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Landau	  damping	   is	  a	  physical	  effect	  
named	   aGer	   his	   discoverer,	   the	  
Russian	   physicist	   Lev	   Davidovich	  
Landau,	   who	   studied	   in	   1946	   the	  
wave	  propaga/on	  in	  a	  plasma.	  	  

According	   to	   Landau	   theory,	   an	   ini/al	  
perturba/on	   of	   longitudinal	   charge	  
density	   in	   plasma	   waves	   is	   prevented	  
from	   developing	   because	   of	   a	   natural	  
stabilizing	  mechanism.	  
	  

1.	  Plasma	  oscillaHon	  

•  A	  cold	  plasma	  of	  ionized	  gas	  consists	  of	  ions	  and	  free	  
electrons	   distributed	   over	   a	   region	   in	   space.	   The	  
posi/ve	   ions	   are	   very	   much	   heavier	   than	   the	  
electrons,	   so	   that	   we	   can	   neglect	   their	   mo/on	   in	  
comparison	  to	  that	  of	  electrons.	  

	  
•  The	   plasma	   at	   the	   equilibrium,	   being	   neutral,	   is	  
characterized	  by	  the	  same	  local	  density	  n0	  [1/m3]	  for	  
both	  electrons	  and	  ions.	  	  
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•  If,	   for	   some	   reason,	   electrons	   are	   displaced	   from	  
their	  equilibrium	  posi/on,	   the	   local	  density	   changes	  
producing	   electrical	   forces	   that	   tend	   to	   restore	   the	  
equilibrium.	  	  

	  
•  As	   in	  any	   classical	  harmonic	  oscillator,	   the	  electrons	  
gain	   kine/c	   energy,	   and	   instead	   of	   coming	   to	   rest,	  
they	   start	   oscilla/ng	   back	   and	   forth,	   at	   a	   frequency	  
called	  ”plasma	  frequency”.	  
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2.	  Dispersion	  relaHon	  for	  plasma	  waves	  
	  
We	   consider	   now	   the	   more	   general	   case	   of	   a	   charge	  
density	   with	   a	   dis/bu/on	   func/on	   depending	   on	   the	  
posi/on	  and	  velocity	  such	  that:	  

If	   the	   charges	   are	   not	   in	   a	   state	   of	   equilibrium,	   we	   will	  
observe	   a	   /me	   evolu/on	   of	   the	   distribu/on	   under	   the	  
effect	  of	  the	  self	  electric	  field.	  

f ( x,vx ,t )dx dvx! = N

Such	  a	  system	  can	  be	  studied	  by	  means	  of	  the	  methods	  
developed	   by	   Boltzmann	   to	   describe	   the	   behavior	   of	  
systems	  far	  from	  the	  thermodynamical	  equilibrium.	  
	  
	  We	   have	   to	   study	   the	   mo/on	   of	   an	   ensemble	   of	   N	  
par/cles	  characterized	  by	  a	  distribu/on	  func/on	  f(x,vx,t)	  	  
under	  the	  ac/on	  of	  self	  forces.	  
	  
The	   fundamental	   equa/on	   which	   describes	   the	  
kinema/cs	   of	   this	   ensemble	   is	   the	   con/nuity	   equa/on	  
for	  the	  density	  of	  the	  par/cles	  in	  the	  phase	  space.	  
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It	   states	   the	  conserva/on	  of	   the	  number	  par/cles	   in	  
any	  phase	  space	  volume	  during	  the	  mo/on.	  

The	  phase	  space	  area	  enclosing	  a	  number	  of	  par/cle	  at	  
/me	   t	   can	   be	   distorted	   at	   /me	   t+dt	   but	   it	   remanins	  
constant.	  For	  an	  infinitesimal	  area	  dA=dx	  dvx	  we	  have:	  

dN = f ( x,vx ,t )dxdvx = f ( x + vxdt , vx + axdt , t + dt )dxdvx

ax =
Fx
me

where	  

If	  we	  expand	  at	  the	  first	  order	  the	  RHS	  term,	  simplifying	  
the	  common	  terms,	  we	  get:	  

!f
!t
+ vx

!f
!x

+
Fx
me

!f
!vx

= 0 (Boltzmann	  Equa.on)	  
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An	   important	   contribu/on	   to	   the	   comprehension	   of	  
plasma	   waves	   came	   first	   from	   the	   work	   of	   the	   russian	  
physicist	  Anatoly	  Alexandrovich	  Vlasov.	  	  
•  In	   1937,	   Vlasov	   showed	   that	  
Boltzmann	   equa/on	   is	   suitable	   for	   a	  
decrip/on	  of	   plasma	  dynamics	  only	   if	  
we	  consider	   the	   long	   range	  collecHve	  
forces	  exis/ng	  in	  the	  plasma.	  	  

•  Thus,	   a	   system	   of	   equa/ons,	   known	  
today	  as	  Vlasov-‐Poisson	  equa/on,	  was	  
suggested	   for	   the	   correct	   descrip/on	  
to	   take	   into	   account	   the	   collec/ve	  
forces	  through	  a	  self-‐consistent	  field.	  

	  

2.2.2 Vlasov-Poisson equations and the dispersion relation

In 1938 Vlasov showed[10] that Boltzmann equation is not suitable for a

description of plasma dynamics due to the existence in plasma of long range

collective forces. Instead, a system of equations, known today as Vlasov

equation, was suggested for the correct description to take into account the

long range collective forces through a self-consistent field.

Let us assume then that the collisionless system is formed by neutral

warm plasma characterized by a non-relativistic motion3, in a region with

zero-magnetic field. Assuming the case of heavy ions (”frozen” motion),

from equation (14), we derive here the kinetic equation for the evolution of

a density perturbation in the plasma, the so-called Vlasov equation[11]. To

simplify the study, we assume the motion only in one dimension, that we

indicate with x, the corresponding velocity being vx.

In this case, the density function f (x, vx, t) represents the electrons dis-

tribution function in the plasma. The electric forces generated by the charge

distribution will act on the charges and modify the distribution. In this case

equation (14) can be written as4

∂f

∂t
+ vx

∂f

∂x
− e

me
Ex

∂f

∂vx
= 0 (15)

where Ex is the electric field satisfying

Ex = −∂φ

∂x
(16)

φ being the electric field potential given by the Poisson equation

∂2φ

∂x2
= − ρ

ε0
= − e

ε0

�
n0 −

�
fdvx

�
(17)

Equations (15) - (17) are also known as Vlasov-Poisson equations.

3
Here we have already considered non-relativistic particles. For relativistic particles we

had to use the momentum instead of the velocity v.
4
For our convenience we invert the scalar products.
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We can get an approximate solution of the Vlasov-Poisson equations by

using a perturbation technique, assuming that the electronic distribution

function f(x, vx, t) is given by the sum of the unperturbed density function

f0(vx) and a perturbation
5 f1 (x, vx, t)

f(x, vx, t) = f0(vx) + f1 (x, vx, t) (18)

Since the equilibrium state is neutral, we have that
�
f0dvx = n0 and

�
f1dxdvx = 0. Moreover, f0 does not depend on time and position, thus it

results:

∂f0
∂t

= 0 (19)

∂f0
∂x

= 0 (20)

For what concern the electric field, we know that it vanishes in the un-

perturbed neutral state, and its value is related to the amplitude of the

perturbation f1 only. If we consider now the last term of the LHS of eq. (15),

we can write

Ex
∂f

∂vx
= Ex

∂

∂vx
(f0 + f1) = Ex

∂f0
∂vx

(21)

where we have neglected Ex∂f1/∂vx, being of second order in the perturba-

tion. By using equations (19) - (21) into eq. (15), we get

∂f1
∂t

+ vx
∂f1
∂x

− e

me
Ex

∂f0
∂vx

= 0 (22)

and

∂2φ

∂x2
=

e

ε0

�
f1dvx (23)

A solution of equations (22) and (23) was first derived by Vlasov who

applied the double Fourier transforms from the domain (x, t) to the domain

(k,ω), getting for the perturbation and the potential

f̃1(vx, k,ω) =

� ∞

−∞

� ∞

−∞
f1(x, vx, t)e

i(ωt−kx)dxdt (24)

5The perturbation is characterized by small amplitude and slope.

8

We	  assume	  now	  that	  for	  the	  system	  of	  charges	  there	  is	  an	  
equilibrium	  state	  fo(vx)	  with	  a	  proper	  velocity	  distribu/on,	  
and	  we	  consider	  a	  smal	  perturba/on	  f1(x,	  vx,t)	  around	  that	  
equilibrium:	  

The	  electric	  field	  is	  derived	  from	  the	  scalar	  poten/al	  

which	  in	  turns	  is	  related	  to	  the	  net	  local	  density:	  
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Since	  fo	  doesn’t	  depend	  on	  /me	  and	  posi/on,	  neglec/ng	  the	  
second	  order	  terms,	  from	  the	  Bolzmann	  equa/on	  we	  have:	  

Vlasov-‐Poisson	  
Equa/ons	  

These	   two	   coupled	   equa/ons	   tell	   us	   that	   a	   density	  
perturba/on	  produces	  an	  electric	  	  field	  which	  acts	  back	  on	  
the	  perturba/on,	  both	  evolve	  in	  the	  /me.	  	  

This	  mechanism	  can	  sustain	  plasma	  vaves	  propaga/ng	  in	  
the	  medium.	   In	   order	   to	   find	   a	   self	   consistent	   solu/on,	  
Vlasov	  expanded	  the	  unknown	  func/ons	  f1	  and	  φ	  through	  
the	  double	  Fourier	  transforms:	  

φ̃(k,ω) =

� ∞

−∞

� ∞

−∞
φ(x, t)ei(ωt−kx)dxdt (25)

and for the differential equation (22)

i(kvx − ω)f̃1 + i
e

me
kφ̃

∂f0
∂vx

= 0 (26)

Accordingly, eq. (23) becomes:

−k2φ̃ =
e

ε0

�
f̃1dvx (27)

If we take f̃1 from (26) and substitute into (27), we obtain the following

dispersion relation

1 +
e2

ε0mek

�
∂f0/∂vx
ω − kvx

dvx = 0 (28)

Integration of (28) over vx provides a relation between k and ω which de-

pends only on the slope of the unperturbed distribution function f0(vx). The

dispersion relation contains a divergent integral, because of the singularity

at ω = kvx. To overcome this difficulty, without giving a solid explanation,

Vlasov calculated the principal value of the integral, getting, as result, only

a frequency shift without any kind of damping.

2.2.3 Landau solution of the Vlasov equation

In a very original paper of 1946 Landau proposed a new method of solu-

tion of Vlasov-Poisson equations putting the basis of the theory of plasma

oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.

Accordingly, the perturbation and the electric field are first transformed as

f̃1 (vx, k, t) =

� ∞

−∞
f1 (x, vx, t) e

−ikx
(29)

Ẽx (k, t) =

� ∞

−∞
Ex (x, t) e

−ikx
(30)

9

which	  applied	  to	  the	  Bolzmann-‐Poisson	  equa/on	  produce	  
the	  well	  known	  Dispersion	  RelaHon	  for	  plasma	  waves:	  

f1( x,vx ,t )=
1
2!

!f1( k ,vx ," )e
i( kx!"t )

!"

"

# dkd"

#( x,vx ,t )=
1
2!

!#( k ,vx ," )e
i( kx!"t )

!"

"

# dkd"
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	  	  	  	  	  k=2π/λ	  	  and	  the	  frequency	  ω	  of	  the	  wave	  in	  the	  plasma	  
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� ∞

−∞
f1 (x, vx, t) e

−ikx
(29)
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9

•  It	   depends	   on	   the	   slope	   of	   the	   equilibrium	  
distribu/on	  w.r.t.	  the	  velocity.	  

•  Mathema/cally,	   the	   integral	   shows	   a	   singular	   point	  
(zero	  of	  the	  denominator)	  at	  ω=kvx.	  Vlasov	  overcame	  
this	   difficulty	   calcula/ng	   the	   Principal	   Value	   of	   the	  
integral.	  
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Figure 2: Path of integration for Landau damping.

Accordingly, the dispersion function becomes:

1 +
e2

ε0mek

�
P.V.

�
∂f0/∂vx
ω − kvx

dvx −
iπ

k

�
∂f0
∂vx

�

vx=ω/k

�
= 0 (43)

The imaginary term of the above equation produces the damping/antidamping

effect predicted by Landau, depending on the slope of the distribution func-

tion. With this procedure, we obtain straightforwardly the correct dispersion

relations via Fourier transformation of the Vlasov equation.

Example: Plasma with a Maxwellian velocity distribution

As an example to clarify the use of the dispersion relation for the analysis

of the plasma stability, we consider a plasma with a velocity Maxwellian

distribution function

f0(vx) =
n0

(2πkBT/me)1/2
exp

�
−mev2x
2kBT

�
(44)

where kB is the Boltzmann constant. We can integrate by parts the principal

value of equation (43) obtaining

P.V.

�
∂f0/∂vx
ω − kvx

dvx =
f0(vx)

ω − kvx

����
∞

−∞
− k

�
f0(vx)

(ω − kvx)
2dvx (45)
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Example	  	  
Maxwell	  distribu/on	  of	  a	  warm	  plasma	  at	  temperature	  T	  

kB=	  	  is	  the	  Boltzmann	  constant	  	  

Note	  that	  for	  T	  	  	  	  	  	  0,	  fo(vx)	  	  	  	  	  	  no	  (cold	  plasma)	  

equation (43) can be written as

�
∂f0/∂vx
ω − kvx

dvx = −kn0

ω2
− 3

k3n0

ω4

kBT

me
− iπ

k

�
∂f0
∂vx

�

vx=ω/k

(48)

By using the above results, the dispersion relation (28) becomes

1−
ω2
p

ω2
− 3k2ω

2
p

ω4

kBT

me
− i

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= 0 (49)

namely

ω2 = ω2
p

�
1 + 3k2 kBT

ω2me

�
+ iω2 πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(50)

with ωp the plasma frequency defined by equation (10). In case of a cold

plasma, with T → 0, we recover the same results of section 2.1.

If we assume T �= 0, such to produce a small perturbation of the plasma

frequency ωp, we can write ω = ωr + iδωi, with ωr − ωp � ωp and δωi � ωp,

and approximate the above expression as

ω2 � ω2
r + 2iωpδωi � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
+ iω2

p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(51)

The real part of the above expression is

ω2
r � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
= ω2

p

�
1 + 3k2λ2

D

�
(52)

where we λD =
�
kBT/meω2

p is the Debye length, having assumed kλD � 1.

This result is the dispersion relation for waves [12] in warm plasma obtained

by Vlasov in his paper[10].

For the imaginary part, that was not predicted by Vlasov, we have that

2ωpδωi � ω2
p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(53)

so that

δωi �
π

2

ωpe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= − i

2

�
π

2

ωp

(kλd)
3 exp

�
− 1

(kλD)
2

�
(54)
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For	   a	   given	   wavelength,	   the	   frequency	   of	   the	   plasma	  
wave	   depends	   on	   the	   “plasma	   frequency”	  ωp	   and	   on	  
the	  average	  kine/c	  energy	  of	  the	  electrons	  (T)	  

! plasma =
n0e

2

me"0

According	  to	  Vlasov	  results,	  plasma	  waves	  can	  be	  excited	  
and	  can	  persist	  forever	  in	  a	  interplay	  between	  pertuba/on	  
and	  self-‐fields.	  Vlasov	  theory	  doesn’t	  predict	  any	  damping	  
effect.	  

In	  a	  very	  original	  paper	  of	  1946	  Landau	  proposed	  a	  new	  
method	   of	   soluHon	   of	   Vlasov-‐Poisson	   equaHons	   pu[ng	  
the	   basis	   of	   the	   theory	   of	   plasma	   oscillaHons	   and	  
instabiliHes.	  	  
He	  demonstrated	  that	  the	  problem	  had	  to	  be	  considered	  as	  
an	   ini/al	   value	   or	   Cauchy	   problem,	   with	   a	   perturba/on	  	  	  	  	  	  
f1(x,	  vx,	  t)	  known	  at	  t	  =	  0.	  	  
To	  this	  end	  he	  adopted	  the	  Laplace	  transform	  for	  the	  /me	  
domain	  and	  used	  the	  Fourier	  transform	  only	  for	  the	  space	  
domain.	  
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Accordingly,	  the	  perturba/on	  and	  the	  electric	  field	  are	  first	  
Fourier-‐transformed	  (space	  x)	  as	  follows:	  
	  

so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

And	  then	  Laplace-‐transformed	  (/me	  t):	  	  
	  

and

φ̃(k,ω) =

� ∞

−∞

� ∞

−∞
φ(x, t)ei(ωt−kx)dxdt (25)

and for the differential equation (22)

i(kvx − ω)f̃1 + i
e

me
kφ̃

∂f0
∂vx

= 0 (26)

Accordingly, eq. (23) becomes:

−k2φ̃ =
e

ε0

�
f̃1dvx (27)

If we take f̃1 from (26) and substitute into (27), we obtain the following

dispersion relation

1 +
e2

ε0mek

�
∂f0/∂vx
ω − kvx

dvx = 0 (28)

Integration of (28) over vx provides a relation between k and ω which de-

pends only on the slope of the unperturbed distribution function f0(vx). The

dispersion relation contains a divergent integral, because of the singularity

at ω = kvx. To overcome this difficulty, without giving a solid explanation,

Vlasov calculated the principal value of the integral, getting, as result, only

a frequency shift without any kind of damping.

2.2.3 Landau solution of the Vlasov equation

In a very original paper of 1946 Landau proposed a new method of solu-

tion of Vlasov-Poisson equations putting the basis of the theory of plasma

oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.

Accordingly, the perturbation and the electric field are first transformed as

f̃1 (k, vx, t) =

� ∞

−∞
f1 (x, vx, t) e

−ikxdx (29)

10
Ẽx (k, t) =

� ∞

−∞
Ex (x, t) e

−ikxdx (30)

so that eqs. (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(k, vx, p) =

� ∞

0

f̃1(k, vx, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for eqs. (31) and (32), reminding that the Laplace transform of the

time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from eq. (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

11

Applying	  the	  proper/es	  of	  the	  Laplace	  transforms,	  Vlasov-‐
Poisson	  equa/on	  become:	  
	  

where	  we	  note	  the	  presence	  of	  the	  ini/al	  condi/on.	  

so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)
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so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

Solu/on	  of	  the	  above	  coupled	  equa/ons	  gives	  the	  general	  
expression	  of	  the	  transformed	  (k,p)	  electric	  field:	  
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so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

Landau	  showed	  that	  the	  asympto/c	  /me	  behaviour	  of	  the	  
electric	  field	  depends	  on	  the	  solu/ons	  of	  ε(k,p)=0.	  He	  also	  
pointed	   out	   that	   this	   condi/on	   corresponds	   to	   the	  
Vlasov’s	   dispersion	   rela/on	   when	   p=-‐iω.  He	   could	   also	  
overcome	   the	   “divergence”	   problem	   applying	   the	  
integra/on	  theory	  in	  the	  complex	  plane,	  geing:	


!"#$%&'

()#$%&'

*+,-'

Figure 2: Path of integration for Landau damping.

Accordingly, the dispersion function becomes:

1 +
e2

ε0mek

�
P.V.

�
∂f0/∂vx
ω − kvx

dvx −
iπ

k

�
∂f0
∂vx

�

vx=ω/k

�
= 0 (43)

The imaginary term of the above equation produces the damping/antidamping

effect predicted by Landau, depending on the slope of the distribution func-

tion. With this procedure, we obtain straightforwardly the correct dispersion

relations via Fourier transformation of the Vlasov equation.

Example: Plasma with a Maxwellian velocity distribution

As an example to clarify the use of the dispersion relation for the analysis

of the plasma stability, we consider a plasma with a velocity Maxwellian

distribution function

f0(vx) =
n0

(2πkBT/me)1/2
exp

�
−mev2x
2kBT

�
(44)

where kB is the Boltzmann constant. We can integrate by parts the principal

value of equation (43) obtaining

P.V.

�
∂f0/∂vx
ω − kvx

dvx =
f0(vx)

ω − kvx

����
∞

−∞
− k

�
f0(vx)

(ω − kvx)
2dvx (45)
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VLASOV	   LANDAU	  

which	  depends	  on	  ε(k,p),	  the	  plasma	  dielectric	  funcion.	  

!Ex( k ,vx ,! )e
!itei( kx!!rt )

The	   imaginary	   term	  ωi	  produces	   (Landau)	  damping	  or	  
an/dampig	  effect,	  depending	  on	  the	  sign	  of	   the	  slope	  
of	  the	  distribu/on	  func/on.	  
	  
The	  propaga/on	  constants	  k	  and	  ωr	  are	  s/ll	  derived	  by	  
the	  real	  part	  of	  the	  Dispersion	  Rela/on	  (Vlasov).	  

If	  we	  consider	  the	  generic	  harmonic	  of	  the	  field:	  
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equation (43) can be written as

�
∂f0/∂vx
ω − kvx

dvx = −kn0

ω2
− 3

k3n0

ω4

kBT

me
− iπ

k

�
∂f0
∂vx

�

vx=ω/k

(48)

By using the above results, the dispersion relation (28) becomes

1−
ω2
p

ω2
− 3k2ω

2
p

ω4

kBT

me
− i

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= 0 (49)

namely

ω2 = ω2
p

�
1 + 3k2 kBT

ω2me

�
+ iω2 πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(50)

with ωp the plasma frequency defined by equation (10). In case of a cold

plasma, with T → 0, we recover the same results of section 2.1.

If we assume T �= 0, such to produce a small perturbation of the plasma

frequency ωp, we can write ω = ωr + iδωi, with ωr − ωp � ωp and δωi � ωp,

and approximate the above expression as

ω2 � ω2
r + 2iωpδωi � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
+ iω2

p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(51)

The real part of the above expression is

ω2
r � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
= ω2

p

�
1 + 3k2λ2

D

�
(52)

where we λD =
�
kBT/meω2

p is the Debye length, having assumed kλD � 1.

This result is the dispersion relation for waves [12] in warm plasma obtained

by Vlasov in his paper[10].

For the imaginary part, that was not predicted by Vlasov, we have that

2ωpδωi � ω2
p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(53)

so that

δωi �
π

2

ωpe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= − i

2

�
π

2

ωp

(kλd)
3 exp

�
− 1

(kλD)
2

�
(54)
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equation (43) can be written as

�
∂f0/∂vx
ω − kvx

dvx = −kn0

ω2
− 3

k3n0

ω4

kBT

me
− iπ

k

�
∂f0
∂vx

�

vx=ω/k

(48)

By using the above results, the dispersion relation (28) becomes

1−
ω2
p

ω2
− 3k2ω

2
p

ω4

kBT

me
− i

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= 0 (49)

namely

ω2 = ω2
p

�
1 + 3k2 kBT

ω2me

�
+ iω2 πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(50)

with ωp the plasma frequency defined by equation (10). In case of a cold

plasma, with T → 0, we recover the same results of section 2.1.

If we assume T �= 0, such to produce a small perturbation of the plasma

frequency ωp, we can write ω = ωr + iδωi, with ωr − ωp � ωp and δωi � ωp,

and approximate the above expression as

ω2 � ω2
r + 2iωpδωi � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
+ iω2

p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(51)

The real part of the above expression is

ω2
r � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
= ω2

p

�
1 + 3k2λ2

D

�
(52)

where we λD =
�

kBT/meω2
p is the Debye length, having assumed kλD � 1.

This result is the dispersion relation for waves [12] in warm plasma obtained

by Vlasov in his paper[10].

For the imaginary part, that was not predicted by Vlasov, we have that

2ωpδωi � ω2
p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(53)

so that

δωi �
π

2

ωpe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= − i

2

�
π

2

ωp

(kλd)
3 exp

�
− 1

(kλD)
2

�
(54)
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For	   the	   Maxwell	   distribu/on	   discussed	   before,	   we	  
have:	  

!"#!$%

&%&'(%

)*+,-.%-*-/0.+1)%
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Figure 14: Maxwellian velocity distribution function.
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is	   the	   phase	   velocity	   of	   the	   wave	   is	   derived	   by	   the	  
solu/ons	  of	  the	  dispersion	  rela/on.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

vph =
!r

k
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Let	  us	  imagine	  plasma	  waves	  
as	  waves	  in	  the	  sea,	  and	  the	  
electrons	  as	  surfers	  trying	  to	  
catch	  the	  wave,	  all	  moving	  in	  
the	  same	  direc/on.	  	  

Consider	   a	   perturba/on	   in	  
the	   electron	   distribu/on	  
such	   that	   a	   plasma	   wave	  
propagates	   with	   a	   phase	  
velocity	  

vph =
!r

k
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Since	   vph	   is	   in	   the	   nega/ve	   slope	   of	   the	   velocity	  
distribu/on	  func/on,	  the	  number	  of	  “faster”	  electrons	  is	  
less	  than	  the	  number	  of	  “slower”	  ones.	  Hence,	  there	  are	  
more	  par/cles	  gaining	  energy	  from	  the	  wave	  than	  losing	  
to	  the	  wave.	  The	  balance	  is	  a	  net	  energy	  loss	  which	  leads	  
to	  wave	  damping.	  

Electrons	   slightly	   faster	   than	   vph	  
are	   decelerated	   by	   the	   wave	  
electric	   field	   and	   yield	   energy	   to	  
the	  wave.	  Electrons	  slightly	  slower	  
than	   vph	   are	   accelerated	   by	   the	  
wave	  electric	  field	  and	  gain	  energy	  	  
from	  the	  wave.	  	  
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We	   wonder	   how	   is	   it	   possible	   that	   for	   a	   collisionless,	  
lossless	   system	   there	   exists	   a	   physical	   solu/on	   for	   the	  
oscilla/ons	   characterized	   by	   an	   exponen/al	   decay	  
corresponding	  to	  a	  damping.	  

3.	  Mechanical	  System	  Model	  

The	   demonstra/on	   given	   by	   Landau	   was	   purely	  
mathema/cal,	   an	   experimental	   behaviour	   was	   observed	  
only	  18	  years	   later.	  The	  basic	  physical	  mechanism	  behind	  
was	  not	  well	  understood,	  and	  s/ll	  today	  several	  papers	  are	  
devoted	  to	  a	  beker	  comprehension	  of	  Landau	  Damping.	  	  
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To	  this	  end	  we	  consider	  a	  system	  of	  N	  uncoupled	  ideal	  linear	  
oscillators,	  with	  a	  normalized	  frequency	  distribu/on	  G(ω).	  

lj	  

ωj=√g/lj	

	


Shaking	  force	  
at	  frequency	  Ω	  

G(ω)	  =	  (dN/dω)/N	  

ω	  Ω	


• Può essere il tipo di accoppiamento tra il singolo oscillatore ed il sistema

a produrre una instabilità che cresce esponenzialmente nel tempo (con

accoppiamento di tipo capacitivo o induttivo con il giusto segno)

• fissato il tipo di accoppiamento, e quindi la crescita esponenziale dell’instabilità,

e lo spettro, e quindi il termine di damping di Landau, si può deter-

minare il limite di instabilità

4 A simple mechanical model

The Landau damping effect has been derived from a pure mathematical ap-

proach, and there are several aspects of its physics that are still surprising.

We wonder, in fact, how it is possible that a collisionless, lossless system,

perturbed from the equilibrium, can show such a behavior.

In order to get a physical insight in the mechanism which is responsible

of the damping, despite the free loss nature of the system, we analyze now

a simple model consisting of an infinite set of harmonic oscillators, with

frequency distribution G (ω), such that
� ∞

−∞
G(ω)dω = 1 (55)

and with an average value ω0.

We assume that the system is driven by an external sinusoidal force of

frequency Ω, and that the oscillators do not interact each other.

For a single oscillator the differential equation of motion is

x�� + ω2x = A cosΩt (56)

With the starting conditions x(t = 0) = 0 and x�(t = 0) = 0, its solution

is

x(t > 0) = − A

Ω2 − ω2
(cosΩt− cosωt) (57)

16

G(ω)	  =	  (dN/dω)/N	  

ω	  
Ω	
ωο	
ω	


driving	  force	  
central	  frequency	  ωο=(Ω+ω)/2	  	  	  
resonator	  frequency	  

!!x +! 2x = Acos!t
x( t = 0 )= 0
!x( t = 0 )= 0

!
"
#
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Define	  now	  |Ω –	  ω|=δω, and	  assume	  that	  δω<<ωο	  

G(ω)	  =	  (dN/dω)/N	  

ω	  
Ω	
 ωο	
ω	


x( t > 0 )= A
!2 "! 2

(cos!t " cos!t )

x( t > 0 )! A
2!0!"

cos "0 +
!"
2

"

#
$

%

&
't ( cos !0 (

!"
2

"
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&
't

)

*
+
+

,
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.
.

x( t > 0 )! A
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sin "0t( ) sin !"
2
t

"
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Figure 4: Particle oscillations due to a sinusoidal external force ... .

contribute to absorb energy from the force, but their frequency bandwidth,

and thus their number, decreases with time. The net effect is an absorption

of energy by the system while the average amplitude of oscillation remains

constant.

To demonstrate that, let us calculate the average of the particle displace-

ments, given by

< x > (t) = −
� ∞

−∞
G(ω)

A

Ω2 − ω2
(cosΩt− cosωt) dω (60)

Since Ω− ω � ω0, we can justify the approximation

< x > (t) � − A

2ω0

� ∞

−∞

G(ω)

Ω− ω
(cosΩt− cosωt) dω (61)

If we make a change of variable from ω to δω, we get

< x > (t) � A

2ω0

�
sinΩt

� ∞

−∞
G(Ω− δω)

sin δωt

δω
dδω

− cosΩt

� ∞

−∞
G(Ω− δω)

1− cos δωt

δω
dδω

�
(62)
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δω=|Ω –	  ω|=0	  

δω=|Ω –	  ω|≠0	  

We also assume that all the oscillator frequencies are sufficiently close each

other and that Ω lies within the oscillator frequency spectrum. Moreover,

we define the difference between the resonance frequency Ω and a resonator

frequency ω as δω = Ω− ω � ω0, such that Ω+ ω � 2ω0.

Under these assumptions, equation (57) becomes

x(t > 0) � − A

2ω0δω

�
cos

�
ω0 +

δω
2

�
t− cos

�
ω0 −

δω
2

�
t

�
=

A

ω0δω
sinω0t sin

δω
2
t (58)

that can be seen as an oscillation at frequency ω0 with an amplitude mod-

ulated at the lower frequency δω/2. It is convenient to wrire equation (58)

as

x(t > 0) =
At

2ω0

sin δω
2 t�

δω
2 t

� sinω0t (59)

Let’s observe now the motion of two oscillators, the former with δω = 0,

and the latter with δω �= 0, as shown in Fig. 4 with blue and red curves

respectively. Both are at rest at t = 0, and they start to oscillate due to the

action of the same external force. While the amplitude of the ”on resonance”

oscillator growths linearly with time, the other reaches a maximum amplitude

(beating of two close frequency) after a time t = π/δω, (when sin(δωt/2) =

1), after which this oscillator is ”out of resonance”, and loses the phase

synchronism with the external driving force. We can reverse this argument

by saying that at a time t∗, only those oscillators with a frequency ω, such

that δω < π/t∗ maintain a phase relation with the external force. The longer

we wait, the narrower the frequency bandwidth δω of synchronous oscillators.

Therefore, at any instant t∗ we can divide the oscillators into two groups:

the oscillators having frequencies such that δω < π/t∗ which keep their initial

phase synchronism and their amplitude grow linearly with time; the oscilla-

tors with δω > π/t∗, which are no longer in resonance with the external force.

The ”on resonance” oscillators are in phase with the external force and they

17

t=π/δω	  
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We	  can	  say	  that	  at	  any	  /me	  t∗,	  only	  those	  oscillators	  with	  
a	   frequency	   ω,	   such	   that	   δω<	   π/t∗	   maintain	   a	   phase	  
rela/on	   with	   the	   external	   force,	   and	   keep	   absorbing	  
energy	  from	  the	  shaking	  force.	  	  

The	  amplitude	  of	  ”on	  resonance”	  
oscillator	   with	   δω=0,	   blue	   curve,	  
growths	   linearly	   with	   /me.	   The	  
oscillator	   with	   δω≠0,	   red	   curve,	  
reaches	   a	   maximum	   amplitude	  
aGer	  a	  /me	  t=π/δω,	  aGer	  which	  	  0 10 20 30 40 50

-100

-50

0

50

100

Figure 4: Particle oscillations due to a sinusoidal external force ... .

contribute to absorb energy from the force, but their frequency bandwidth,

and thus their number, decreases with time. The net effect is an absorption

of energy by the system while the average amplitude of oscillation remains

constant.

To demonstrate that, let us calculate the average of the particle displace-

ments, given by

< x > (t) = −
� ∞

−∞
G(ω)

A

Ω2 − ω2
(cosΩt− cosωt) dω (60)

Since Ω− ω � ω0, we can justify the approximation

< x > (t) � − A

2ω0

� ∞

−∞

G(ω)

Ω− ω
(cosΩt− cosωt) dω (61)

If we make a change of variable from ω to δω, we get

< x > (t) � A

2ω0

�
sinΩt

� ∞

−∞
G(Ω− δω)

sin δωt

δω
dδω

− cosΩt

� ∞

−∞
G(Ω− δω)

1− cos δωt

δω
dδω

�
(62)
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it	   goes	   ”out	   of	   resonance”,	   and	   it	   loses	   the	   phase	  
synchronism	  with	  the	  external	  driving	  force.	  

The	   longer	   we	   wait,	   the	   narrower	   the	   frequency	  
bandwidth	   δω	   of	   synchronous	   oscillators,	   the	   less	   the	  
number	  of	  oscillator	  absorbing	  energy.	  	  

The	  center	  mass	   (CM)	  of	   the	  oscillator’s	   system,	   ini/ally	  
at	   rest,	   will	   start	   oscilla/ng	   with	   growthing	   amplitude	  
which,	  however,	  will	   remain	  bounded.	   	  The	  CM	  posi/on	  
is	  given	  by	  the	  average	  displacement	  obtained	  weigh/ng	  
x(t)	  with	  the	  normalized	  distribu/on	  G(ω):	  

xCM ( t )= ! G(! ) A
"2 !! 2

!"

"

# cos!t ! cos$t( )d!
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xCM ( t )!
A
2!0

!G(" )sin"t # cos"t  P.V. G(! )
! #"#$

$

% d!
&

'
(

)

*
+

The	  average	  oscilla/on	  amplitude	  of	  the	  system	  does	  
not	  increase	  with	  /me,	  il	  remains	  limited	  as	  /me	  goes	  
to	  infinity.	  

!" =!"" <<"0

!2 !"0
2 ! 2"0!"

Since	  

and	  

We	  get:	  

The	   masses	   oscillate	   inchoerently,	   the	   center	   of	   mass	  
mo/on	  will	  be	  bounded.	  

G(ω)	  =	  (dN/dω)/N	  

ω	  Ω	


Shaking	  force	  
at	  frequency	  Ω	  

Shaking	  force	  
at	  frequency	  Ω	  
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Dispersion	  rela/on?	  Let	  us	  assume	  that	  the	  shaking	  force	  is	  
propor/onal	  to	  the	  displacement	  of	  the	  center	  of	  mass.	  

xCM ( t )!
A
2!0

!G(" )sin"t + cos"t  P.V. G(! )
! #"#$

$

% d!
&

'
(

)

*
+

Acos!t =" xCMe
#i!t( )

Asin!t =$ xCMe
#i!t( )
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#i!t %
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! #!#&
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Example	  -‐	  Uniform	  distribu/on	  
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that represents an oscillation at frequency Ω with time independent ampli-

tude. It is worth noting that the ”sine” term is responsible of the power

absorption, because, by doing the time derivative of equation (67), we get

the velocity of the average particle displacement, whose ”cosine” term is

in phase with the external force producing an absorption of energy by the

system.

This statement can be demonstrated by reminding that the energy U of an

harmonic oscillator is proportional to the square of the oscillation amplitude.

From equation (58) we get

U ∝ A2

ω2
0δ

2
ω

sin
2 δω
2
t (68)

which leads to the total energy of the system Utot

Utot ∝ N
A2

ω2
0

� ∞

−∞
G(Ω− δω)

sin
2 δω

2 t

δ2ω
dδω (69)

where N is the total number of particles of the system. As time increases, the

function sin
2
(xt/2)/x2 becomes peaked around x = 0 and tends to a Dirac

delta function

lim
t→∞

sin
2 xt/2

x2
=

πt

2
δ(x) (70)

that, substituted in the integral of equation (69) gives

Utot ∝ N
A2

ω2
0

π

2
G(Ω)t (71)

Equation (71) shows that the energy of the system increases linearly with

time. This energy cannot be regarded as thermal energy of the system be-

cause is not distributed over al particles, but it is stored in a time narrowing

range of frequencies around the driving frequency. Only the particles with

frequency such that |x− Ω| < 1/t contribute to the ”sine” response and are

in resonance with the external force, but since their number decreases with

time, the net contribution to the average displacement remains constant.
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Looking	   at	   the	   energy	   absorbed	   by	   the	   system	   of	  
oscillators:	  

We	  find	  that	  it	  growths	  with	  /me	  !!!!	  

	  
	  

We	   consider	   a	   beam	   circula/ng	   inside	   an	  
accelerator,	   and	   assume	   that	   for	   this	   system	  
there	  exists	  an	  equilibrium	  state.	  	  
	  
We	   wander	   whether	   a	   small	   perturba/on	  
around	   the	   equilibrium	   state	   will	   grow	  
(instability)	  or	  decay	  (stability).	  
	  

4.	  Beams	  in	  parHcle	  accelerators	  	  
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BEAM	  	  
perturbaHon	  

e.m.	  fields	  

Beam-‐Wall	  	  
interacHon	  

Beam-‐Fields	  
interacHon	  

Longitudinal	  InstabiliHes	  in	  coasHng	  Beams	  

as a first example, we consider the longitudinal beam dynamics of a coast-

ing beam subjected to the space charge and smooth wall interaction forces

only. Additionally, we assume that the beam current is given by a stationary

constant current I0 plus a sinusoidal perturbation ∆I of the kind

I(s, t) = I0 +∆Iei(ks−ωt) (74)

As shown in figure 4.1, the perturbation behaves like a wave traveling

along the ring moving with the same velocity of the charges. According to

the notation adopted in particle accelerators, the longitudinal coordinate s

represents the azimuthal position of the charge along its orbit of radius R0.
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Following from equation (74), also the electromagnetic fields produced

by the beam can be seen as a sum of those of the stationary distribution,
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The	  wavelength	  of	  the	  perturba/on	  is	  a	  submul/ple	  of	  the	  machine	  
length	  L0	  	  such	  that	  	  k=2π/λ=2πn/L0=	  n/R0	  
In	  the	  LHS	  picture	  the	  number	  of	  perturba/on	  wavelengths	  in	  the	  ring	  
is	  n=4,	  therefore	  	  k=4/R0	  
	  
	  

R0	  
L0=2πR0	  
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Coherent	  instabili/es	  are	  caused	  by	  the	  electromagne/c	  
interac/on	   of	   the	   beam	   perturba/on	   current	   with	   the	  
walls	  of	  the	  vacuum	  chamber.	  	  
	  
The	  field	  generates	  by	  the	  beam	  perturba/on	  is	  modified	  
by	  the	  walls	  and	  causes	  e.m.	  forces,	  propor/onal	  to	  the	  
current,	  that	  acts	  back	  on	  the	  beam.	  They	  can	  lead	  to	  a	  
coherent	  instability.	  
	  
The	  average	  e.m.	  force	  over	  one	  turn	  is:	  

that we do not examine here because they modify the stationary distribution

but do not lead to instabilities, plus those of the perturbation on which we

focus our attention. These fields, acting back to the beam, cause an energy

variation which can be positive in case of energy gain or negative in case

of energy loss. Due to the phase relationship between perturbation current

and perturbation electromagnetic forces, we may have also a pure ”reactive”

interaction, in which the net exchange of energy is zero.

In order to calculate the rate of energy variation of a single particle in

one turn due to the beam-wall electromagnetic interaction, we introduce the

longitudinal wake function W||(∆z), defined as:

W||(∆z) = −
�
F||(∆z)

�
L0

qq1
(76)

where
�
F||(∆z)

�
is the electromagnetic force averaged along the accelerator

�
F||(∆z)

�
=

1

L0

� L0

0

F||ds (77)

acting on the charge q1, q is the charge producing the electromagnetic fields,

∆z is the distance between q and q1.

Equation (76) represents the energy lost (in J/C) in one turn by q1 due

to the electromagnetic fields produced by q leading the motion and passing

through a machine device at an earlier time t� such that ∆z = c(t� − t).

If we indicate with E0 the beam nominal energy, and with ε = ∆E/E0

its relative variation, and if we take into account the effects of the fields

generated by all the particles belonging to the longitudinal perturbation, the

rate of relative energy variation ε can be written in terms of wake function

as
∂ε

∂t
� ∆ε

∆t
= − e

E0T0

� t

−∞
W|| (ct

� − ct)∆Iei(ks−ωt�)dt� (78)

that is, by changing the integration variable,

∂ε

∂t
= −e∆Iei(ks−ωt)

cE0T0

� 0

−∞
W|| (y) e

−iωc ydy (79)
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In	   order	   to	   calculate	   the	   rate	   of	   energy	   varia/on	   of	   a	  
single	   par/cle	   in	   one	   turn	   due	   to	   the	   beam-‐wall	  
interac/on,	  we	  introduce	  the	  longitudinal	  wake	  func/on	  
defined	  as	  the	  average	  energy	  gain/loss	  per	  unit	  charge.	  
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Here T0 represents the beam revolution time given by T0 = L0/c.

For ultra-relativistic charges, due to the causality principle, the wake

function is zero ahead of the test particle so that the integral becomes c

times the Fourier transform of the wake field which, by definition, is the

longitudinal coupling impedance[15]; we then get

∂ε

∂t
= −e∆Iei(ks−ωt)

E0T0
Z||(ω) (80)

Before concluding this section we show some common longitudinal cou-

pling impedances that are generally found in a particle accelerator[10, 15].

For a perfectly conducting smooth and circular vacuum chamber of radius b,

also the space charge effect due to the non relativistic velocity of the charges

can be written in terms of coupling impedance, and it gives

Z||(ω) = iZ0
R0ω

c(βγ)2
ln

b

r
(81)

with Z0 the impedance of the free space, and r the transverse position of the

test charge q1.

In case of the resistive wall of the circular pipe with beam at center and

high conductivity σc, such that c2/(ω2b) and b are much bigger that the skin

depth, we have

Z||(ω) =
R0

b

�
Z0|ω|
2cσc

[1− i sign(ω)] (82)
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For a resonating mode of a cavity, the longitudinal coupling impedance

can be written as

Z||(ω) =
Rs

1 + iQ
�

ωr
ω − ω

ωr

� (83)

with Rs the shunt resistance, Q the quality factor, and ωr the resonant

frequency.

Note that the sign of the imaginary part of the coupling impedance de-

pends on the notations that has been used (j or i to indicate the imaginary

term).

4.2 Longitudinal beam dynamics of coasting beams

A particle with nominal energy E0 moves in the circular machine with ve-

locity βc on a closed orbit, called the reference orbit, of length L0 = 2πR0.

A particle with a small energy deviation ∆E, with ∆E = βc∆p, travels

along a different path with a different speed. The change ∆ω of its revolu-

tion frequency is due to a combination of two effects[16]: the speed and the

dispersion, so that

ω0 − ω̄0

ω̄0
=

∆ω

ω̄0
= −

�
αc −

1

γ2

�
∆p

p0
=

= −
�
αc −

1

γ2

�
1

β2

∆E

E0
= − η

β2

∆E

E0
= − η

β2
ε (84)

with ω̄0 the revolution frequency of a particle with nominal energy E0, αc the

momentum compaction (a property of the guide fields) and γ the relativistic

factor. When η > 0 the machine works above the transition energy and a

positive deviation ε causes a longer trajectory which produces a reduction in

the revolution frequency.

The change in the revolution frequency influences the longitudinal posi-

tion of a particle. If we use the quantity z to define the longitudinal coor-

dinate of a particle with respect to the reference one, which has a nominal

26

Impedance	  	  

1)	  Perfectly	  conduc/ng	  circular	  beal	  pipe	  of	  radius	  b	  

2)	  Resis/ve	  wall	  circular	  beal	  pipe	  of	  radius	  b	  

3)	  RF	  Resonator	  mode	  	  
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Consider	   now	   a	   par/cle	   with	   nominal	   energy	   E0	   which	  
moves	   in	   the	   circular	   machine	   with	   velocity	   βc	   on	   a	  
closed	   orbit,	   called	   the	   reference	   orbit,	   of	   length	  	  	  	  	  	  	  	  	  	  	  	  	  	  
L0	  =	  2πR0.	  	  
	  
A	   par/cle	   with	   a	   small	   energy	   devia/on	   ∆E,	   with	  	  	  	  	  	  	  	  	  	  	  	  	  
∆E	  =	  βc∆p,	  travels	  along	  a	  different	  path	  with	  a	  different	  
speed.	  The	  change	  ∆ω	  of	  its	  revolu/on	  frequency	  is	  due	  
to	   a	   combina/on	   of	   two	   effects:	   the	   speed	   and	   the	  
dispersion	  in	  the	  magnet	  field.	  
:	  

For a resonating mode of a cavity, the longitudinal coupling impedance

can be written as
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with Rs the shunt resistance, Q the quality factor, and ωr the resonant

frequency.

Note that the sign of the imaginary part of the coupling impedance de-

pends on the notations that has been used (j or i to indicate the imaginary

term).
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A particle with nominal energy E0 moves in the circular machine with ve-

locity βc on a closed orbit, called the reference orbit, of length L0 = 2πR0.

A particle with a small energy deviation ∆E, with ∆E = βc∆p, travels

along a different path with a different speed. The change ∆ω of its revolu-
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with ω̄0 the revolution frequency of a particle with nominal energy E0, αc the

momentum compaction (a property of the guide fields) and γ the relativistic

factor. When η > 0 the machine works above the transition energy and a

positive deviation ε causes a longer trajectory which produces a reduction in

the revolution frequency.

The change in the revolution frequency influences the longitudinal posi-

tion of a particle. If we use the quantity z to define the longitudinal coor-

dinate of a particle with respect to the reference one, which has a nominal
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When	   η	   >	   0	   the	   machine	   works	   above	   the	   transi/on	  
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with ω̄0 the revolution frequency of a particle with nominal energy E0, αc the
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with ω̄0 the revolution frequency of a particle with nominal energy E0, αc the

momentum compaction (a property of the guide fields) and γ the relativistic

factor. When η > 0 the machine works above the transition energy and a

positive deviation ε causes a longer trajectory which produces a reduction in

the revolution frequency.

The change in the revolution frequency influences the longitudinal posi-

tion of a particle. If we use the quantity z to define the longitudinal coor-

dinate of a particle with respect to the reference one, which has a nominal
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The	   change	   in	   the	   revolu/on	   frequency	   influences	   the	  
longitudinal	  posi/on	  of	  a	  par/cle.	  We	  use	  the	  quan/ty	  z	  
to	   define	   the	   longitudinal	   coordinate	   of	   a	   par/cle	   with	  
respect	  to	  the	  reference	  one,	  which	  has	  a	  nominal	  energy	  
E0.	  

We	  observe	  that	  a	  revolu/on	  frequency	  different	  from	  
ω0	  produces	  a	   change	   in	   the	   longitudinal	  posi/on	   z	   in	  
one	  turn	  given	  by	  the	  rela/on:	  
	  

energy E0, we observe that a revolution frequency different from ω̄0 produces

a change in the longitudinal position z in one turn given by the relation

∆z

L0
=

∆ω

ω̄0
(85)

from which
∆z

T0
= ∆ωR0 (86)

In the above relations we have assumed z > 0 ahead of the reference

particle.

Even though we start with a monochromatic beam, all the particles hav-

ing the same energy E0, space charge and beam-wall interaction will produce

electromagnetic forces that, interacting back on the beam, modify the parti-

cle energy.

For example, the longitudinal effect of the space charge in a perfectly

conducting pipe is a force proportional to −∂I/∂s[17]. As a consequence,

the particles that are on the front slope of the sinusoidal perturbation will

experience a positive force, and, in one turn, their energy will increase. The

contrary will happen to the rear slope of the perturbation. If we are above

transition, from equation (84), an increase of energy implies a decrease of

the revolution frequency. Therefore the particle in the front slope will delay

and those in the back crest will anticipate, giving, as a net result, an increase

of the height of the crest. The initial perturbation is thus increased leading

to instability, known as negative mass instability. On the contrary, below

transition, the longitudinal space charge forces stabilize the beam.

4.3 Dispersion relation of longitudinal coasting beam

This dynamics of the coasting beam can be formalized and generalized by

treating the motion of the particles by means of the Vlasov equation. The

formalism is very similar to that we have used for the waves in a perturbed

plasma. Here we use f(z, ε; t) for the beam distribution function such that
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For	  example,	  the	  longitudinal	  effect	  of	  the	  space	  charge	  
in	  a	  perfectly	  conduc/ng	  pipe	   is	  a	  force	  propor/onal	  to	  
−∂I/∂s.	  	  

as a first example, we consider the longitudinal beam dynamics of a coast-

ing beam subjected to the space charge and smooth wall interaction forces

only. Additionally, we assume that the beam current is given by a stationary

constant current I0 plus a sinusoidal perturbation ∆I of the kind

I(s, t) = I0 +∆Iei(ks−ωt) (74)

As shown in figure 4.1, the perturbation behaves like a wave traveling

along the ring moving with the same velocity of the charges. According to

the notation adopted in particle accelerators, the longitudinal coordinate s

represents the azimuthal position of the charge along its orbit of radius R0.

The wavelength of the perturbation is a submultiple of the machine length

s

I(s,t=0)

ΔI
F Fscsc

Figure 6: Longitudinal beam distribution for a coasting beam.

L0, such that:

k =
2π

λ
=

2πn

L0
=

n

R0
(75)

Following from equation (74), also the electromagnetic fields produced

by the beam can be seen as a sum of those of the stationary distribution,

22



22/09/11	  

26	  

Par/cles	   that	   on	   the	   front	   slope	   experience	   a	   posi/ve	  
force,	  and,	  in	  one	  turn,	  their	  energy	  will	  increase.	  	  
The	   contrary	   will	   happen	   to	   the	   rear	   slope	   of	   the	  
perturba/on.	  	  
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Dispersion	  RelaHon	  for	  coasHng	  beams	  

electromagnetic forces that, interacting back on the beam, modify the parti-

cle energy.

For example, the longitudinal effect of the space charge in a perfectly

conducting pipe is a force proportional to −∂I/∂s[17]. As a consequence,

the particles that are on the front slope of the sinusoidal perturbation will

experience a positive force, and, in one turn, their energy will increase. The

contrary will happen to the rear slope of the perturbation. If we are above

transition, from equation (84), an increase of energy implies a decrease of

the revolution frequency. Therefore the particle in the front slope will delay

and those in the back crest will anticipate, giving, as a net result, an increase

of the height of the crest. The initial perturbation is thus increased leading

to instability, known as negative mass instability. On the contrary, below

transition, the longitudinal space charge forces stabilize the beam.

4.3 Dispersion relation of longitudinal coasting beam

This dynamics of the coasting beam can be formalized and generalized by

treating the motion of the particles by means of the Vlasov equation. The

formalism is very similar to that we have used for the waves in a perturbed

plasma. Here we use f(z, ε; t) for the beam distribution function such that

its integration over longitudinal space and energy gives the total number of

particles N in the beam
� �

f(z, ε; t)dzdε = N (87)

The beam current I, defined by equation (74), can be obtained from the

beam distribution function as

I(z; t) = ec

�
f(z, ε; t)dε (88)

Here we have performed a change of variable from s to z = s−ct assuming,

from now on, ultra-relativistic velocities with β = 1.
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The	   dynamics	   of	   a	   coas/ng	   (unbunched)	   beam	   can	   be	  
formalized	   by	   means	   of	   the	   Vlasov	   equa/on.	   The	  
formalism	   is	   very	   similar	   to	   that	   we	   have	   used	   for	   the	  
waves	  in	  a	  perturbed	  plasma.	  Here	  we	  use	  f(z,ε;t)	  for	  the	  
beam	  distribu/on	  func/on	  such	  that:	  

By using equation (75) into (74), we can write

I(z, t) = I0 +∆Iei[kz−(ω−nω̄0)t] (89)

and also the beam distribution function can then be written as

f(z, ε; t) = f0(ε) + f1(ε)e
i[kz−(ω−nω̄0)t] (90)

In writing the above equations we have considered that the stationary

distribution does not depend either on time or on z being the circular machine

azimuthally symmetric.

The beam distribution function satisfies the Vlasov equation[3] that we

write here in the form

∂f

∂t
+

∂f

∂z

∂z

∂t
+

∂f

∂ε

∂ε

∂t
= 0 (91)

The terms ∂z/∂t and ∂ε/∂t represent the rate of change of the longitudi-

nal position and energy of the particle. The characteristic time in which all

the involved variables have significant changes, also in presence of instability,

is generally much longer than the revolution time T0; therefore we may as-

sume T0 to be the minimum time deviation. Under this assumption we can

write
∂z

∂t
� ∆z

T0
= ∆ωR0 (92)

where the last identity has been obtained by using equation (86).

The relative energy variation in one turn arises from the longitudinal

forces produced by the interaction of the beam with the surroundings and

by the space charge. These forces vanish if the longitudinal distribution is

uniform along the accelerator and, as we have shown, they can be expressed

by means of the longitudinal wake function[15].

As a matter of facts, by applying equation (88), the instantaneous current

can also be written as

I(z; t) =
ecN

L0
+ ecei[kz−(ω−nω̄0)t]

�
f1(ε)dε (93)
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The	   beam	   current	   can	   be	   obtained	   from	   the	   beam	  
distribu/on	  func/on	  as:	  
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As we have shown in section (4.1), the rate of energy variation is then

∂ε

∂t
= −e∆Iei(ks−ωt)

E0T0
Z||(ω) = −ce2ei[kz−(ω−nω̄0)t]

E0T0
Z||(ω)

�
f1(ε)dε (94)

We now linearize the Vlasov equation by substituting equation (90) into

(91) and ignoring second order terms in the perturbation, that is the term

that contains (∂f1/∂ε)
�
f1(ε)dε, with the use of the equations (75), (92),

and (94), and obtain

− i (ω − nω̄0 − n∆ω) f1e
i[kz−(ω−nω̄0)t] =

=
∂f0
∂ε

e2cZ||(nω̄0)

E0T0
ei[kz−(ω−nω̄0)t]

�
f1dε (95)

To first order of perturbation the coupling impedance has been evaluated

at the unperturbed frequency nω̄0.

By using now equation (84) the above equation can be written as

f1 = i
∂f0/∂ε

ω − nω̄0 + nω̄0ηε

e2c2Z||(nω̄0)

E0L0

�
f1dε (96)

If we integrate both the members by ε, and use the definition of the

average current of equation (93) then we obtain the dispersion integral

1 = i
(Z||/n)I0L0

2πN(E0/e)η

�
∂f0/∂ε

(ω−nω̄0)
nω̄0η

+ ε
dε (97)

Observe that the above dispersion integral, derived from the Vlasov equa-

tion, has a very close similarity to the equation (28) obtained for the plasma

oscillations. As in that case, we now know that we must execute the above

integral in the complex ε-plane by deforming the contour of the integration,

in order to avoid the singularity8. If we do that, by using the same rule of

equation (43), we get

1 = i
(Z||/n)I0L0

2πN(E0/e)η

�
P.V.

�
∂f0/∂ε

(ω−nω̄0)
nω̄0η

+ ε
dε− iπ

�
∂f0
∂ε

�

ε=
(nω̄0−ω)

nω̄0η

�
(98)

8Observe that the singularity exists only if the frequency shift ω−nω̄0 due to the cou-

pling impedance lies within the frequency spread due to the energy distribution. Outside

this frequency range there is no Landau damping.
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As we have shown in section (4.1), the rate of energy variation is then
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We now linearize the Vlasov equation by substituting equation (90) into

(91) and ignoring second order terms in the perturbation, that is the term

that contains (∂f1/∂ε)
�
f1(ε)dε, with the use of the equations (75), (92),

and (94), and obtain

− i (ω − nω̄0 − n∆ω) f1e
i[kz−(ω−nω̄0)t] =

=
∂f0
∂ε

e2cZ||(nω̄0)

E0T0
ei[kz−(ω−nω̄0)t]
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f1dε (95)

To first order of perturbation the coupling impedance has been evaluated

at the unperturbed frequency nω̄0.

By using now equation (84) the above equation can be written as

f1 = i
∂f0/∂ε

ω − nω̄0 + nω̄0ηε

e2c2Z||(nω̄0)

E0L0

�
f1dε (96)

If we integrate both the members by ε, and use the definition of the

average current of equation (93) then we obtain the dispersion integral
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∂f0/∂ε

(ω−nω̄0)
nω̄0η

+ ε
dε (97)

Observe that the above dispersion integral, derived from the Vlasov equa-

tion, has a very close similarity to the equation (28) obtained for the plasma

oscillations. As in that case, we now know that we must execute the above

integral in the complex ε-plane by deforming the contour of the integration,

in order to avoid the singularity8. If we do that, by using the same rule of

equation (43), we get

1 = i
(Z||/n)I0L0
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8Observe that the singularity exists only if the frequency shift ω−nω̄0 due to the cou-

pling impedance lies within the frequency spread due to the energy distribution. Outside

this frequency range there is no Landau damping.
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8Observe that the singularity exists only if the frequency shift ω−nω̄0 due to the cou-

pling impedance lies within the frequency spread due to the energy distribution. Outside

this frequency range there is no Landau damping.
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φ̃(k,ω) =

� ∞

−∞

� ∞

−∞
φ(x, t)ei(ωt−kx)dxdt (25)

and for the differential equation (22)

i(kvx − ω)f̃1 + i
e

me
kφ̃

∂f0
∂vx

= 0 (26)

Accordingly, eq. (23) becomes:

−k2φ̃ =
e

ε0

�
f̃1dvx (27)

If we take f̃1 from (26) and substitute into (27), we obtain the following

dispersion relation

1 +
e2

ε0mek

�
∂f0/∂vx
ω − kvx

dvx = 0 (28)

Integration of (28) over vx provides a relation between k and ω which de-

pends only on the slope of the unperturbed distribution function f0(vx). The

dispersion relation contains a divergent integral, because of the singularity

at ω = kvx. To overcome this difficulty, without giving a solid explanation,

Vlasov calculated the principal value of the integral, getting, as result, only

a frequency shift without any kind of damping.

2.2.3 Landau solution of the Vlasov equation

In a very original paper of 1946 Landau proposed a new method of solu-

tion of Vlasov-Poisson equations putting the basis of the theory of plasma

oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.

Accordingly, the perturbation and the electric field are first transformed as

f̃1 (vx, k, t) =

� ∞

−∞
f1 (x, vx, t) e

−ikx
(29)

Ẽx (k, t) =

� ∞

−∞
Ex (x, t) e

−ikx
(30)
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Figure 2: Path of integration for Landau damping.

Accordingly, the dispersion function becomes:

1 +
e2

ε0mek

�
P.V.

�
∂f0/∂vx
ω − kvx

dvx −
iπ

k

�
∂f0
∂vx

�

vx=ω/k

�
= 0 (43)

The imaginary term of the above equation produces the damping/antidamping

effect predicted by Landau, depending on the slope of the distribution func-

tion. With this procedure, we obtain straightforwardly the correct dispersion

relations via Fourier transformation of the Vlasov equation.

Example: Plasma with a Maxwellian velocity distribution

As an example to clarify the use of the dispersion relation for the analysis

of the plasma stability, we consider a plasma with a velocity Maxwellian

distribution function

f0(vx) =
n0

(2πkBT/me)1/2
exp

�
−mev2x
2kBT

�
(44)

where kB is the Boltzmann constant. We can integrate by parts the principal

value of equation (43) obtaining

P.V.

�
∂f0/∂vx
ω − kvx

dvx =
f0(vx)

ω − kvx

����
∞

−∞
− k

�
f0(vx)

(ω − kvx)
2dvx (45)
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4.4 Monocromatic beam

Let us use the dispersion integral to discuss the stability of a monochromatic

beam, namely a beam without energy spread. In this case the stationary

distribution can be written as

f0(ε) = N
δ(ε)

L0
(99)

with δ the Dirac delta function. Since in this case there is no energy spread,

the dispersion integral does not diverge, and we can use directly equation

(97). With the above relation, we get

1 = i
(Z||/n)I0
2π(E0/e)η

�
δ�(ε)

(ω−nω̄0)
nω̄0η

+ ε
dε = −i

(Z||/n)I0
2π(E0/e)η

∂

∂ε

�
1

(ω−nω̄0)
nω̄0η

+ ε

������
ε=0
(100)

that is

1 = i
η(Z||/n)I0
2π(E0/e)

�
nω̄0

ω − nω̄0

�2

(101)

so that the frequency is

ω = nω̄0 ± nω̄0

�

i
η(Z||/n)I0
2π(E0/e)

(102)

When ω has an imaginary part ωi, we obtain a perturbation with a time

exponential growing amplitude that leads to instability (actually in the above

equation there is a second solution that produces an exponential decay) . The

real part of ω, ωr, gives the frequency of the perturbed current term. If we

ignore the machine coupling impedance Z|| this frequency is nω̄0.

If the machine coupling impedance Z|| has a real part, that is a resistive

component, ω will always have an imaginary part and therefore the beam

will be unstable. For a pure imaginary impedance Z|| = iZ||,i, stability or

instability will depend on the sign of η and Z||,i. Above transition energy

(η > 0), if Z||,i > 0 (a capacitive impedance due to the space charge as in the

previous example) we find the negative mass instability. The overall behavior

can be summarized by saying that when ηZ||,i < 0, the beam is stable.
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The equation (102) can also be used to determine the instability growth

rate once we know the machine coupling impedance. For example, if we plot

− sign(η)Z||,i as a function of sign(η)Z||,r at constant values of ωi, we obtain

the figure (7) that represents the stability diagram for zero energy spread.

Observe that ωi is related to the instability rise time by the relation:

ωi =
1

τ
(103)

Positive value of τ produce instability and the curves allow to evaluate

the rise time once the coupling impedance is known.

-sign(η)Z 

sign(η)Z

ω =0
||,i

||,r

i iincreasing ω

(arbitrary units)

stability

Figure 7: Stability diagram relating growth rate and impedance for zero

energy spread (in arbitrary units).

4.5 Beam with energy spread

Till now we have seen that a monochromatic beam is stable only when the

machine impedance is purely imaginary with a proper sign. This, however,

30
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Let us use the dispersion integral to discuss the stability of a monochromatic

beam, namely a beam without energy spread. In this case the stationary

distribution can be written as

f0(ε) = N
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with δ the Dirac delta function. Since in this case there is no energy spread,
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When ω has an imaginary part ωi, we obtain a perturbation with a time

exponential growing amplitude that leads to instability (actually in the above

equation there is a second solution that produces an exponential decay) . The

real part of ω, ωr, gives the frequency of the perturbed current term. If we

ignore the machine coupling impedance Z|| this frequency is nω̄0.

If the machine coupling impedance Z|| has a real part, that is a resistive

component, ω will always have an imaginary part and therefore the beam

will be unstable. For a pure imaginary impedance Z|| = iZ||,i, stability or

instability will depend on the sign of η and Z||,i. Above transition energy

(η > 0), if Z||,i > 0 (a capacitive impedance due to the space charge as in the

previous example) we find the negative mass instability. The overall behavior

can be summarized by saying that when ηZ||,i < 0, the beam is stable.
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If	  the	  machine	  coupling	  impedance	  has	  a	  real	  part,	  that	  is	  
a	   resis/ve	   component,	  ω	  will	   always	  have	  an	   imaginary	  
part	  and	  therefore	  the	  beam	  will	  be	  unstable.	  
	  
For	   a	   pure	   imaginary	   impedance	   stability	   or	   instability	  
depends	  on	  the	  sign	  of	  η	  and	  Zi.	  
	  	  
Above	   transi/on	   energy	   (η>0),	   the	   beam	   is	   unstable	   if	  
Zi>0	   (capaci/ve	   impedance)	  and	  stable	   if	   Zi<0	   (induc/ve	  
impedance).	  
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Figure 8: Stability diagram relating growth rate and impedance for a

parabolic energy distribution (in arbitrary units).

If the coupling impedance Z is inside the stable area, then the coherent

oscillation energy of the beam is transferred to the incoherent kinetic energy

of a smaller and smaller number of particles inside the beam, thus stabilizing

the perturbation. This is the Landau damping effect for the longitudinal

instability of coasting beams[19].

The curves of figure 8 and the shape of the stability limit depend on the

energy distribution and in particularly on its edges. Sharp edge distributions,

as the parabolic one, are less stable than the ones with long tails, such as the

Gaussian distribution[18].

If we consider, as another example, a tri-elliptical energy distribution of

the kind[20]

f0(ε) =
8N

3πL0εm

�
1−

�
ε

εm

�2
�3/2

(109)
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Parabolic	  energy	  distribuHon	  
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Figure 7: Stability diagram relating growth rate and impedance for zero

energy spread (in arbitrary units).

a stationary parabolic energy distribution of the kind[18]

f0(ε) =
3N

4L0εm

�
1−

�
ε

εm

�2
�

(104)

such that the relative energy deviation ranges between −εm and εm. Due to

the fact that the frequency ω must lie within the frequency spread produced

by the energy distribution, if the real part of frequency ωr lies within the

frequency spread given by the above energy distribution, by using eq. (98),

we can write

1 = −i
3(Z||/n)I0

4π(E0/e)ηε2m

�
P.V.

� 1

−1

x

y + x
dx+ iπy

�
(105)

with

y =
ω − nω̄0

nω̄0ηεm
(106)

We remind that the imaginary term in eq. (105) exists only if

−1 < Re(y) < 1 (107)
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If the coupling impedance Z is inside the stable area, then the coherent

oscillation energy of the beam is transferred to the incoherent kinetic energy

of a smaller and smaller number of particles inside the beam, thus stabilizing

the perturbation. This is the Landau damping effect for the longitudinal

instability of coasting beams[19].

The curves of figure 8 and the shape of the stability limit depend on the

energy distribution and in particularly on its edges. Sharp edge distributions,

as the parabolic one, are less stable than the ones with long tails, such as the

Gaussian distribution[18].

If we consider, as another example, a tri-elliptical energy distribution of

the kind[20]

f0(ε) =
8N

3πL0εm
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(109)
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Figure 9: Stability diagram relating growth rate and impedance for a tri-

elliptical energy distribution (in arbitrary units).

with the form factor F , of the order of unity, that determines the radius of

the approximating circle.

5 Longitudinal dynamics and Landau damp-

ing in bunched beams

The longitudinal beam dynamics of bunched beams, as for the coasting beam

case, is described by the Vlasov equation (91), but with different equations

of motion. Actually the rate of change of the longitudinal coordinate z is still

given by equation (92), but due to the presence of the longitudinal focusing

force of RF cavities, which is responsible of the synchrotron oscillations, the

rate of change of energy is given by the contribution of two terms, one due to

the RF and the other due to the wake field, such that, for small synchrotron

34

we obtain the dispersion relation

1 = −i
4(Z||/n)I0β2

π2(E0/e)ηε2m

�
P.V.

� 1

−1

x (1− x2)1/2

y + x
dx+ iπy

�
1− y2

�1/2
�

(110)

with y given by equation (106). The P.V. of the integral can be easily done,

and we get

1 =
4(Z||/n)I0β2

π(E0/e)ηε2m

�
y
�
1− y2

�1/2 − i

�
1

2
− y2

��
(111)

The real and imaginary part of the impedance are represented in figure

9 as a function of ω with constant ωi > 0. The curves are similar to those of

figure 8 except that in this case the stable area is a circle the radius of which

can be found by the condition that y be real, from which we get

Z||,r/n = −π(E0/e)ηε2m
4I0β2

4y
�
1− y2

�1/2
(112)

and

Z||,i/n = −π(E0/e)ηε2m
4I0β2

�
4y2 − 2

�
(113)

that is ����
Z||

n

���� =
π(E0/e)|η|ε2m

2I0β2
(114)

If we substitute εm with the half width at half maximum ε1/2, that for

the tri-elliptical distribution is

εm = ε1/2
�
1− 2−2/3

�−1/2
= 1.64ε1/2 (115)

we obtain ����
Z||

n

���� = 0.68
2π(E0/e)|η|ε21/2

I0β2
(116)

that is known as Kheil - Schnell stability criterion[21, 22].

We can generalize the above equation for other energy distributions by

writing a simplified stability criterion
����
Z||

n

���� ≤ F
(E0/e)|η|ε21/2

I0β2
(117)
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	   The	   effect	   of	   Landau	   damping	   on	   bunched	   beam	  
dynamics	  is	  a	  complex	  problem.	  However,	  a	  simplified	  and	  
approximated	   expression,	   similar	   to	   the	   Keil-‐Schnell	  
stability	   criterion	   for	   the	   coas/ng	   beam,	   has	   been	  
proposed	  by	  D.	  Boussard	  in	  case	  of	  short	  range	  wake	  fields	  
(ac/ng	  on	  the	  sigle	  bunch)	  at	  high	  frequencies.	  
The	  idea	  is	  that	  for	  high	  frequency	  fields	  generated	  by	  the	  
beam,	   a	   bunched	   beam	   can	   be	   considered	   as	   a	   coas/ng	  
one,	  provided	  we	  use	  the	  bunched	  beam	  peak	  current	   in	  
the	  threshold	  criterion.	  	  

Bunched	  Beam	  (Longitudinal)	  

Thus,	   considering	   a	   Gaussian	   energy	   distribu/on,	   we	  
end	  up	  with	  the	  Boussard	  criterion	  

The	   Boussard	   criterion	   can	   be	   used	   to	   get	   a	   first	  
evalua/on	  of	  the	  threshold	  current	  of	  a	  ring	  for	  a	  given	  
impedance	  Z/n.	   It	  depends	  on	   the	  par/cle	  energy,	   the	  
energy	  spread,	  and	  on	  the	  factor	  η.	  

The effect of Landau damping on bunched beam dynamics is a complex

problem. However, a simplified and approximated expression, similar to the

Keil-Schnell stability criterion for the coasting beam, has been proposed by D.

Boussard[29] in case of short range wake field and broad band impedance[15].

The idea is that at the high frequency of the signals emitted by the bunch in

the instability regime, a bunched beam can be considered as a coasting beam

with a current equal to the bunched beam peak current. As a consequence,

we can use eq. (116) by substituting I0 with Î, ε21/2 with 2 ln 2σ2
ε (we consider

a Gaussian energy distribution), and, since 0.68× 2 ln 2 = 0.94 � 1, then we

end up with the Boussard criterion

����
Z||

n

���� =
2π(E0/e)|η|σ2

ε

Î
(119)

The Boussard criterion can be used to give a first evaluation of the thresh-

old single bunch current in a storage ring before the microwave instability

occurs[30].

Let us now evaluate the effects of the Landau damping for a more simple

case, by considering an instability of Nb equally spaced bunches in a storage

ring, produced by a single high order resonant mode at the frequency pω̄0

(long range wake field), and by supposing that this resonant mode drives the

instability of a single azimuthal beam oscillation mode m. We omit here the

details of the calculations, but it is possible to obtain a dispersion integral

similar to eq. (97), which assumes now the form[31]

1 = −i
mcItot
(E0/e)

Z||(pω̄0)

p

� ∞

0

∂f0
∂ẑ

J2
m

�
pω̄0ẑ

c

�
1

ω −mωs(ẑ)
dẑ (120)

with Itot = ceNNb/L0 the total beam current, Jm the Bessel function of

the first kind and m-th order, ωs(ẑ) the amplitude dependent synchrotron

frequency, and f0(ẑ) the unperturbed distribution function expressed in terms

of the synchrotron oscillation amplitude ẑ. If the beam particles have all

the same synchrotron frequency, that means ωs(ẑ) is constant, there is no
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The	   threshold	   corersponds	   to	   the	   maximum	   single	  
bunch	  current	  one	  can	  store	   in	  a	  storage	  ring,	  keeping	  
the	  beam	  stable.	  Above	  the	  threshold	  current,	  we	  enter	  
in	   the	   regime	   of	   the	   “microwave	   instability”,	   however	  
the	  beam	  is	  not	  lost.	  	  
	  
The	   microwave	   instabili/es	   will	   heat	   the	   beam,	  
increasing	   the	   energy	   spread	   such	   to	   restore	   the	  
threshold	  condi/on.	  

The effect of Landau damping on bunched beam dynamics is a complex

problem. However, a simplified and approximated expression, similar to the

Keil-Schnell stability criterion for the coasting beam, has been proposed by D.

Boussard[29] in case of short range wake field and broad band impedance[15].

The idea is that at the high frequency of the signals emitted by the bunch in

the instability regime, a bunched beam can be considered as a coasting beam

with a current equal to the bunched beam peak current. As a consequence,

we can use eq. (116) by substituting I0 with Î, ε21/2 with 2 ln 2σ2
ε (we consider

a Gaussian energy distribution), and, since 0.68× 2 ln 2 = 0.94 � 1, then we

end up with the Boussard criterion

����
Z||

n

���� =
2π(E0/e)|η|σ2

ε

Î
(119)

The Boussard criterion can be used to give a first evaluation of the thresh-

old single bunch current in a storage ring before the microwave instability

occurs[30].

Let us now evaluate the effects of the Landau damping for a more simple

case, by considering an instability of Nb equally spaced bunches in a storage

ring, produced by a single high order resonant mode at the frequency pω̄0

(long range wake field), and by supposing that this resonant mode drives the

instability of a single azimuthal beam oscillation mode m. We omit here the

details of the calculations, but it is possible to obtain a dispersion integral

similar to eq. (97), which assumes now the form[31]

1 = −i
mcItot
(E0/e)

Z||(pω̄0)

p

� ∞

0

∂f0
∂ẑ

J2
m

�
pω̄0ẑ

c

�
1

ω −mωs(ẑ)
dẑ (120)

with Itot = ceNNb/L0 the total beam current, Jm the Bessel function of

the first kind and m-th order, ωs(ẑ) the amplitude dependent synchrotron

frequency, and f0(ẑ) the unperturbed distribution function expressed in terms

of the synchrotron oscillation amplitude ẑ. If the beam particles have all

the same synchrotron frequency, that means ωs(ẑ) is constant, there is no
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