RF Systems

Erk Jensen, CERN BE-RF

Outline

- Definitions and basic concepts
- On modulation
- Digital Signal Processing
- RF System & Control Loops
- RF Power Sources
- Fields in a Waveguide
- From Waveguide to Cavity
- Accelerating Gap
- Characterizing a Cavity
- Many Gaps
- Superconducting Cavities
- Some Examples of RF Systems

Definitions & basic concepts

dB

t-domain vs. ω-domain phasors

5 February 2014

Decibel (dB)

Convenient logarithmic measure of a power ratio.

CAS Chavannes 2014

- A "Bel" (= 10 dB) is defined as a power ratio of 10¹. Consequently, 1 dB is a power ratio of 10^{0.1}≈1.259
- If *rdb* denotes the measure in dB, we have:

$rdh = 10 dR \log s$	$\left(\frac{P_2}{2} \right)$	$-10 dB \log$	$\left(\underline{A_2^2} \right)$	$-20 dB \log$	A_2
	$\left(\overline{P_1} \right)$	- TO UD log	$\left(\overline{A_{1}^{2}}\right)$	-20 ub \log	A_1

P_2	A_{2}^{2}	— 1 O <i>rdb/</i> (10 dB)
$\overline{P_1}^-$	$\overline{A_{l}^{2}}$	- 10	

<i>rdb</i> -30 dB -20 dB -10 dB -6 dB -3 dB 0 d	dB 3 dB 6 dB 10 dB 20 dB 30 dB
P_2/P_1 0.001 0.01 0.1 0.25 .50 1	2 3.98 10 100 1000
A_2/A_1 0.0316 0.1 0.316 0.50 .71 1	1.41 2 3.16 10 31.6

• Related: dBm (relative to 1 mW), dBc (relative to carrier)

 $= 10^{rdb/(20 \, dB)}$

RF Systems

EI:

Time domain – frequency domain (1)

- An arbitrary signal g(t) can be expressed in ω -domain using the **Fourier transform** (FT). $g(t) \rightarrow G(\omega) = \frac{1}{\sqrt{2-\pi}} \int_{0}^{\infty} g(t) e^{j\omega t} dt$
- The inverse transform (IFT) is also referred to as *Fourier Integral*

$$G(\omega) \bullet g(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(\omega) e^{-j\omega t} d\omega$$

EJ: RF Systems

- The advantage of the ω -domain description is that linear time-invariant (LTI) systems are much easier described.
- The mathematics of the FT requires the extension of the definition of a *function* to allow for infinite values and non-converging integrals.
- The FT of the signal can be understood at looking at "what frequency components it is composed of".

5 February 2014

Time domain – frequency domain (2)

CAS Chavannes 2014

- For *T*-periodic signals, the FT becomes the Fourier-Series, $d\omega$ becomes $2\pi/T$, \int becomes Σ .
- The cousin of the FT is the *Laplace transform*, which uses a complex variable (often s) instead of jω; it has generally a better convergence behaviour.
- Numerical implementations of the FT require discretisation in t (sampling) and in ω. There exist very effective algorithms (FFT).

• In digital signal processing, one often uses the related z-Transform, which uses the variable $z = e^{j\omega\tau}$, where τ is the sampling period. A delay of $k\tau$ becomes z^{-k} .

Fixed frequency oscillation (steady state, CW) Definition of phasors

• General: $A \cos(\omega t - \varphi) = A \cos(\omega t) \cos \varphi + A \sin(\omega t) \sin \varphi$

• This can be interpreted as the projection on the real axis of a circular motion in the complex plane: $\Re{A(\cos \varphi + j \sin \varphi)e^{j\omega t}}$

The complex amplitude à is called "phasor";

 $\tilde{A} \equiv A(\cos \varphi + j \sin \varphi)$

CAS Chavannes 2014

Calculus with phasors

 Why this seeming "complication"?: Because things become easier!

• Using $\frac{d}{dt} \equiv j\omega$, one may now forget about the rotation with ω and the projection on the real axis, and do the complete analysis <u>making use of complex algebra</u>!

5 February 2014

EJ: RF Systems

Slowly varying amplitudes

- For band-limited signals, one may conveniently use "slowly varying" phasors and a fixed frequency RF oscillation.
- So-called in-phase (I) and quadrature (Q) "baseband envelopes" of a modulated RF carrier are the real and imaginary part of a slowly varying phasor.

5 February 2014

CAS Chavannes 2014

EJ: RF Systems

On Modulation

AM PM I-O

Amplitude modulation

$$(1 + m\cos(\varphi)) \cdot \cos(\omega_c t) = \Re\left\{\left(1 + \frac{m}{2}e^{j\varphi} + \frac{m}{2}e^{-j\varphi}\right)e^{j\omega_c t}\right\}$$

5 February 2014

Vector (I-Q) modulation

More generally, a modulation can have both amplitude and phase modulating components. They can be described as the in-phase (I) and quadrature (Q) components in a chosen reference, $cos(\omega_r t)$. In complex notation, the modulated RF is:

$\operatorname{Re}\left\{ (I(t) + jQ(t))e^{j\omega_{r}t} \right\} = \\\operatorname{Re}\left\{ (I(t) + jQ(t))(\cos(\omega_{r}t) + j\sin(\omega_{r}t)) \right\} \\ I(t)\cos(\omega_{r}t) - Q(t)\sin(\omega_{r}t)$

So *I* and *Q* are the cartesian coordinates in the complex "Phasor" plane, where amplitude and phase are the corresponding polar coordinates.

15

 $I(t) = A(t) \cdot \cos(\varphi)$ $Q(t) = A(t) \cdot \sin(\varphi)$

EJ: RF Systems

Digital Signal Processing

CAS Chavannes 2014

Just some basics

5 February 2014

 Digital Signal Processing is very powerful – note recent progress in digital audio, video and communication!

EJ: RF Systems

- Concepts and modules developed for a huge market; highly sophisticated modules available "off the shelf".
- The "slowly varying" phasors are ideal to be sampled and quantized as needed for digital signal processing.
- Sampling (at $1/\tau_s$) and quantization (*n* bit data words here 4 bit):

Digital filters (1)

 Once in the digital realm, signal processing becomes "computing"!

 In a "finite impulse response" (FIR) filter, you directly program the coefficients of the impulse response.

Digital filters (2)

5 February 2014

 An "infinite impulse response" (IIR) filter has built-in recursion, e.g. like

CAS Chavannes 2014

Digital LLRF building blocks – examples

RF system & control loops

e.g.: ... for a synchrotron: Cavity control loops Beam control loops

Minimal RF system (of a synchrotron)

EJ: RF Systems

2.1

1-turn delay feed-back loop

- The speed of the "fast RF feedback" is limited by the group delay this is typically a significant fraction of the revolution period.
- How to lower the impedance over many harmonics of the revolution frequency?
- Remember: the beam spectrum is limited to relatively narrow bands around the multiples of the revolution frequency!
- Only in these narrow bands the loop gain must be high!
- Install a comb filter! ... and extend the group delay to exactly 1 turn – in this case the loop will have the desired effect and remain stable!

26

CAS Chavannes 2014

EJ: RF Systems

Field amplitude control loop (AVC)

Beam phase loop

Other loops

- Radial loop:
 - Detect average radial position of the beam,
 - Compare to a programmed radial position,
 - Error signal controls the frequency.
- Synchronisation loop:
 - 1st step: Synchronize *f* to an external frequency (will also act on radial position!).
 - 2nd step: phase loop

A real implementation: LHC LLRF

RF power sources

0 😌 🕅 0 810 R 0 1 Mar 0 CAS Chavannes 2014 EJ: RF Systems

Soleil Booster SSPA, 40 kW, 352 MHz

High power tetrode amplifier

Klystron principle

Klystrons

CERN CTF3 (LIL): 3 GHz, 45 MW, 4.5 μs, 50 Hz, η 45 %

> **CERN LHC:** 400 MHz, 300 kW, CW, η 62 %

> > EJ: RF Systems

CAS Chavannes 2014

Fields in a waveguide

Homogeneous plane wave

 $\vec{E} \propto \vec{u}_v \cos(\omega t - \vec{k} \cdot \vec{r})$ $\vec{B} \propto \vec{u}_x \cos\left(\omega t - \vec{k} \cdot \vec{r}\right)$ $\vec{k} \cdot \vec{r} = \frac{\omega}{c} (\cos(\varphi)z + \sin(\varphi)x)$

Wave vector \overline{k} : the direction of \overline{k} is the direction of propagation, the length of \overline{k} is the phase shift per unit length. \vec{k} behaves like a vector.

Ø $k_z = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$ EJ: RF Systems

Wave length, phase velocity

The components of \bar{k} are related to the wavelength in the direction of

that component as $\lambda_z = \frac{2\pi}{k}$ etc., to the phase velocity as $v_{\varphi,z} = \frac{\omega}{k} = f \lambda_z$.

 $k_{\perp} = \frac{\omega_c}{c}$

CAS Chavannes 2014

EJ: RF Systems

 ω 1-

 $k = \frac{\omega}{c}$

Superposition of 2 homogeneous plane waves

EJ: RF Systems

From waveguide to cavity

EJ: RF Systems

Waveguide perturbed by notches

Reflections from notches lead to a superimposed standing wave pattern. "Trapped mode"

CAS Chavannes 2014

5 February 2014

Accelerating gap

CAS Chavannes 2014

Accelerating gap

We want a voltage across the gap!

It cannot be DC, since we want the beam tube on ground potential.

Use
$$\int \vec{E} \cdot d\vec{s} = -\iint \frac{d\vec{B}}{dt} \cdot d\vec{A}$$

The "shield" imposes a upper limit of the voltage pulse duration or – equivalently – a lower limit to the usable frequency.

The limit can be extended with a material which acts as "open circuit"!

Materials typically used:

ferrites (depending on *f*-range) magnetic alloys (MA) like Metglas[®], Finemet[®], Vitrovac[®]...

resonantly driven with RF (ferrite loaded cavities) – or with pulses (induction cell)

Gap of PS cavity (prototype)

Characterizing a cavity

Many gaps

What do you gain with many gaps?

The R/Q of a single gap cavity is limited to some 100 Ω . Now consider to distribute the available power to n identical cavities: each will receive P/n, thus produce an accelerating voltage of $\sqrt{2 R P/n}$.

The total accelerating voltage thus increased, equivalent to a total equivalent shunt impedance of nR.

 $|V_{acc}| = n \left| 2R \frac{P}{n} = \sqrt{2(nR)P} \right|$

Standing wave multicell cavity

CAS Chavannes 2014

Instead of distributing the power from the amplifier, one might as well couple the cavities, such that the power automatically distributes, or have a cavity with many gaps (e.g. drift tube linac).

Coupled cavity accelerating structure (side coupled)

The phase relation between gaps is important!

P/n

5 February 2014

P/n

EJ: RF Systems

Side Coupled Structure : example LIBO

A 3 GHz Side Coupled Structure to accelerate protons out of cyclotrons from 62 MeV to 200 MeV

Medical application: treatment of tumours.

Prototype of Module 1 built at CERN (2000)

EJ: RF Systems

Collaboration CERN/INFN/ Tera Foundation

LIBO prototype

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)

CLIC travelling wave structures (12 & 30 GHz)

"T18" reached 105 MV/m!

"HDS" – novel fabrication technique

EJ: RF Systems

Superconducting Cavities

"Elliptical" multi-cell cavities

The elliptical shape was found as optimum compromise between

maximum gradient (E_{acc}/E_{surf})

- suppression of multipactor
- mode purity
- machinability
- Operated in π -mode, i.e. cell length is exactly $\beta\lambda/2$.

CAS Chavannes 2014

- It has become de facto standard, used for ions and leptons! E.g.:
 - ILC/X-FEL: 1.3 GHz, 9-cell cavity
 - SNS (805 MHz)
 - SPL/ESS (704 MHz)
 - LHC (400 MHz^{*)})

*): accelconf.web.cern.ch/accelconf/SRF93/papers/srf93g01.pdf

LHC SC RF, 4 cavity module, 400 MHz

installed in LHC 1P4, 2 MV/cavity

LHC spare module stored in CERN's SM18

SC Cavity Cryomodules (examples)

HIE-ISOLDE (radioactive isotopes postaccelerator), 101 MHz, 5-cavity CM

EJ: RF Systems

Some examples of RF Systems

5 February 2014

EJ: RF Systems

Temp 2 Temp 11 Temp 11 Ads WG

Finemet RF System (MedAustron & PSB) 6-gap finemet cavity $(0.2 \div 10)$ MHz, 1 kW solid state amplifier **MedAustron** CL Gain - Spice simulation Measured Prototype system installed in ring 4 5-gap finemet cavity -10 15 0.01 0.1 10 100 1 Large instantaneous bandwidth!-**CERN PSB** 5 February 2014 CAS Chavannes 2014 EJ: RF Systems 74

Thank you for your attention!

... Questions?