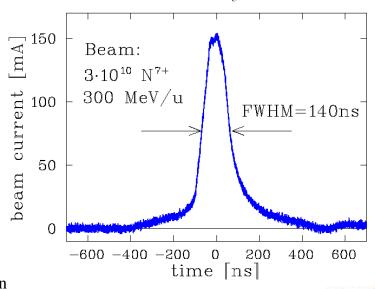
Inner / outer radius	70 / 90 mm
Torus thickness	16 mm
Permeability	$\mu_{\rm r} \approx 10^5$ for f ≤ 100 kHz
	$\mu_{\rm r} \propto 1/{\rm f}$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{\text{rise}} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz

Numerous application e.g.:

- > Transmission optimization
- > Bunch shape measurement
- ➤ Input for synchronization of 'beam phase'



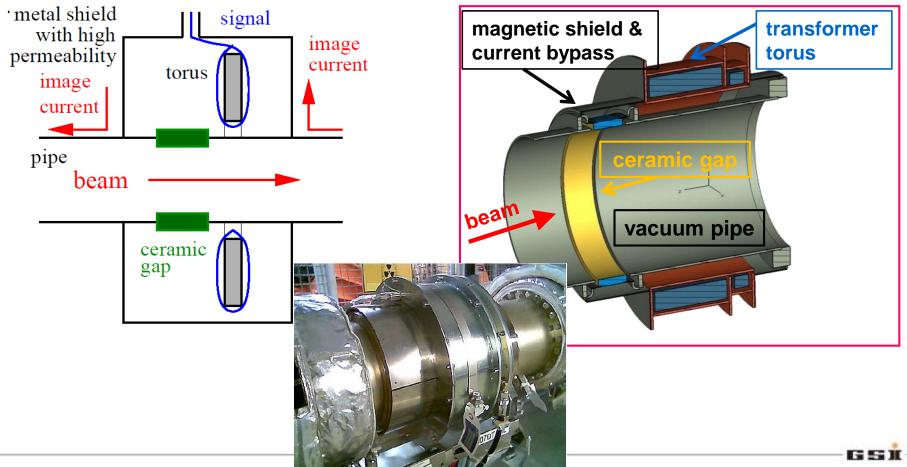
Fast extraction from GSI synchrotron:



Shielding of a Transformer

Task of the shield:

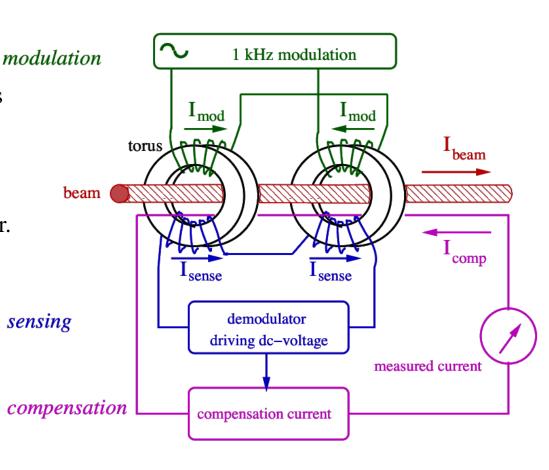
- ➤ The image current of the walls have to be bypassed by a gap and a metal housing.
- This housing uses μ -metal and acts as a shield of external B-field (remember: $I_{beam} = 1 \mu A$, $r = 10 \text{ cm} \Rightarrow B_{beam} = 2 \text{pT}$, earth field $B_{earth} = 50 \mu \text{T}$)



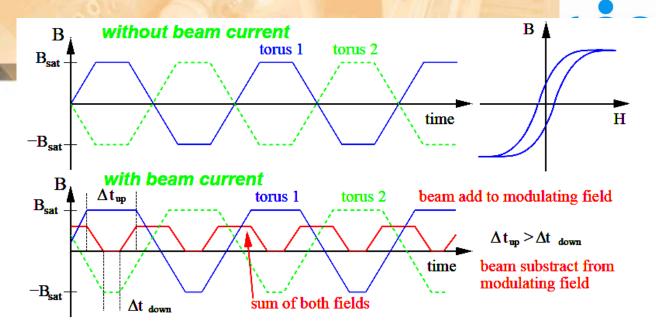
The dc Transformer

How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow look at the magnetic saturation of two torii.

- ➤ **Modulation** of the primary windings forces both torii into saturation twice per cycle
- ➤ Sense windings measure the modulation signal and cancel each other.
- \triangleright But with the I_{beam} , the saturation is shifted and I_{sense} is not zero
- ightharpoonup Compensation current adjustable until I_{sense} is zero once again



The dc Transformer



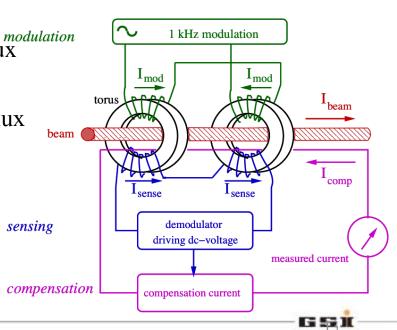
➤ Modulation without beam:

typically about 9 kHz to saturation \rightarrow **no** net flux

➤ Modulation with beam:

saturation is reached at different times, \rightarrow net flux

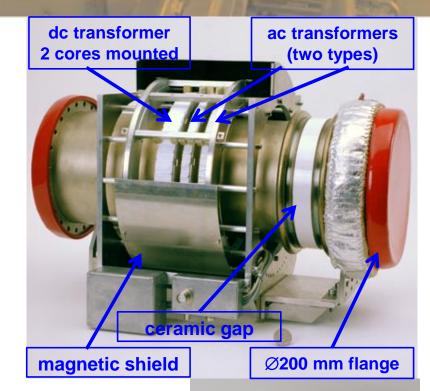
- ➤ Net flux: double frequency than modulation
- Feedback: Current fed to compensation winding for larger sensitivity
- > Two magnetic cores: Must be very similar.



The dc Transformer Realization

Example: The DCCT at GSI synchrotron

Torus radii	$r_i = 135 \text{ mm } r_o = 145 \text{ mm}$
Torus thickness	d = 10 mm
Torus permeability	$\mu_{\rm r} = 10^5$
Saturation inductance	B _{sat} = 0.6 T
Number of windings	16 for modulation & sensing 12 for feedback
Resolution	I ^{min} _{beam} = 2 μA
Bandwidth	$\Delta f = dc \dots 20 \text{ kHz}$
Rise time constant	$\tau_{\rm rise} = 10 \ \mu {\rm s}$
Temperature drift	1.5 μA/°C

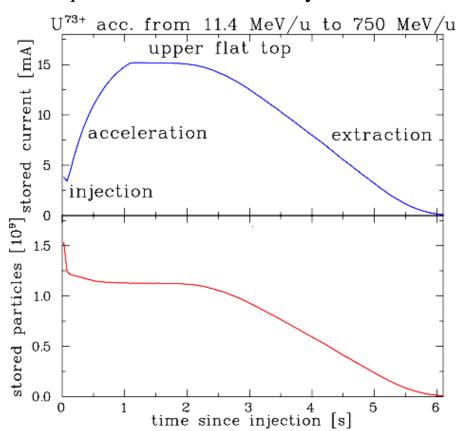


Measurement with a dc Transformer

Application for dc transformer:

 \Rightarrow Observation of beam behavior with typ. 20 µs time resolution \rightarrow the basic operation tool

Example: The DCCT at GSI synchrotron:



Important parameter:

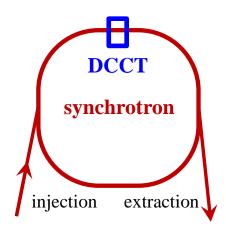
Detection threshold: ≈ 1 μA (= resolution)

Bandwidth: $\Delta f = \text{dc to } 20 \text{ kHz}$

Rise-time: $t_{rise} = 20 \,\mu s$

Temperature drift: $1.5 \,\mu\text{A}/^{0}\text{C}$

 \Rightarrow compensation required.



Measurement of Beam Current

The beam current is the basic quantity of the beam.

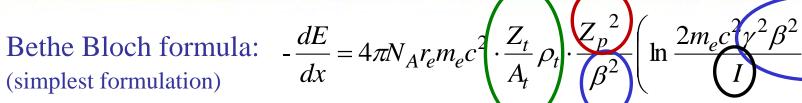
- ➤ It this the first check of the accelerator functionality
- ➤ It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.

Different devices are used:

- Transformers: Measurement of the beam's magnetic field They are non-destructive. No dependence on beam energy They have lower detection threshold.
- Faraday cups: Measurement of the beam's electrical charges
 They are destructive. For low energies only
 Low currents can be determined.

Energy Loss of Protons & Ions

$$\frac{dE}{dx} = 4\pi N_A r_e m_e c^2$$



Semi-classical approach:

> Projectiles of mass *M* collide with free electrons of mass *m*

- beam

- ightharpoonup If M >> m then the relative energy transfer is low
- ⇒ many collisions required many elections participate proportional to electron density $n_e = \frac{Z_t}{A_t} \rho_t$
- ⇒ low straggling for the heavy projectile i.e. 'straight trajectory'
- \triangleright If projectile velocity $\beta \approx 1$ low relative energy change of projectile (γ is Lorentz factor)
- \triangleright I is mean ionization potential including kinematic corrections $I \approx Z_t \cdot 10 \ eV$ for most metals
- \triangleright Strong dependence an projectile charge \mathbb{Z}_p
- Constants: N_A Advogadro number, r_e classical e radius, m_e electron mass, c velocity of light

Bethe Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot \frac{Z_p^2}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 \right)$$

Range:
$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$

with approx. scaling $R \propto E_{max}^{1.75}$

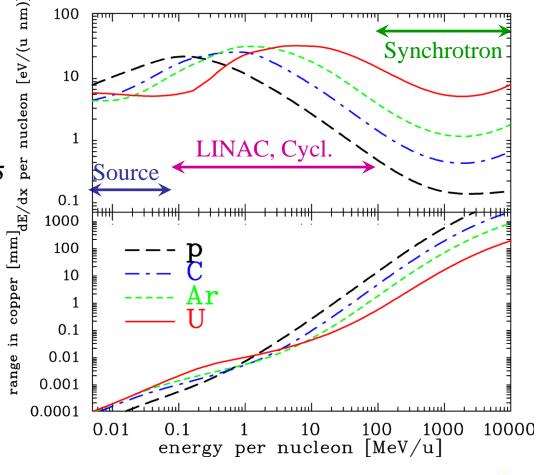
Numerical calculation for **ions**

with semi-empirical model e.g. SRIM

⇒ Cups only for

 E_{kin} < 100 MeV/u due to R < 10 mm

Main modification $Z_p o Z^{eff}_p(E_{kin})$

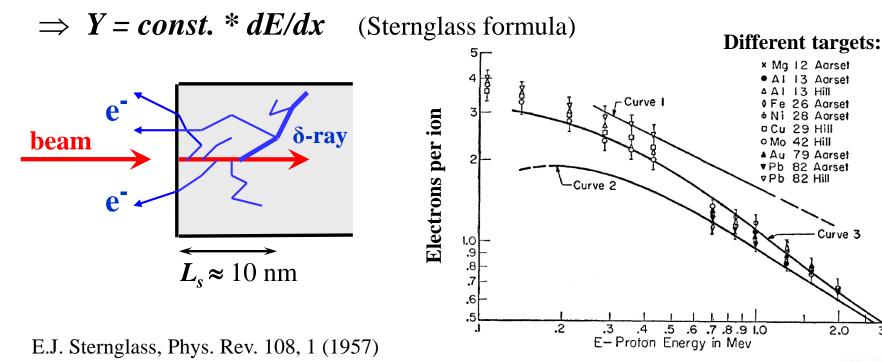


Secondary Electron Emission caused by Ion Impact

Energy loss of ions in metals close to a surface:

- Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} > 100 \text{ eV}$
- Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$
- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1 10$ nm
- \rightarrow at surface ≈ 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!



26 Aarset

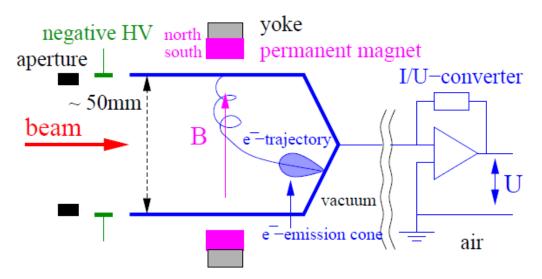
28 Aarset

79 Aarset 82 Aarset

Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup

 \Rightarrow The beam's charge are recorded as a function of time.



Currents down to 10 pA with bandwidth of 100 Hz!

To prevent for secondary electrons leaving the cup

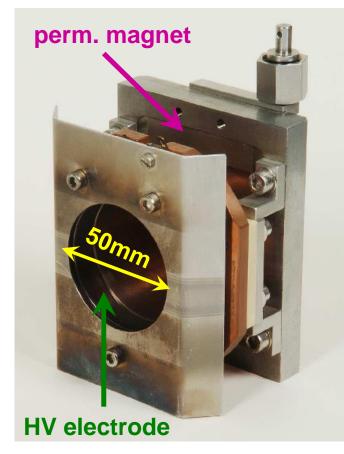
Magnetic field:

The central field is B \approx 10 mT $\Rightarrow r_c = \frac{mB}{e} \cdot v_{\perp} \approx 1$ mm.

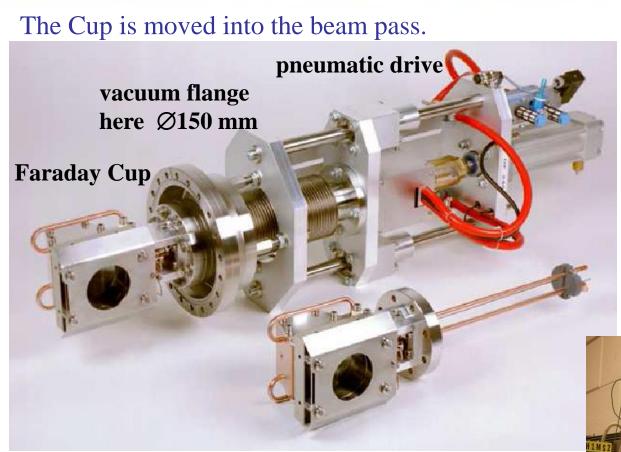
or Electric field: Potential barrier at the cup entrance $U \approx 1 \text{ kV}$.

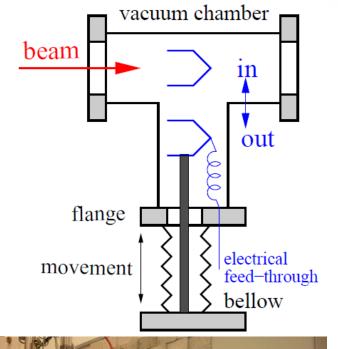
The cup is moved in the beam pass

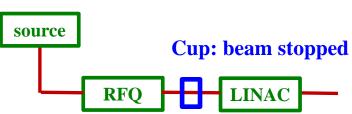
→ destructive device



Realization of a Faraday Cup at GSI LINAC







Summary for Current Measurement

Transformer: → measurement of the beam's magnetic field

- Magnetic field is guided by a high μ toroid
- ➤ Types: FCT \rightarrow large bandwidth, $I_{min} \approx 30 \,\mu\text{A}$, BW = 10 kHz ... 500 MHz

[ACT : $I_{min} \approx 0.3 \,\mu\text{A}$, BW = 10 Hz 1 MHz, used at proton LINACs]

DCCT: two toroids + modulation, $I_{min} \approx 1 \mu A$, BW = dc ... 20 kHz

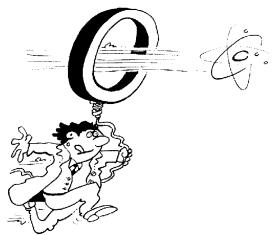
> non-destructive, used for all beams

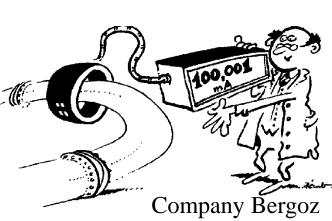
Faraday cup: \rightarrow measurement of beam's charge,

- \triangleright low threshold by I/U-converter: $I_{beam} > 10 \text{ pA}$
- > totally destructive, used for low energy beams only

Fast Transformer FCT Active transformer ACT

DC transformer DCCT





22

Pick-Ups for bunched Beams

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- > Capacitive *button* BPM for high frequencies
- ➤ Capacitive *linear-cut* BPM for low frequencies
- > Electronics for position evaluation
- > BPMs for measurement
- > Summary

A Beam Position Monitor is an non-destructive device for bunched beams

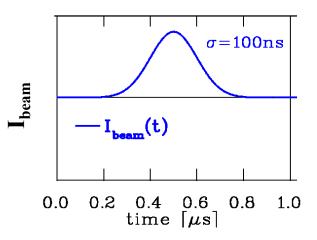
1. It delivers information about the transverse center of the beam

- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
- \triangleright Single bunch position: Determination of parameters like tune, chromaticity, β -function

Remarks: BPMs have a low cut-off frequency \Leftrightarrow . dc-beam behavior can't be monitored The abbreviation **BPM** and pick-up **PU** are synonyms

Time Domain ↔ **Frequency Domain**

Time domain: Recording of a voltage as a function of time:



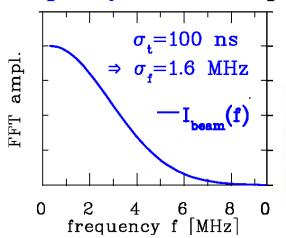
Instrument:

Oscilloscope

Fourier Transformation:

$$\widetilde{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

Frequency domain: Displaying of a voltage as a function of frequency:



Instrument:

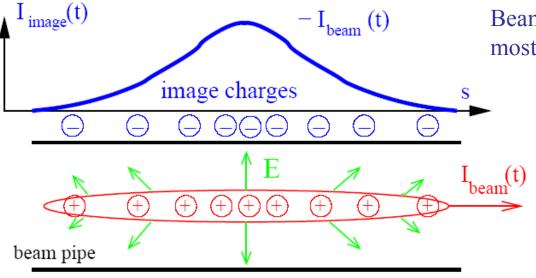
Spectrum Analyzer

Fourier Transformation

Care: Contains amplitude & phase The same information is differently displayed

Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.



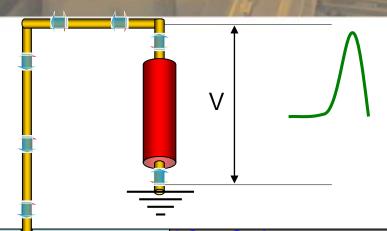
Beam Position Monitor **BPM** is the most frequently used instrument!

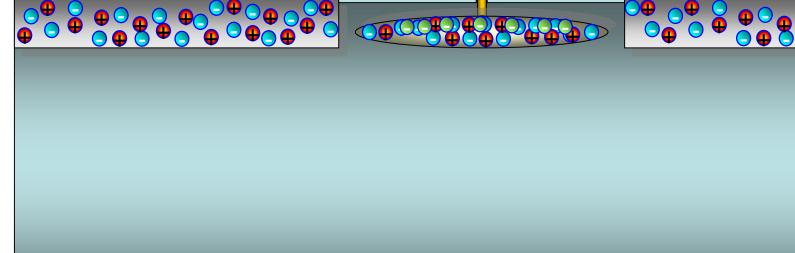
For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

Principle of Signal Generation of a BPMs, centered Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam.



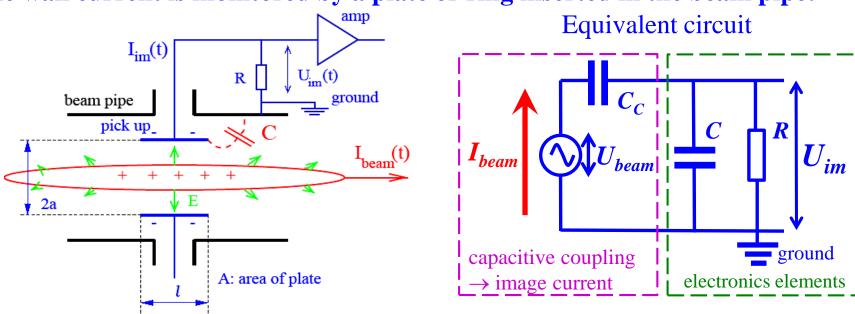


Animation by Rhodri Jones (CERN)

La Sa AL

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:



At a resistor R the voltage U_{im} from the image current is measured.

Goal: Connection from beam current to signal strength by transfer impedance $Z_t(\omega)$

in frequency domain:
$$U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

Result:
$$Z_t(\omega) = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{c} \cdot \frac{i\omega RC}{1+i\omega RC}$$
geometry stray capacitance frequency response

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$|Z_{t}| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^{2}/\omega_{cut}^{2}}}$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$

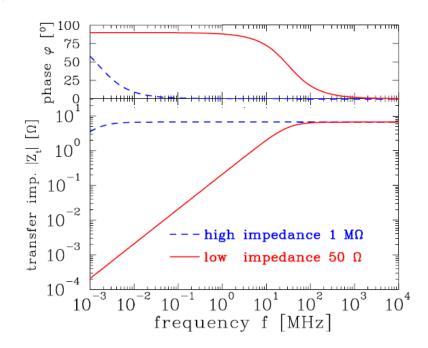
Parameter linear-cut BPM at proton synchr.:

$$C=100 \text{pF}, l=10 \text{cm}, \beta=50\%$$

$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

for
$$R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$$

for
$$R=1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$



Large signal strength for long bunches \rightarrow high impedance

Smooth signal transmission important for short bunches $\rightarrow 50 \Omega$

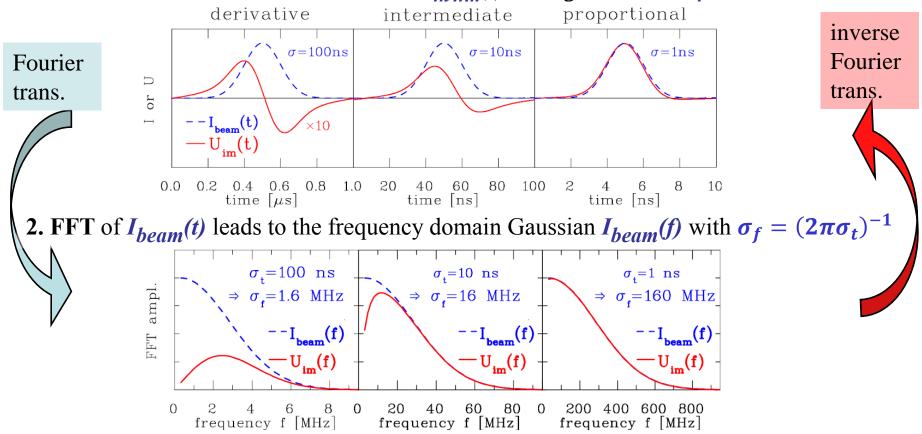
Remark: For $\omega \to 0$ it is $Z_t \to 0$ i.e. **no** signal is transferred from dc-beams e.g.

- ➤ de-bunched beam inside a synchrotron
- ➤ for slow extraction through a transfer line

Calculation of Signal Shape (here single Bunch)

The transfer impedance is used in frequency domain! The following is performed:

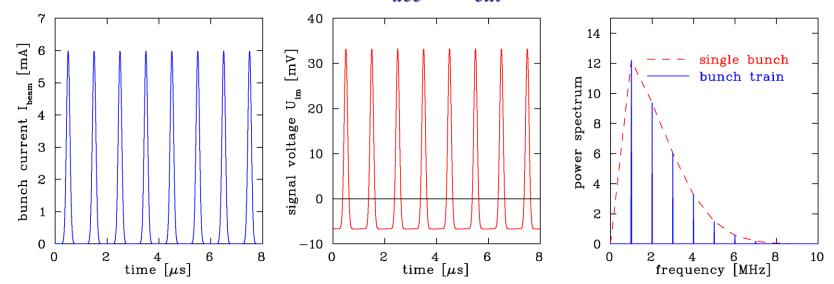
1. Start: Time domain Gaussian function $I_{heam}(t)$ having a width of σ_t



- 3. Multiplication with $Z_t(f)$ with $f_{cut}=32$ MHz leads to $U_{im}(f)=Z_t(f)\cdot I_{beam}(f)$
- 4. Inverse FFT leads to $U_{im}(t)$

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=1 \text{ M}\Omega \implies f_{acc} >> f_{cut}$:



Parameter: R=1 M $\Omega \Rightarrow f_{cut}=2$ kHz, $Z_t=5$ Ω , all buckets filled C=100pF, l=10cm, $\beta=50\%$, $\sigma_t=100$ ns $\Rightarrow \sigma_l=15$ m

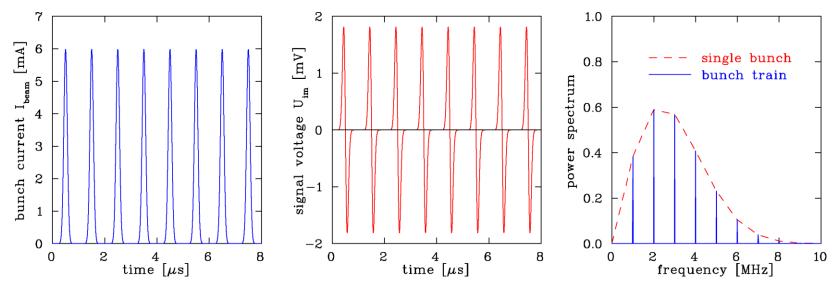
- \triangleright Fourier spectrum is composed of lines separated by acceleration f_{rf}
- ➤ Envelope given by single bunch Fourier transformation
- ➤ Baseline shift due to ac-coupling

Remark: 1 MHz $< f_{rf} < 10$ MHz \Rightarrow Bandwidth ≈ 100 MHz $= 10 \cdot f_{rf}$ for broadband observation

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$:



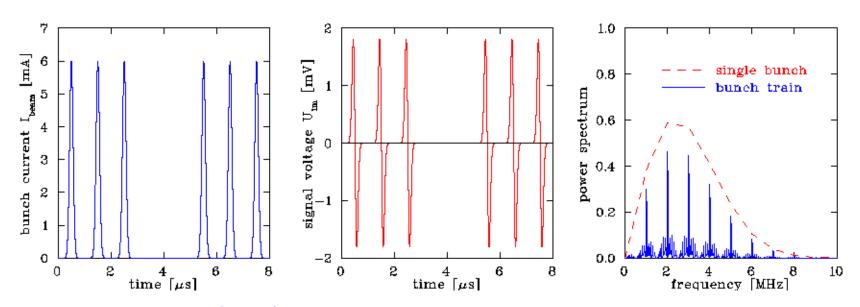
Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled

C=100pF,
$$l$$
=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_l$ =15m

- ➤ Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- \triangleright Bandwidth up to typically $10*f_{acc}$

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $R=50 \Omega$:

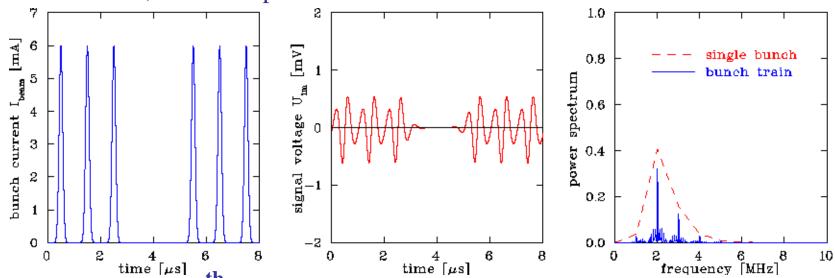


Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, 2 empty buckets C=100 pF, l=10 cm, $\beta=50\%$, $\sigma_t=100 \text{ ns} \Rightarrow \sigma_l=15 \text{m}$

➤ Fourier spectrum is more complex, harmonics are broader due to sidebands

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:



Parameter: $R=50 \Omega$, 4th order Butterworth filter at $f_{cut}=2$ MHz

C=100pF, l=10cm, $\beta=50\%$, $\sigma=100$ ns

- ➤ Ringing due to sharp cutoff
- ➤ Other filter types more appropriate

nth order Butterworth filter, math. simple, but **not** well suited:

$$|H_{low}| = \frac{1}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}} \quad \text{and} \quad |H_{high}| = \frac{(\omega/\omega_{cut})^n}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}}$$

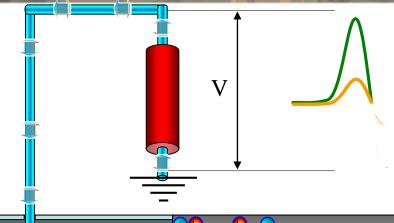
$$H_{filter} = H_{high} \cdot H_{low}$$

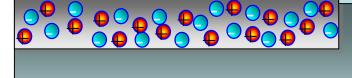
Generally: $Z_{tot}(\omega) = H_{cable}(\omega) \cdot H_{filter}(\omega) \cdot H_{amp}(\omega) \cdot \dots \cdot Z_{t}(\omega)$

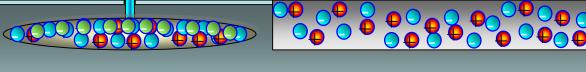
Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

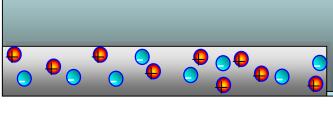
Principle of Signal Generation of a BPMs: off-center Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam.









PCOP 400 4000

Animation by Rhodri Jones (CERN)

La Sa II

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass → most frequent application

'Proximity' effect leads to different voltages at the plates:

$$y = \frac{1}{S_{y}(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}} + \delta_{y}(\omega)$$

$$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}} + \delta_{y}$$

$$x = \frac{1}{S_{x}(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} + \delta_{x}(\omega)$$

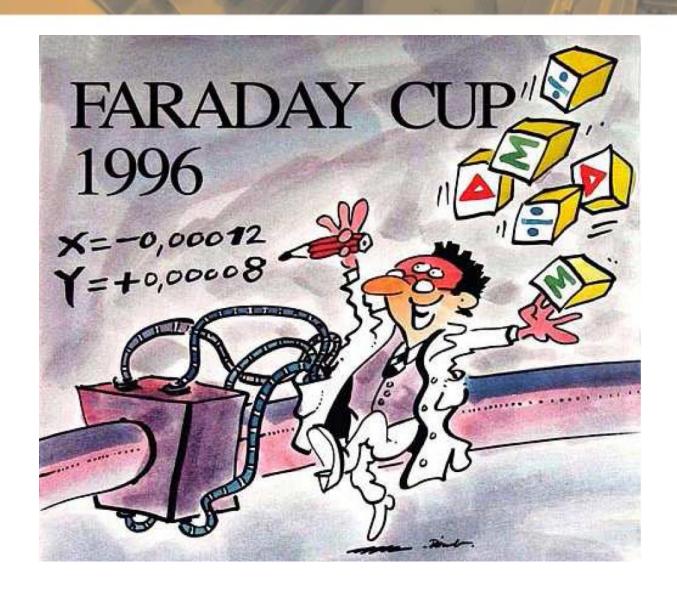
$$I_{beam}$$

$$I_{beam$$

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$ S is a geometry dependent, non-linear function, which have to be optimized Units: S=[%/mm] and sometimes S=[dB/mm] or k=[mm].

Typical desired position resolution: $\Delta x \approx 0.3 \dots 0.1 \cdot \sigma_x$ of beam width

The Artist View of a BPM



Pick-Ups for bunched Beams

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- > Capacitive *linear-cut* BPM for low frequencies
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

2-dim Model for a Button BPM

'Proximity effect': larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe → image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)} \right)$$

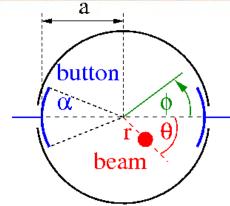
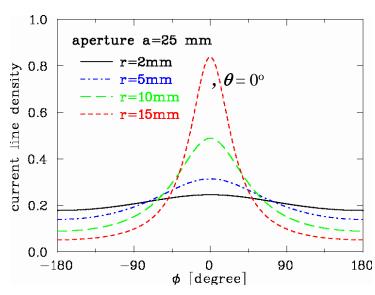
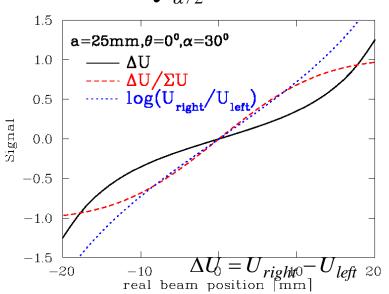


Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$





2-dim Model for a Button BPM

a

button

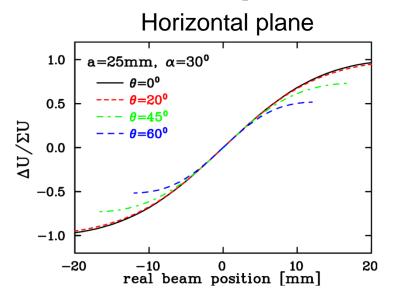
Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

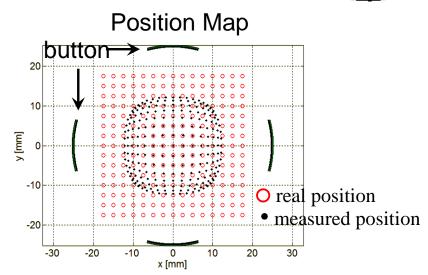
Sensitivity **S** is converts signal to position $x = \frac{1}{S} \cdot \frac{\Delta U}{\Sigma U}$

with S [%/mm] or [dB/mm]

i.e. S is the derivative of the curve $S_x = \frac{\partial (\frac{\Delta U}{\Sigma U})}{\partial x}$, here $S_x = S_x(x, y)$ i.e. non-linear.

For this example: center part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$





Button BPM Realization

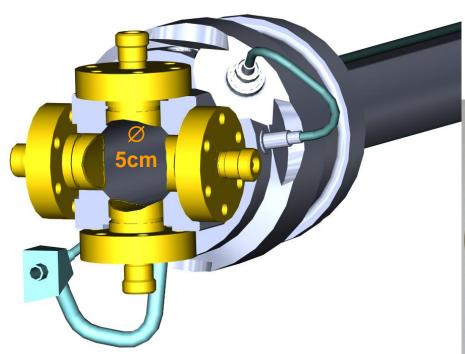
LINACs, e⁻-synchrotrons: 100 MHz $< f_{rf} <$ 3 GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

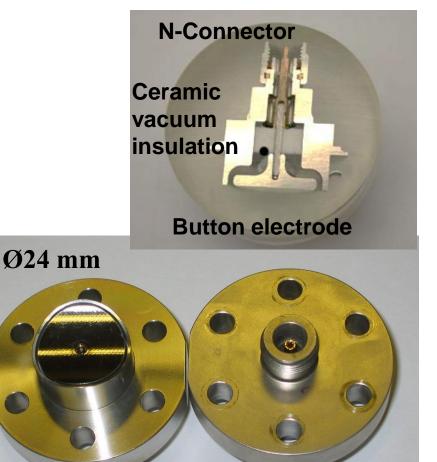
Example: LHC-type inside cryostat:

 \emptyset 24 mm, half aperture a=25 mm, C=8 pF

 $\Rightarrow f_{cut}$ =400 MHz, Z_t = 1.3 Ω above f_{cut}



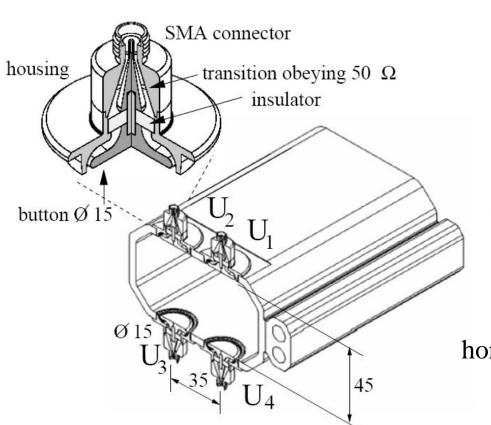
Courtesy C. Boccard (CERN)



40

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed ⇒buttons only in vertical plane possible ⇒ increased non-linearity



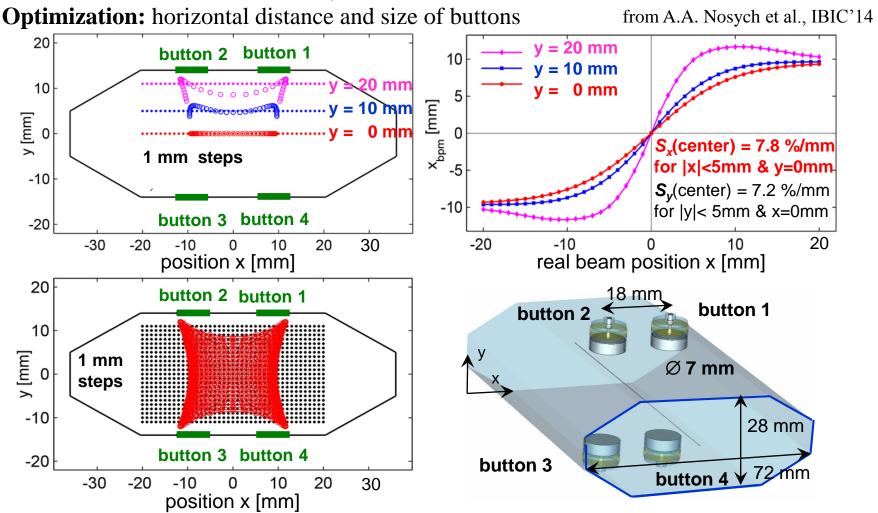
PEP-realization: N. Kurita et al., PAC 1995

horizontal:
$$x = \frac{1}{S_x} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for 72 x 28 mm² chamber



Result: non-linearity and xy-coupling occur in dependence of button size and position

Pick-Ups for bunched Beams

Outline:

- **>** Signal generation → transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- > Capacitive *linear-cut* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

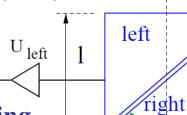
Linear-cut BPM for Proton Synchrotrons

Frequency range: 1 MHz $< f_{rf} <$ 10 MHz \Rightarrow bunch-length >> BPM length.

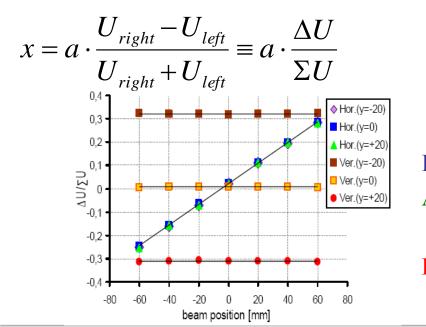
Signal is proportional to actual plate length:

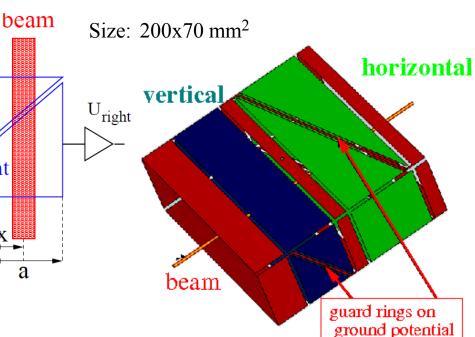
$$l_{\text{right}} = (a+x) \cdot \tan \alpha, \quad l_{\text{left}} = (a-x) \cdot \tan \alpha$$

$$\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}} \qquad \qquad U_{\text{left}} \qquad 1$$



In ideal case: linear reading





Linear-cut BPM:

Advantage: Linear, i.e. constant position sensitivity S

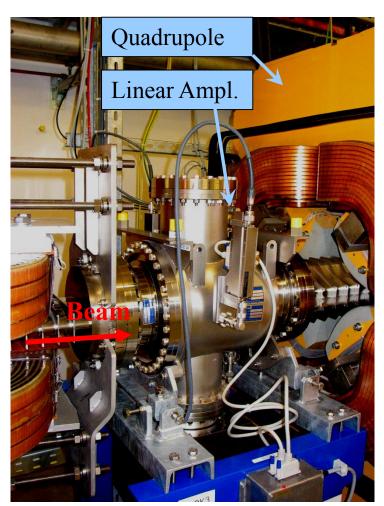
 \Leftrightarrow no beam size dependence

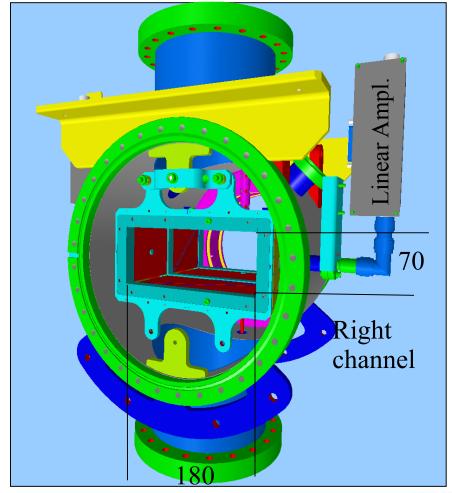
Disadvantage: Large size, complex mechanics

high capacitance

Technical Realization of a linear-cut BPM

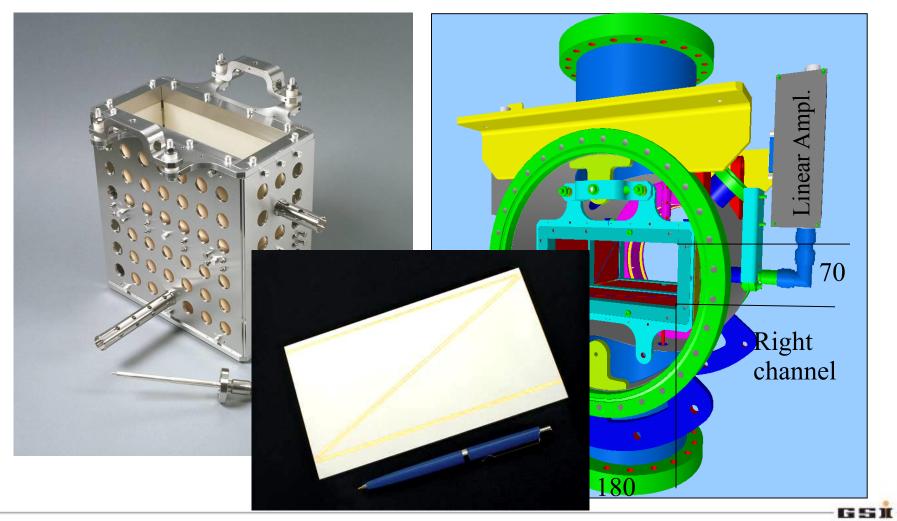
Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→ 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.





Technical Realization of a linear-cut BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



	Linear-cut BPM	Button BPM	
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
BPM length (typical)	10 to 20 cm length per plane Ø1 to 5 cm per button		
Shape	Rectangular or cut cylinder Orthogonal or planar orientation		
Bandwidth (typical)	0.1 to 100 MHz 100 MHz to 5 GHz		
Coupling	1 MΩ or ≈1 kΩ (transformer) 50 Ω		
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)	
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling	
Sensitivity	Good, care: plate cross talk	Good, care: signal matching	
Usage	At proton synchrotrons, $f_{rf} < 10 \text{ MHz}$ vertical	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$	

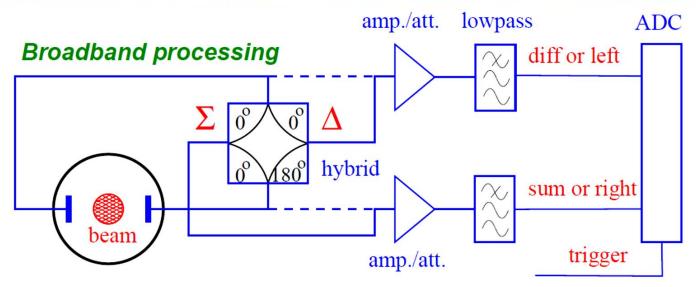
Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, cavity BPM, slotted wave-guides for stochastic cooling etc.

Pick-Ups for bunched Beams

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Capacitive *linear-cut* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Broadband Signal Processing



- \succ Hybrid or transformer close to beam pipe for analog $\varDelta U \& \Sigma U$ generation or $U_{left} \& U_{right}$
- ➤ Attenuator/amplifier
- > Filter to get the wanted harmonics and to suppress stray signals
- \triangleright ADC: digitalization \longrightarrow followed by calculation of of $\Delta U/\Sigma U$

Advantage: Bunch-by-bunch observation possible, versatile post-processing possible

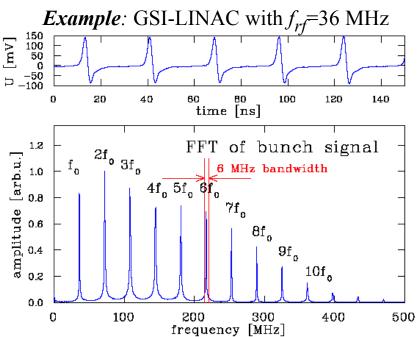
Disadvantage: Resolution down to $\approx 100 \ \mu m$ for shoe box type, i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing, see below

General: Noise Consideration

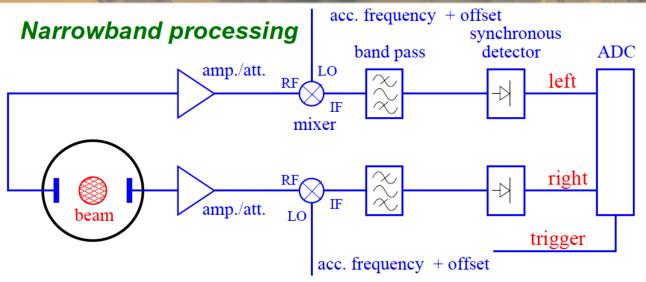
- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U/\Sigma U$
- 3. Thermal noise voltage given by: $U_{noise}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

1 Signal-to-noise $\Delta U_{im}/U_{noise}$ is influenced by:

- ➤ Input signal amplitude
- > Thermal noise from amplifiers etc.
- \triangleright Bandwidth Δf
- \Rightarrow Restriction of frequency width as the power is concentrated at harm. nf_{rf}



Narrowband Processing for improved Signal-to-Noise



Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- > Attenuator/amplifier
- \succ Mixing with accelerating frequency f_{rf} \Rightarrow signal with difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- ➤ Rectifier: synchronous detector
- \triangleright ADC: digitalization \rightarrow followed calculation of $\Delta U/\Sigma U$

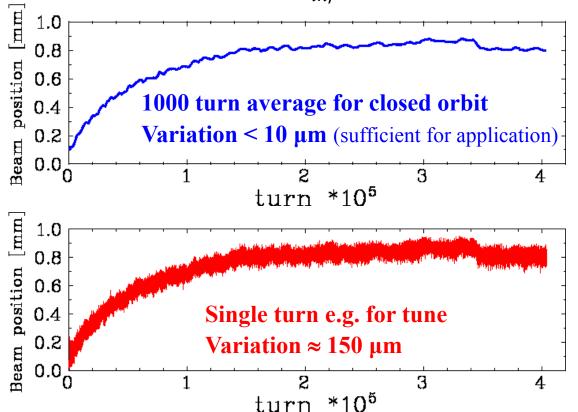
Advantage: spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

Digital

I/O demodulation

Comparison: Filtered Signal ↔ **Single Turn**



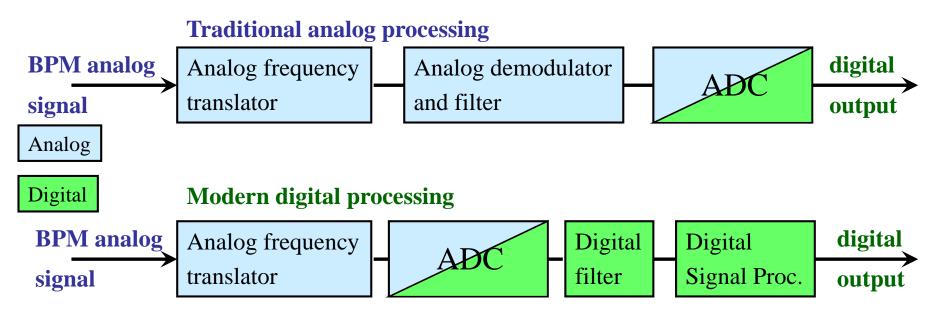
- Position resolution < 30 μm(BPM diameter d=180 mm)
- ➤ average over 1000 turns corresponding to ≈1 ms or ≈1 kHz bandwidth

➤ Turn-by-turn data have much larger variation

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.



Digital receiver as modern successor of super heterodyne receiver

- ➤ Basic functionality is preserved but implementation is very different
- ➤ Digital transition just after the amplifier & filter or mixing unit
- ➤ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification **Disadvantage of DSP: non**, good engineering skill requires for development, expensive

Comparison of BPM Readout Electronics (simplified)

Type	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for transfer lines with few bunches	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	ADC sample typ. 250 MS/s	Very flexible & versatile High resolution Trendsetting technology for future demands	Basically non! Limited time resolution by ADC → under-sampling Man-power intensive

Pick-Ups for bunched Beams

Outline:

- **>** Signal generation → transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- > Capacitive *linear-cut* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- ➤ BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- > Summary

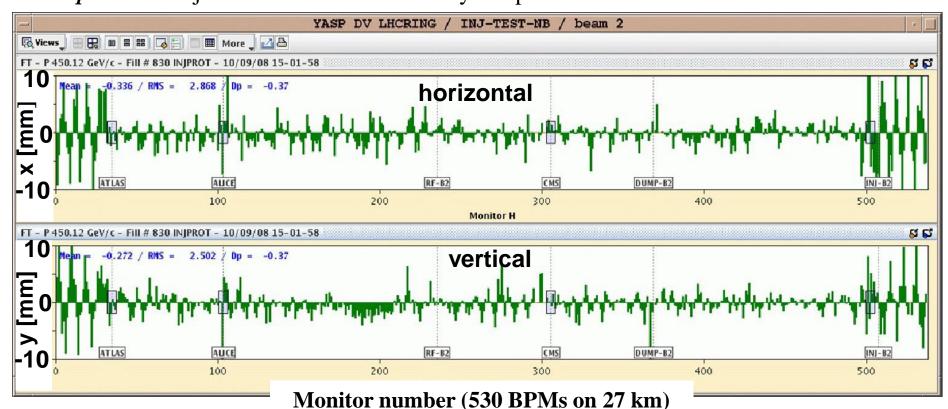
Trajectory Measurement with BPMs

Trajectory:

The position delivered by an **individual bunch** within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation!



Wolfitor Humber (330 B) Wis on 27

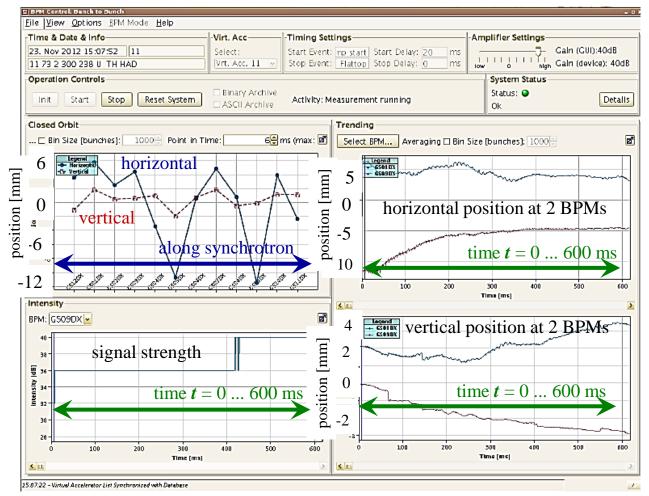
From R. Jones (CERN)

Tune values: $Q_h = 64.3$, $Q_v = 59.3$

Close Orbit Measurement with BPMs

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components.

Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:



Closed orbit:

Beam position averaged over many turns (i.e. betatron oscillations). The result is the basic tool for alignment & stabilization

Closed Orbit Feedback: Typical Noise Sources

Experimental hall activities

Short term (min to 10 ms):

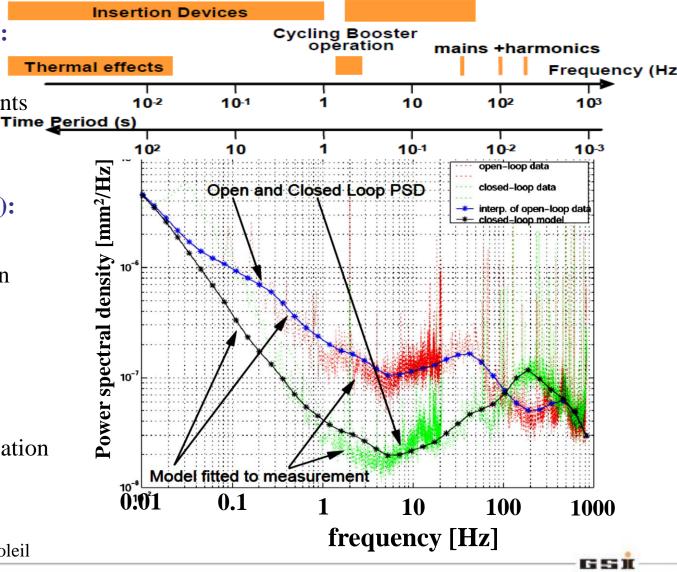
- **≻**Traffic
- ➤ Machine (crane) movements
- ➤ Water & vacuum pumps
- ➤ 50 Hz main power net

Medium term (day to min):

- ➤ Movement of chambers due to heating by radiation
- ➤ Day-night variation
- > tide, moon cycle

Lang term (> days):

- ➤ Ground settlement
- ➤ Seasons, temperature variation



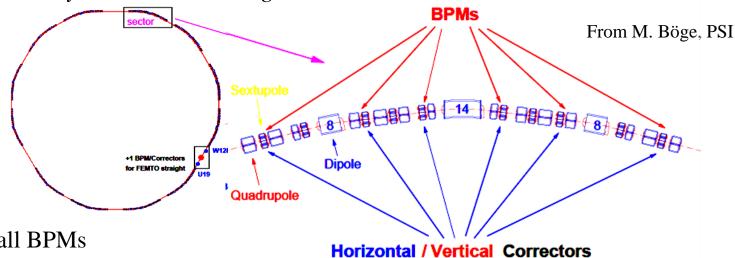
Ground vibrations

From M. Böge, PSI, N. Hubert, Soleil

Close Orbit Feedback: BPMs and magnetic Corrector Hardware

Orbit feedback: Synchrotron light source → spatial stability of light beam

Example from SLS-Synchrotron at Villigen, Swiss:



Procedure:

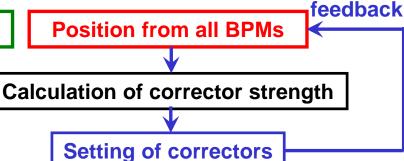
- 1. Position from all BPMs
- 2. Calculation of corrector setting via

Orbit Response Matrix (\rightarrow V. Ziemann)

- 3. Digital feedback loop
- \Rightarrow regulation time down to 10 ms
- \Rightarrow Role od thumb: \approx 4 BPMs per betatron wavelength

Uncorrected orbit: typ. $\langle x^2 \rangle_{rms} \approx 1 \text{ mm}$

Corrected orbit: $\langle x^2 \rangle_{rms} \approx 1 \, \mu \text{m}$ up to 100 Hz bandwidth!



Acc. optics

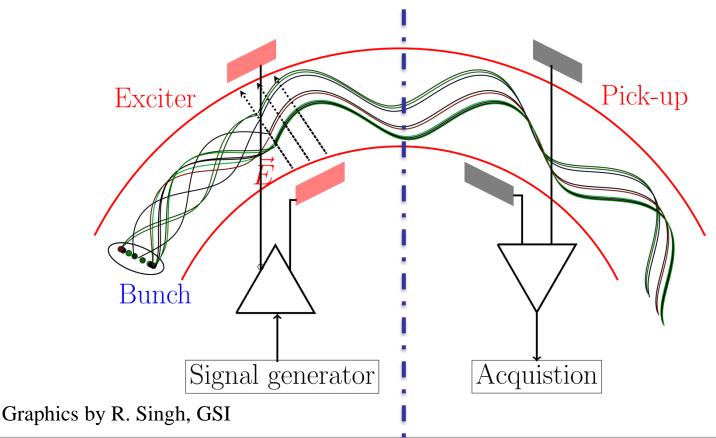
Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM

Beam particle's *in-coherent* motion \Rightarrow center-of-mass stays constant

Excitation of **all** particles by rf \Rightarrow **coherent** motion

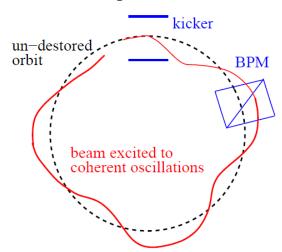
⇒ center-of-mass variation turn-by-turn i.e. center acts as **one** macro-particle

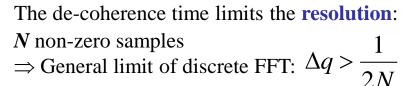


Tune Measurement: The Kick-Method in Time Domain

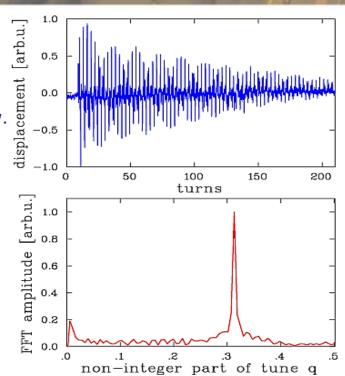
The beam is excited to coherent betatron oscillation

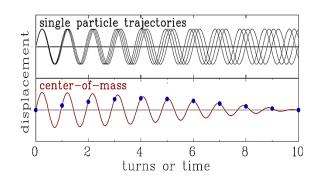
- → the beam position measured each revolution ('turn-by-turn')
- \rightarrow Fourier Trans. gives the non-integer tune q. Short kick compared to revolution.





Here: $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003$ (tune spreads can be $\Delta q \approx 0.001!$)



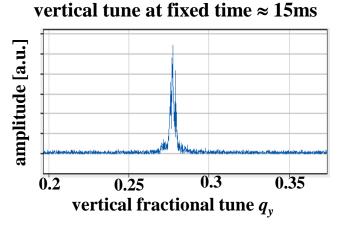


Decay is caused by de-phasing, **not** by decreasing single particle amplitude.

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied

- → beam picks out its resonance frequency: *Example:* Vertical tune within 4096 turn
- ► broadband excitation with white noise of ≈ 10 kHz bandwidth
- > turn-by-turn position measurement
- Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance

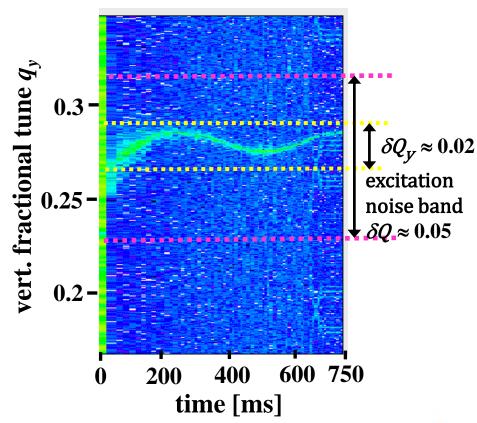


Advantage:

Fast scan with good time resolution

U. Rauch et al., DIPAC 2009

Example: Vertical tune within 4096 turn duration ≈ 15 ms at GSI synchrotron 11 → 300 MeV/u in 0.7 s vertical tune versus time



Chromaticity Measurement from Closed Orbit Data

Chromaticity ξ: Change of tune for off-momentum particle

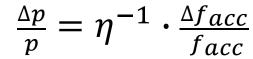
Two step measurement procedure:

- 1. Change of momentum p by detuned rf-frequency
- 2. Excitation of coherent betatron oscillations and tune measurement (kick-method, BTF, noise excitation):

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$

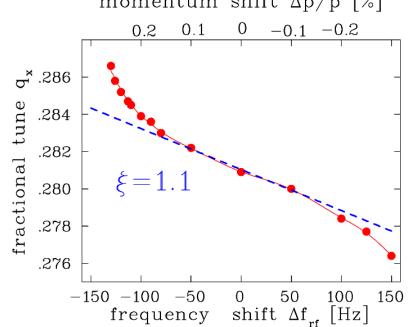
 \Rightarrow slope is dispersion ξ .

From M Minty, F. Zimmermann, Measurement and Control of charged Particle Beam, Springer Verlag 2003



Example: Measurement at LEP:

momentum shift $\Delta p/p$ [%]



β-Function Measurement from Bunch-by-Bunch BPM Data

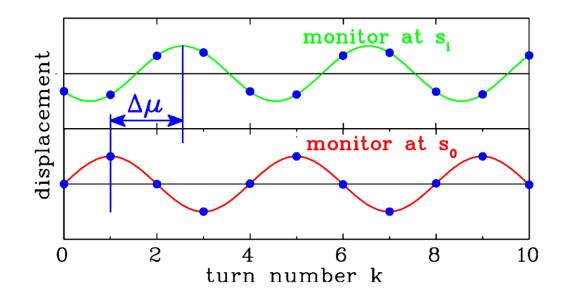
Excitation of **coherent** betatron oscillations:

→ Time-dependent position reading results the phase advance between BPMs

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$
 β -function from

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$



'Beta-beating' from Bunch-by-Bunch BPM Data

Example: 'Beta-beating' at BPM $\Delta \beta = \beta_{meas} - \beta_{model}$ with measured β_{meas} & calculated β_{model} for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)

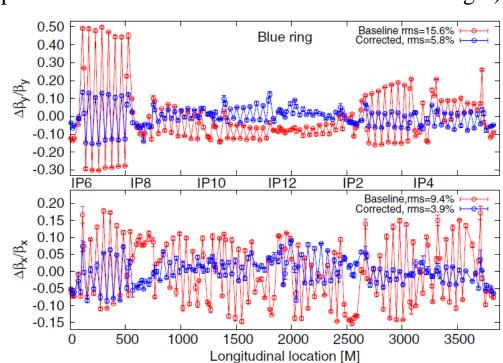
Result concerning 'beta-beating':

- Model doesn't fit reality completely e.g. caused by misalignments
- > Corrections executed
- ➤ Increase of the luminosity

Remark:

Measurement accuracy depends on

- ➤ BPM accuracy
- Numerical evaluation method



Determination of β -function with 3 BPMs:

$$\beta_{meas}(BPM_1) = \beta_{model}(BPM_1) \cdot \frac{\cot[\mu_{meas}(1\to 2)] - \cot[\mu_{meas}(1\to 3)]}{\cot[\mu_{model}(1\to 2)] - \cot[\mu_{model}(1\to 3)]}$$

See e.g.: R. Tomas et al., Phys. Rev. Acc. Beams **20**, 054801 (2017) A. Wegscheider et al., Phys. Rev. Acc. Beams **20**, 111002 (2017)

From X. Shen et al.,

Phys. Rev. Acc. Beams 16, 111001 (2013)

Dispersion Measurement from Closed Orbit Data

Dispersion $D(s_i)$: Change of momentum p by detuned rf-cavity $\frac{\Delta p}{p} = \eta^{-1} \cdot \frac{\Delta f_{acc}}{f_{acc}}$

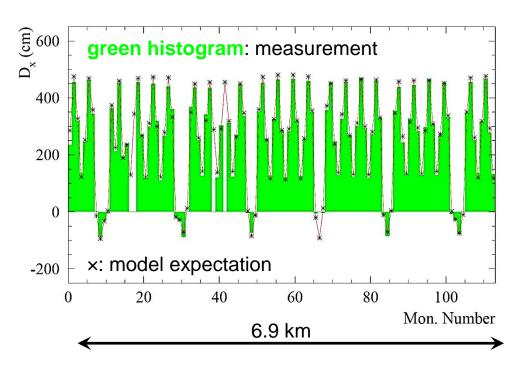
 \rightarrow Position reading at one location $x_i = D(s_i) \cdot \frac{\Delta p}{p}$:

- η : frequency slip factor
- \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$

Example: Dispersion measurement D(s) at BPMs at CERN SPS

Theory-experiment correspondence after correction of

- > BPM calibration
- > quadrupole calibration



From J. Wenninger: CAS on BD, CERN-2009-005 & J. Wenninger CERN-AB-2004-009

Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transformers they are the most often used instruments!

Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters

Proton synchrotron: 1 to 100 MHz, mostly 1 M Ω \rightarrow proportional shape

LINAC, e-synchrotron: 0.1 to 3 GHz, 50 Ω \rightarrow differentiated shape

Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Linear-cut (p-synch.), button (p-LINAC, e--LINAC and synch.)

Position reading: difference signal of four pick-up plates (BPM):

- \triangleright Non-intercepting reading of center-of-mass \rightarrow online measurement and control Synchrotron: slow reading \rightarrow closed orbit, fast bunch-by-bunch \rightarrow trajectory
- \triangleright Synchrotron: Excitation of *coherent* betatron oscillations \Rightarrow tune q, ξ , $\beta(s)$, D(s)...

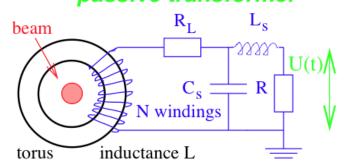
Remark: BPMs have high pass characteristic ⇒ no signal for dc-beams

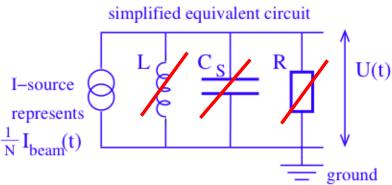
Thank you for your attention!

Backup slides

Bandwidth of a Fast Current Transformer

Analysis of a simplified electrical circuit of a passively loaded transformer: passive transformer





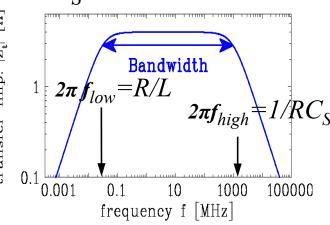
For this parallel shunt:

$$\frac{1}{Z} = \frac{1}{i\omega L} + \frac{1}{R} + i\omega C_S \Leftrightarrow Z = \frac{i\omega L}{1 + i\omega L/R - \omega L/R \cdot \omega RC_S}$$

$$\geq Low frequency \omega \ll R/L : Z \rightarrow i\omega L$$

- - i.e. no dc-transformation
- \gt High frequency $\omega \gt\gt 1/RC_S: Z\to 1/i\omega C_S$
 - i.e. current flow through C_{ς}
- \triangleright Working region $R/L < \omega < 1/RC_S : Z \simeq R$
 - i.e. voltage drop at R and sensitivity S=R/N.

No oscillations due to over-damping by low $R = 50 \Omega$ to ground.



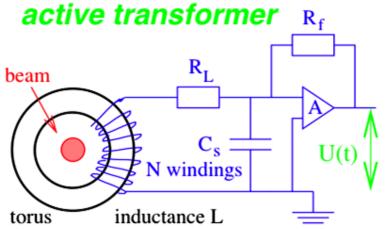
'Active' Transformer with longer Droop Time

Active Transformer or Alternating Current Transformer ACT:

uses a trans-impedance amplifier (I/U converter) to $R \approx 0$ Ω load impedance i.e. a current sink

+ compensation feedback \Rightarrow longer droop time au_{droop}

Application: measurement of longer $t > 10 \mu s$ e.g. at pulsed LINACs



The input resistor is for an op-amp: $R/A << R_L$

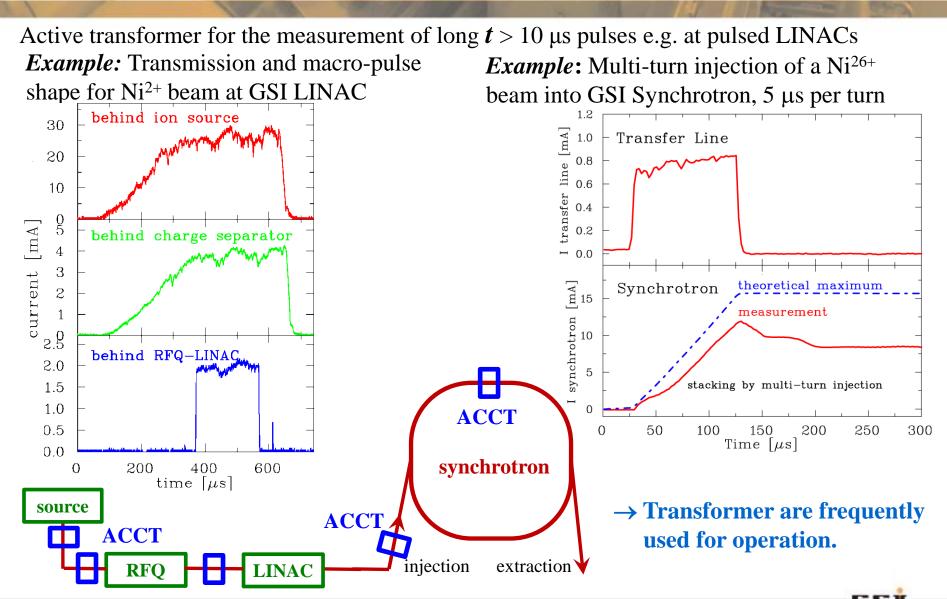
$$\Rightarrow au_{droop} = L/(R_f/A + R_L) \simeq L/R_L$$

Droop time constant can be up to 1 s!

Feedback resistor is also used for range switching.

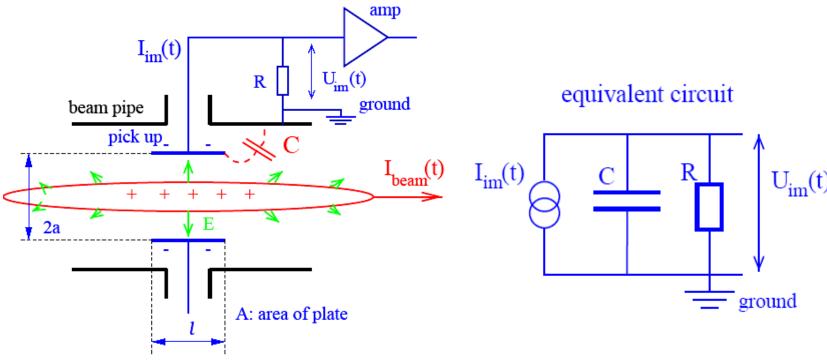
Torus inner radius	r_i =30 mm
Torus outer radius	$r_o=45 \text{ mm}$
Core thickness	<i>l</i> =25 mm
Core material	Vitrovac 6025
	(CoFe) _{70%} (MoSiB) _{30%}
Core permeability	$u_r=10^5$
Number of windings	2x10 crossed
Max. sensitivity	10 ⁶ V/A
Beam current range	10 μA to 100 mA
Bandwidth	1 MHz
Droop	0.5 % for 5 ms
rms resolution	0.2 μA for full bw

'Active' Transformer Measurement



Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:



The image current I_{im} at the plate is given by the beam current and geometry:

$$I_{im}(t) = -\frac{dQ_{im}(t)}{dt} = \frac{-A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt} = \frac{-A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{dI_{beam}(t)}{dt} = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot i\omega I_{beam}(\omega)$$

Using a relation for Fourier transformation: $I_{beam} = I_0 e^{-i\omega t} \Rightarrow dI_{beam}/dt = -i\omega I_{beam}$.

Transfer Impedance for a capacitive BPM

At a resistor R the voltage U_{im} from the image current is measured.

The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam}

in frequency domain:
$$U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$$
.

Capacitive BPM:

- \triangleright The pick-up capacitance C: plate ↔ vacuum-pipe and cable.
- \triangleright The amplifier with input resistor R.
- The beam is a high-impedance current source:

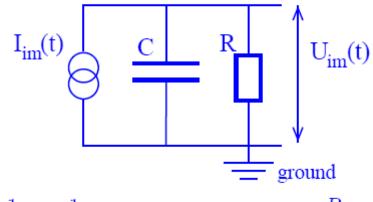
The beam is a high-impedance current source.
$$U_{im} = \frac{R}{1 + i\omega RC} \cdot I_{im}$$

$$= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam}$$

$$\equiv Z_{t}(\omega, \beta) \cdot I_{beam}$$

$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$

equivalent circuit



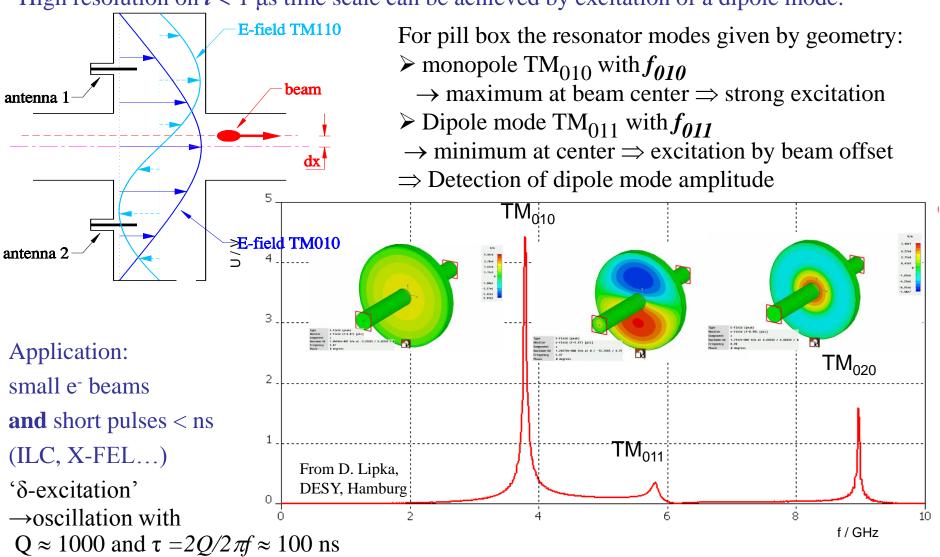
$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$

This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$

Cavity BPM: Principle

High resolution on t < 1 µs time scale can be achieved by excitation of a dipole mode:



Cavity BPM: Example of Realization

beam

Basic consideration for detection of eigen-frequency amplitudes:

Dipole mode f_{110} separated from monopole mode due to finite quality factor $Q \Rightarrow \Delta f = f/Q$

- Frequency $f_{110} \approx 1...10 \, \text{GHz}$
- ➤ Waveguide house the antennas

Task: suppression of TM₀₁₀ mono-pole mode

Cavity: Ø 113 mm Gap 15 mm

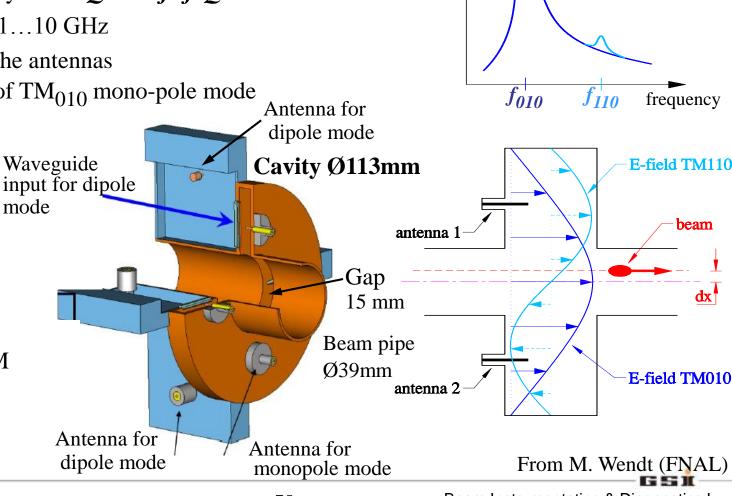
Mono. f_{010} =1.1GHz

Dipole. $f_{110} = 1.5 \text{GHz}$

 $Q_{load} \approx 600$

With comparable BPM

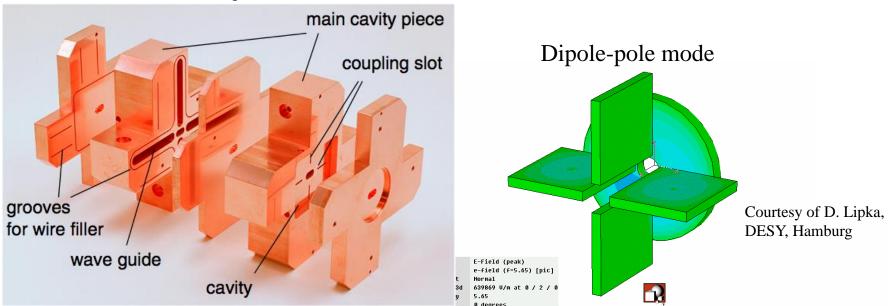
⇒0.1 µm resolution within 1 µs



Ampl.

Cavity BPM: Suppression of monopole Mode

Suppression of mono-pole mode: waveguide that couple only to dipole-mode



Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus

- \triangleright Required resolution of 2 nm in a 6 × 12 mm diameter beam pipe
- ➤ Achieved World Record so far: **resolution** of 8.7 nm at ATF2 (KEK, Japan)

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

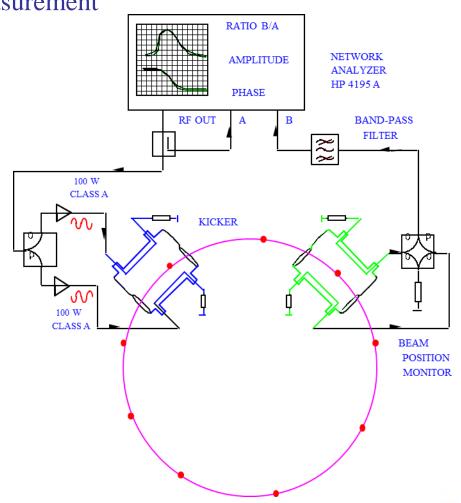
→ Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Principle:

Beam acts like a driven oscillator!

Using a network analyzer:

- ➤ RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- ➤ The position is measured at one BPM
- ➤ Network analyzer: amplitude and phase of the response
- ➤ Sweep time up to seconds due to de-coherence time per band
- \triangleright resolution in tune: up to 10^{-4}

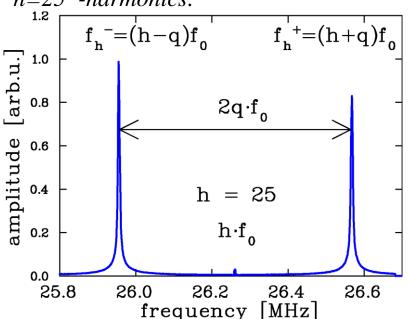


Tune Measurement: Result for BTF Measurement

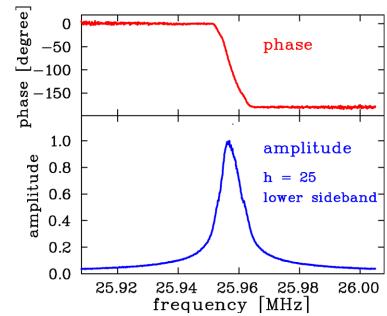
BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

A wide scan with both sidebands at

 $h=25^{th}$ -harmonics:



A detailed scan for the **lower** sideband → beam acts like a driven oscillator:



From the position of the sidebands q = 0.306 is determined. From the width

$$\Delta f/f \approx 5 \cdot 10^{-4}$$
 the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot h f_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

78

Advantage: High resolution for tune and tune spread (also for de-bunched beams)

Disadvantage: Long sweep time (up to several seconds).

Betatron Phase Measurement from B-by-B BPM Data

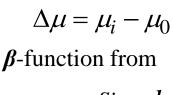
Excitation of **coherent** betatron oscillations:

→ Time-dependent position reading results the phase advance between BPMs

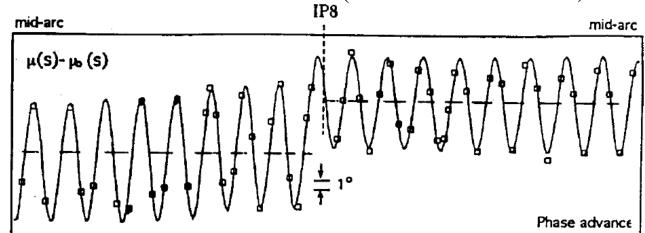
The phase advance is:

Example: Phase advance $\mu(s)$ compared to the expected $\mu_0(s)$

at each BPM at CERN's at LEP (e⁺ - e⁻ collider of 27 km)



$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$



Result:

- ➤ Model does not describes the reality completely, corrections required
- At interaction point IP (detector location) an additional phase shift is originated
- ➤ Alignment by correction dipoles (steerer), quadrupoles or sextupoles.

From J. Borer et al, EPAC'92