Special relativity

Werner Herr, CERN

(http://cern.ch/Werner.Herr/CAS2014_Chavannes/rel.pdf)

Why Special Relativity?

- Most beams at CERN are relativistic
- Strong implications for beam dynamics:
 - Transverse dynamics (e.g. momentum compaction, radiation, ...)
 - Longitudinal dynamics (e.g. transition, ...)
 - Collective effects (e.g. space charge, beam-beam, ...)
 - > Luminosity in colliders
 - Particle lifetime and decay (e.g. μ , π , Z_0 , Higgs, ...)

Small history

- 1678 (Römer, Huygens): Speed of light c is finite $(c \approx 3 \cdot 10^8 \text{ m/s})$
- 1630-1687 (Galilei, Newton): Principles of Relativity
- 1863 (Maxwell): Electromagnetic theory, light are waves moving through static ether with speed c
- 1887 (Michelson, Morley): Speed c independent of direction,
 → no ether
- 1892 (Lorentz, FitzGerald, Poincaré): Lorentz transformations, Lorentz contraction
- 1897 (Larmor): Time dilation
- 1905 (Einstein): Principles of Special Relativity
- 1907 (Einstein, Minkowski): Concepts of Spacetime

OUTLINE

- Principle of Relativity (Newton, Galilei)
 - Motivation and Idea
 - Formalism, examples
- Principle of Special Relativity (Einstein)
 - Why ?
 - Formalism and consequences
 - Four-vectors and applications (accelerators)

Mathematical derivations and proofs are mostly avoided ...

Reading Material

- A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. Phys. 17, (1905).
- R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011).
- R.P. Feynman, Six not-so-easy pieces, (Basic Books, 2011).
- J. Freund, Special Relativity, (World Scientific, 2008).
- J. Hafele and R. Keating, Science 177, (1972) 166.

Setting the scene ..

- Where we describe physics and physics laws:
 - In space coordinates: $\vec{x} = (x, y, z)$
 - In time: t
- A "Frame":
 - Where we observe physical phenomena and properties as function of their position \vec{x} and moment in time t.
 - In different frames \vec{x} and t are usually different.
- An "Event":
 - Something happening at \vec{x} at time t is an "event", given by four numbers (x, y, z), t

Setting the scene ..

Assuming two frames F and F':

- Event described in F using: $\vec{x} = (x, y, z)$ and t
- Event described in F' using: $\vec{x'} = (x', y', z')$ and t'

Principles of Relativity (Newton)

We always observe and describe physics in a certain Frame

Laws of physics should be invariant

- i.e. the same when we change the frame, for example:
 - Frame displaced in Space
 - Frame displaced in Time
- Frame moving at constant speed, an Inertial System
- → More formal: "Physical laws have the <u>same form</u> in all inertial systems, they are <u>invariant</u>"

Principles of Relativity (Galilei, Newton)

Assume a frame at rest (F) and another frame (F') moving in x-direction with constant velocity $\vec{v} = (v_x, 0, 0)$

Example: we would like to have

 $Force = m \cdot a$ and $Force' = m \cdot a'$

(Mass m is the same in all frames)

Example: Pendulum

Motion described by coordinate Θ

Frequency of a pendulum is f

Example: Pendulum

Motion described by coordinate ⊖

Frequency of a pendulum the same in all inertial systems: f = f

How do we describe invariant laws?

- We have described an experiment in rest frame F
- How can we describe it seen from a moving frame F'?
 - Need to transform coordinates (x, y, z) and time t to describe (translate) results of measurements and observations to the moving system (x', y', z') and t'.
 - For Newton's principle of relativity need Galilei transformation for:
 - (x,y,z) and $t \longrightarrow (x',y',z')$ and t'.
- Then laws should look the same, have the same form

Galilei transformation

$$x' = x - v_x t$$

$$y' = y$$

$$z' = z$$

$$t' = t$$

Consequences of Galilei transformation

Velocity and transformation in x-coordinates. Only for simplicity, can always rotate the coordinate system.

For Galilei transformation:

Space and time are independent quantities

Space coordinates are changed, time is not changed!

Illustration of Galilei transformation:

- In car frame F' moving with speed v_x :

 Ball starts with vertical velocity $v_y' = v_0'$ Ball goes up and down
- In rest frame for observer *F*: ball describes a curve (parabola?)

Illustration of Galilei transformation:

Equation of motion in moving frame x'(t') and y'(t'):

$$x'(t') = 0, \quad v'_y(t') = v'_0 - g \cdot t'$$
$$y'(t') = \int v'_y(t') dt' = v'_0 \cdot t' - \frac{1}{2}gt'^2$$

Illustration of Galilei transformation:

From moving frame:

$$y'(t') = v'_0 \cdot t' - \frac{1}{2}gt'^2$$

To get equation of motion in rest frame x(t) and y(t): Galilei transform: $y(t) \equiv y'(t')$, $t \equiv t'$, $x(t) = x' + v_x \cdot t = v_x \cdot t$ To get y as function of x we can re-write:

$$t' = t = \frac{x}{v_x}$$

and get for the trajectory in the rest frame:

$$y(x) = \frac{v_0}{v_x} \cdot x - \frac{1}{2}g \frac{x^2}{v_x^2}$$

This is a parabola, observed from the rest frame.

Consequences of Galilei transformation

Velocities can be added

- From Galilei transformation, take derivative:

$$x' = x - v_x t$$

$$\dot{x'} = \dot{x} - v_x \qquad \longrightarrow \qquad v' = v - v_x$$

- A car moving with speed v' in a frame moving with speed v_x we have in rest frame $v = v' + v_x$

Problems with Galilei transformation

- Maxwell's equations are different when Galilei transformations are applied (because they predict the speed of light)
- Could exceed it when velocities are added:

$$0.8 \cdot c + 0.5 \cdot c = 1.3 \cdot c$$
 ?

$$c = 299792458.000 \text{ m/s}$$

- From experiments: Speed of light is upper limit and the same in <u>all</u> frames and <u>all</u> directions
- Enter Einstein: principles of special relativity

Principle(s) of Special Relativity (Einstein)

All physical laws (e.g. Maxwell's) in inertial frames must have equivalent forms, in particular:

Speed of light c must be the same in all frames

- Cannot distinguish between inertial frames by measuring speed of light:
 - Cannot determine absolute speed of an inertial frame
 - No absolute space, no absolute time
- Need Transformations (not Galileaen) which make the physics laws (Maxwell!) look the same!

Coordinates must be transformed differently

Transformation must keep speed of light constant

Constant speed of light requires:

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = 0 \longrightarrow x'^{2} + y'^{2} + z'^{2} - c^{2}t'^{2} = 0$$

(front of a light wave)

- To fulfill this condition: Time must be changed by transformation as well as space coordinates
- **In Transform** $(x, y, z), t \rightarrow (x', y', z'), t'$
- Defines the Lorentz transformation

Lorentz transformation

$$x' = \frac{x - vt}{\sqrt{(1 - \frac{v^2}{c^2})}} = \gamma \cdot (x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{v \cdot x}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}} = \gamma \cdot (t - \frac{v \cdot x}{c^2})$$

Transformation for constant velocity v along x-axis

Time is now also transformed

Definitions: relativistic factors

$$\beta_r = \frac{v}{c}$$

$$\gamma = \frac{1}{\sqrt{(1 - \frac{v^2}{c^2})}} = \frac{1}{\sqrt{(1 - \beta_r^2)}}$$

 β_r relativistic speed: $\beta_r = [0, 1]$

 γ relativistic factor: $\gamma = [1, \infty]$

(unfortunately, you will also see other β and γ ...!)

Consequences of Einstein's interpretation

- Space and time and NOT independent quantities
- Time has no absolute meaning
- Relativistic phenomena:
 - > Velocities cannot exceed speed of light
 - Non-) Simultaneity of events in independent frames
 - > Lorentz contraction
 - > Time dilation
- Formalism with four-vectors introduced (see later)

Addition of velocities

Galilei: $v = v_1 + v_2$

With Lorentz transform we have:

$$v = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}}$$

for $v_1, v_2, v_3, ... = 0.5c$ we get:

$$0.5c + 0.5c = 0.8c$$

$$0.5c + 0.5c + 0.5c = 0.93c$$

$$0.5c + 0.5c + 0.5c + 0.5c = 0.976c$$

$$0.5c + 0.5c + 0.5c + 0.5c + 0.5c = 0.992c$$

Speed of light can never be exceeded by adding velocities!

Special case: 0.5c + 1.0c = 1.0c

- Simultaneity -

Simultaneity between moving frames (the least intuitive concept)

Assume two events in frame F at positions x_1 and x_2 happen simultaneously at times $t_1 = t_2$:

$$t_1' = \frac{t_1 - \frac{v \cdot x_1}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}}$$
 and $t_2' = \frac{t_2 - \frac{v \cdot x_2}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}}$

 $x_1 \neq x_2$ in F implies that $t'_1 \neq t'_2$ in frame F'!!

Two events simultaneous at positions x_1 and x_2 in F are not simultaneous in F'

Simultaneity between moving frames

- System with a light source (x) and detectors (1, 2) and one observer (A) in this frame, another (A') outside
- System at rest \rightarrow observation the same in A and A'

Simultaneity between moving frames

Speed of light is the same in both frames, (no adding of speeds):

For A: both flashes arrive simultaneously in 1,2

For A': both flashes arrive simultaneously in 1,2

What if the frame is moving relative to A'?

Simultaneity between moving frames

Speed of light is the same in both frames, (no adding of speeds):

For A: both flashes arrive simultaneously in 1,2

For A': flash arrives first in 1, later in 2

A simultaneous event in F is not simultaneous in F'

Why do we care ??

Why care about simultaneity?

- Simultaneity is not frame independent
- This is a key in special relativity
- Most paradoxes are explained by that (although not the twin paradox)!
- Different observers see a different reality, in particular the sequence of events can change!
 - For $t_1 < t_2$ we may find (not always!) a frame where $t_1 > t_2$ (concept of before and after depends on the observer)

- Lorentz contraction -

Consequences: length measurement

How to measure the length of an object?

Have to measure position of <u>both</u> ends <u>simultaneously!</u> Length of a rod in F' is $L' = x'_2 - x'_1$, measured simultaneously at a fixed time t' in frame F', what is the length L seen in F??

Consequences: length measurement

We have to measure simultaneously (!) the ends of the rod at a fixed time t in frame F, i.e.: $L = x_2 - x_1 \longrightarrow$

$$x'_1 = \gamma \cdot (x_1 - vt)$$
 and $x'_2 = \gamma \cdot (x_2 - vt)$

$$L' = x'_2 - x'_1 = \gamma \cdot (x_2 - x_1) = \gamma \cdot L$$

$$L' = L'/\gamma$$

Lorentz contraction

- In moving frame an object has always the same length (it is invariant, our principle!)
- From stationary frame moving objects appear contracted by a factor γ (Lorentz contraction)
- Why do we care?
- Turn the argument around: assume length of a proton bunch appears always at 0.1 m in laboratory frame (e.g. in the RF bucket), what is the length in its own (moving) frame?
 - ightharpoonup At 5 GeV ($\gamma \approx 5.3$) \rightarrow L' = 0.53 m
 - ightharpoonup At 450 GeV ($\gamma \approx$ 480) ightharpoonup L' = 48.0 m

Lorentz contraction - schematic

Spaceship seen from earth

→ Appears shorter at higher velocities

Lorentz contraction - schematic

Earth seen from spaceship

- → Both observers see the other object contracted
- → No inertial frame is privileged

- Time dilation -

Time dilation - the dilemma

Reflection of light between 2 mirrors seen in rocket and earth

Does longer travel for the same time mean that **c** is different?

Time dilation - derivation

A clock measures time differences:

$$\Delta t = t_2 - t_1$$
 in frame F
 $\Delta t' = t'_2 - t'_1$ in frame F'

For Lorentz transformation of time in moving frame to rest frame we have:

$$t'_1 = \gamma(t_1 - \frac{v \cdot x}{c^2})$$
 and $t'_2 = \gamma(t_2 - \frac{v \cdot x}{c^2})$

$$\Delta t' = t'_2 - t'_1 = \gamma \cdot (t_2 - t_1) = \gamma \cdot \Delta t$$

$$\Delta t' = \gamma \Delta t$$

Seen from the rest frame: time in moving frame goes slower ..

Moving clocks go slower

Moving clocks go slower

Ten minutes later ...

Travel by airplane:

On a flight from Montreal to Geneva, the time is slower by 25 - 30 ns (considering only special relativity)!

Remember the pendulum?

From the outside observer:

Galilei: frequency f the same in all inertial systems

Einstein: frequency f' smaller by factor γ (seen from rest system)

Time dilation

In moving frame time appears to run slower

Why do we care?

- \rightarrow μ have lifetime of 2 μ s (\equiv 600 m)
- For $\gamma \geq 150$, they survive 100 km to reach earth from upper atmosphere
- They can survive more than 2 μ s in a μ -collider
- > Generation of neutrinos from the SPS beams

Proper Length and Proper Time

Time and distances are relative:

- $\rightarrow \tau$ is a fundamental time: proper time τ
- The time measured by an observer in its own frame
- > From frames moving relative to it, time appears longer

- \triangleright \mathcal{L} is a fundamental length: proper length \mathcal{L}
- The length measured by an observer in its own frame
- From other frames it appears shorter

The importance of "proper time"

 $\Delta \tau$ is the time interval measured <u>inside</u> the moving frame

Back to μ -decay

- $\rightarrow \mu$ lifetime is $\approx 2 \ \mu s$
- \rightarrow μ decay in \approx 2 μ s in their frame, i.e. using the "proper time"
- \rightarrow μ decay in $\approx \gamma \cdot$ 2 μ s in the laboratory frame, i.e. earth
- \rightarrow μ appear to exist longer than 2 μ s in the laboratory frame, i.e. earth

The meaning of "proper time"

- How to make neutrinos (e.g. CNGS) ??
 - Let pions decay: $\pi \rightarrow \mu + \nu_{\mu}$
 - π -mesons have lifetime of 2.6 \cdot 10⁻⁸ s (i.e. 7.8 m)
 - For 40 GeV π -mesons: $\gamma = 288$
 - In laboratory frame: decay length is 2.25 km (required length of decay tunnel)

First summary

- Physics laws the same in different moving frames ...
- \blacksquare Speed of light c is maximum possible speed and constant
- Constant speed of light requires Lorentz transformation
- Moving objects appear shorter
- Moving clocks seem to go slower
- No absolute space or time: where it happens and when it happens is not independent
- Next: how to calculate something and applications ...

Introducing four-vectors

Since space and time are not independent, must reformulate physics taking both into account:

Separated time and space (Euclidean space):

$$t, \quad \vec{a} = (x, y, z)$$

Replace by vector including the time (Minkowski space):

$$A = (ct, x, y, z)$$

(time t multiplied by c to get the same units) This is a position four-vector, you also find a^{μ} instead of A

Definitions of four-vectors

Not a unique definition in literature, one can find:

$$= (ct, x, y, z)$$

$$= (ct, -x, -y, -z)$$

$$= (x, y, z, ct)$$

$$= (-x, -y, -z, ct)$$

$$= (ict, x, y, z)$$

$$= (-ict, x, y, z)$$

$$= (...)$$

Always define them when you use them!

With four-vectors, Lorentz transformation can be written in a compact form with matrix multiplication:

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

Nota bene: this matrix is also used for Lorentz transformation of fields, Lorentz force, derivatives, etc. ...

Scalar products revisited

Define a scalar product for (usual) vectors like: $\vec{a} \cdot \vec{b}$,

$$\vec{a} = (x_a, y_a, z_a)$$
 $\vec{b} = (x_b, y_b, z_b)$

Standard definition (Euclidean geometry):

$$\vec{a} \cdot \vec{b} = (x_a, y_a, z_a) \cdot (x_b, y_b, z_b) = (x_a \cdot x_b + y_a \cdot y_b + z_a \cdot z_b)$$

This product of two vectors is a <u>scalar</u> (number) not a vector, and it has a meaning:

$$\vec{a} \cdot \vec{a} = (x_a, y_a, z_a) \cdot (x_a, y_a, z_a) = (x_a \cdot x_a + y_a \cdot y_a + z_a \cdot z_a) = d^2$$

d is the length of the vector \vec{a} !

More: distance between events in space

Distance between two points (here in 2D): d

$$\frac{d^2}{d^2} = (\vec{a}_2 - \vec{a}_1)^2$$

$$\frac{d^2}{d^2} = (x_2 - x_1, y_2 - y_1)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Distance d is always positive!

Scalar products for four-vectors

Define a scalar product for four-vectors like: $A \odot B$

$$A = (ct_a, x_a, y_a, z_a) \quad B = (ct_b, x_b, y_b, z_b)$$

$$A \odot B = ct_a \cdot ct_b - \vec{a} \cdot \vec{b} = (ct_a \cdot ct_b - x_a \cdot x_b - y_a \cdot y_b - z_a \cdot z_b)$$

Note the - sign !!

Does it have a meaning?

Distance between events in space-time

We can describe a distance in the space-time between two points A_1 and A_2 :

$$\Delta X = A_2 - A_1 = (ct_2 - ct_1, x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Scalar product of the difference is the distance² = D^2 :

$$D^2 = \Delta A^2 = c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$$

 D^2 can be positive (time-like) or negative (space-like)

Another example: $X = (ct, \vec{x}), X' = (ct', \vec{x'})$

$$X \odot X = c^2 t^2 - x^2 - y^2 - z^2$$

and

$$X' \odot X' = c^2 t'^2 - x'^2 - y'^2 - z'^2$$

we have:

$$X \odot X = X' \odot X'$$

because this is our condition for constant speed of light c!

This product is an invariant

Invariant Quantities have the same value in all inertial frames (like c)

Why bother about four-vectors?

We have seen the importance of invariants:

- Ensure equivalence of physics laws in different frames
- The solution: write the laws of physics in terms of four vectors
- Without proof: any four-vector (scalar) product $F \odot F$ has the same value in all coordinate frames moving at constant velocities with respect to each other:

$$F \odot F = F' \odot F'$$

Scalar products of four-vectors are invariant!

We have important four-vectors:

Coordinates: $X = (ct, x, y, z) = (ct, \vec{x})$

Velocities: $V = \frac{dX}{dt} \cdot \frac{dt}{d\tau} = \gamma(c, \vec{x}) = \gamma(c, \vec{v})$

Momenta: $P = mV = m\gamma(c, \vec{v}) = \gamma(mc, \vec{p})$

Force: $F = \frac{dP}{dt} = \gamma \frac{d}{dt} (mc, \vec{p})$

Any scalar product of two four-vectors:

 $X \odot X$, $V \odot V$, $P \odot P$, $P \odot X$, $V \odot F$,... are ALL invariants

A special invariant

From the velocity four-vector V:

$$V = \gamma(c, \vec{v})$$

we get the scalar product:

$$V \odot V = \gamma^2 (c^2 - \vec{v}^2) = c^2 !!$$

 \rightarrow c is an invariant, has the same value in all inertial frames

$$V \odot V = V' \odot V'$$

The invariant of the velocity four-vector V is the speed of light c!

Transformation of mass

We want the invariance of the formula:

$$\vec{F} = m \cdot \vec{a} = m \cdot \frac{d\vec{v}}{dt}$$

Without proof (see e.q. Feynman) momentum conservation in all directions requires that the mass m must also be transformed:

$$m = m'/\sqrt{1 - \left(\frac{v}{c}\right)^2} = \gamma \cdot m'$$

In a frame with v = 0 we call the mass the <u>rest mass</u> m_0 If the frame moves with a velocity v relative to an observer, she will find the mass increased by the factor γ

Dynamics with four-vectors

Using the expression for the mass m:

$$m = m_0 \sqrt{1 - \left(\frac{v}{c}\right)^2} = \gamma \cdot m_0$$

and expand it for small velocities:

$$m \cong m_0 + \frac{1}{2}m_0v^2\left(\frac{1}{c^2}\right)$$

and multiplied by c^2 :

$$mc^2 \cong m_0c^2 + \frac{1}{2}m_0v^2$$

The second term is the kinetic energy

Relativistic energy

Interpretation:

$$E = mc^2 = m_0c^2 + T$$

- \rightarrow Total energy E is $E = mc^2$
- > Sum of kinetic energy plus rest energy
- Energy of particle at rest is $E_0 = m_0 c^2$

$$E = m \cdot c^2 = \gamma m_0 \cdot c^2$$

using the definition of relativistic mass again: $m = \gamma m_0$

Interpretation of relativistic energy

- For any object, $m \cdot c^2$ is the total energy
 - Object can be composite, like proton ...
 - \rightarrow m is the mass (energy) of the object "in motion"
 - $> m_0$ is the mass (energy) of the object "at rest"
- The mass m is not the same in all inertial systems, the rest mass m_0 is ! (To prove it, try $P \odot P'$)
- \blacksquare For discussion: what is the mass m of a photon?

Practical units

Standard units are not very convenient, easier to use:

$$[\mathbf{E}] = \mathbf{eV}$$
 $[\mathbf{p}] = \mathbf{eV}/c$ $[\mathbf{m}] = \mathbf{eV}/c^2$

Mass of a proton: $m_p = 1.672 \cdot 10^{-27} \text{ Kg}$

Energy(at rest): $m_p c^2 = 938 \text{ MeV} = 0.15 \text{ nJ}$

- Other example, 1 gram of material equivalent to:
 - 250000 times the full LHC beam $(9 \cdot 10^{13} \text{ J})$
 - 21.5 kilotons of TNT

Relativistic mass

The mass of a fast moving particle is increasing like:

$$m = \gamma m_0 = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

- Why do we care?
 - Particles cannot go faster than c!
 - What happens when we accelerate?

Relativistic mass

When we accelerate:

- \blacksquare For $\mathbf{v} \ll \mathbf{c}$:
 - E, m, p, v increase ...
- \blacksquare For $\mathbf{v} \approx \mathbf{c}$:
 - E, m, p increase, but v does not!

Relativistic energy

We remember that:

$$T = m_0(\gamma - 1)c^2$$

therefore:

$$\gamma = 1 + \frac{T}{m_0 c^2}$$

we get for the speed v, i.e. β :

$$\beta = \sqrt{1 - \frac{1}{\gamma^2}}$$

Velocity versus energy (protons)

Why do we care??

E (GeV)	v (km/s)	γ	β	\mathbf{T}
				(LHC)
450	299791.82	479.74	0.99999787	88.92465 μs
7000	299792.455	7462.7	0.99999999	88.92446 μs

- > For identical circumference very small change in revolution time
- > If path for faster particle slightly longer, the faster particle arrives later!

Four vectors

- Use of four-vectors simplify calculations significantly
- Follow the rules and look for invariants
- In particular kinematic relationships, e.g.
 - Particle decay (find mass of parent particle)
 - Particle collisions -

Particle collisions

What is the available collision energy?

Particle collisions - collider

Assume identical particles and beam energies, colliding head-on

The four momentum vectors are:

$$P1 = (E, \vec{p})$$
 $P2 = (E, -\vec{p})$

The four momentum vector in centre of mass system is:

$$P^* = P1 + P2 = (E + E, \vec{p} - \vec{p}) = (2E, \vec{0})$$

Particle collisions - collider

The four momentum vector in centre of mass system is:

$$P^* = P1 + P2 = (E + E, \vec{p} - \vec{p}) = (2E, \vec{0})$$

The square of the total available energy s in the centre of mass system is the momentum invariant:

$$s = P^* \odot P^* = 4E^2$$

$$E_{cm} = \sqrt{P^* \odot P^*} = 2E$$

i.e. in a (symmetric) collider the total energy is twice the beam energy

Particle collisions - fixed target

The four momentum vectors are:

$$P1 = (E, \vec{p})$$
 $P2 = (m_0, \vec{0})$

The four momentum vector in centre of mass system is:

$$P^* = P1 + P2 = (E + m_0, \vec{p})$$

Particle collisions - fixed target

With the above it follows:

$$P^* \odot P^* = E^2 + 2m_0E + m_0^2 - \vec{p}^2$$

since $E^2 - \vec{p}^2 = m_0^2$ we get:

$$s = 2m_0E + m_0^2 + m_0^2$$

if E much larger than m_0 we find:

$$E_{cm} = \sqrt{s} = \sqrt{2m_0E}$$

Particle collisions - fixed target

Homework: try for $E1 \neq E2$ and $m1 \neq m2$

Examples:

collision	beam energy	\sqrt{s} (collider)	\sqrt{s} (fixed target)
pp	$315~({ m GeV})$	$630~({ m GeV})$	$24.3~({ m GeV})$
pp	$7000~({ m GeV})$	$14000~({ m GeV})$	$114.6~({ m GeV})$
$\mathbf{e}{+}\mathbf{e}{-}$	$100~({ m GeV})$	$200~({ m GeV})$	$0.320~({ m GeV})$

Kinematic invariant

We need to make cross sections (and therefore luminosity) invariant!

This is done by a calibration factor which is (without derivation):

$$K = \sqrt{(\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2/c^2}$$

Here $\vec{v_1}$ and $\vec{v_2}$ are the velocities of the two (relativistic) beams.

For a (symmetric) collider, e.g. LHC, we have:

$$\vec{v_1} = -\vec{v_2}, \quad \vec{v_1} \times \vec{v_2} = 0 \quad \text{head - on!}$$

$$\longrightarrow$$
 $K = 2 \cdot c!$

For completeness ...

Squared centre of mass energy:

$$s = (P1 + P2)^2 = (P3 + P4)^2$$

Squared momentum transfer in particle scattering (small t - small angle, see again lecture on Luminosity):

$$t = (P1 - P3)^2 = (P2 - P4)^2$$

Kinematic relations

We have already seen a few, e.g.:

$$T = E - E_0 = (\gamma - 1)E_0$$

$$E = \gamma \cdot E_0$$

$$E_0 = \sqrt{E^2 - c^2 p^2}$$

etc. ...

Very useful for everyday calculations →

Kinematic relations

	ср	${f T}$	${f E}$	γ
$\beta =$	$\frac{1}{\sqrt{(\frac{E_0}{cp})^2 + 1}}$	$\sqrt{1 - \frac{1}{(1 + \frac{T}{E_0})^2}}$	$\sqrt{1-(\frac{E_0}{E})^2}$	$\sqrt{1-\gamma^{-2}}$
cp =	cp	$\sqrt{T(2E_0+T)}$	$\sqrt{E^2 - E_0^2}$	$E_0\sqrt{\gamma^2-1}$
$E_0 =$	$\frac{cp}{\sqrt{\gamma^2 - 1}}$	$T/(\gamma-1)$	$\sqrt{E^2 - c^2 p^2}$	E/γ
T =	$cp\sqrt{\frac{\gamma-1}{\gamma+1}}$	${f T}$	$E-E_0$	$E_0(\gamma-1)$
$\gamma =$	$cp/E_0\beta$	$1+T/E_0$	E/E_0	γ

Kinematic relations

Example: CERN Booster

At injection: T = 50 MeV

- \rightarrow E = 0.988 GeV, p = 0.311 GeV/c
- $\gamma = 1.0533, \beta = 0.314$

At extraction: T = 1.4 GeV

- ightharpoonup E = 2.338 GeV, p = 2.141 GeV/c
- $\gamma = 2.4925, \beta = 0.916$

Kinematic relations - logarithmic derivatives

	$\frac{d\beta}{\beta}$	$\frac{dp}{p}$	$\frac{dT}{T}$	$\frac{dE}{E} = \frac{d\gamma}{\gamma}$
$\frac{d\beta}{\beta} =$	$\frac{d\beta}{\beta}$	$\frac{1}{\gamma^2} \frac{dp}{p}$	$\frac{1}{\gamma(\gamma+1)} \frac{dT}{T}$	$\frac{1}{(\beta\gamma)^2} \frac{d\gamma}{\gamma}$
$\frac{dp}{p} =$	$\gamma^2 \frac{d\beta}{\beta}$	$\frac{dp}{p}$	$[\gamma/(\gamma+1)]\frac{dT}{T}$	$\frac{1}{\beta^2} \frac{d\gamma}{\gamma}$
$\frac{dT}{T} =$	$\gamma(\gamma+1)\frac{d\beta}{\beta}$	$(1+\frac{1}{\gamma})\frac{dp}{p}$	$\frac{dT}{T}$	$\frac{\gamma}{(\gamma-1)} \frac{d\gamma}{\gamma}$
$\frac{dE}{E} =$	$(\beta\gamma)^2 \frac{d\beta}{\beta}$	$\beta^2 \frac{dp}{p}$	$(1-\frac{1}{\gamma})\frac{dT}{T}$	$rac{d\gamma}{\gamma}$
$\frac{d\gamma}{\gamma} =$	$(\gamma^2 - 1) \frac{d\beta}{\beta}$	$rac{dp}{p} - rac{deta}{eta}$	$(1-\frac{1}{\gamma})\frac{dT}{T}$	$rac{d\gamma}{\gamma}$

Example LHC (7 TeV): $\frac{\Delta p}{p} \approx 10^{-4} \longrightarrow \frac{\Delta \beta}{\beta} = \frac{\Delta v}{v} \approx 2 \cdot 10^{-12}$

Summary

- Special Relativity is very simple, derived from basic principles
- Relativistic effects vital in accelerators:
 - > Lorentz contraction and Time dilation
 - > Invariants!
 - > Relativistic mass effects
 - Modification of electromagnetic field
- Find back in later lectures ...

- BACKUP SLIDES -

Galilei transformation - schematic

Rest frame and Galilei transformation ...

Forces and fields

Motion of charged particles in electromagnetic fields \vec{E}, \vec{B} determined by Lorentz force

$$\vec{f} = \frac{d}{dt}(m_0 \gamma \vec{v}) = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

or as four-vector:

$$F = \frac{dP}{d\tau} = \gamma \left(\frac{\vec{v} \cdot \vec{f}}{c}, \vec{f} \right) = \gamma \left(\frac{1}{c} \frac{dE}{dt}, \frac{d\vec{p}}{dt} \right)$$

Field tensor

Electromagnetic field described by field-tensor $F^{\mu\nu}$:

$$F^{\mu\nu} = \begin{pmatrix} 0 & \frac{-E_x}{c} & \frac{-E_y}{c} & \frac{-E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix}$$

derived from four-vector $A_{\mu} = (\Phi, \vec{A})$ like:

$$F^{\mu\nu} = \delta^{\mu}A^{\nu} - \delta^{\nu}A^{\mu}$$

Lorentz transformation of fields

$$\vec{E}'_{\perp} = \gamma(\vec{E}_{\perp} + \vec{v} \times \vec{B})$$

$$\vec{B}'_{\perp} = \gamma\left(\vec{B}_{\perp} - \frac{\vec{v} \times \vec{E}}{c^2}\right)$$

$$\vec{E}'_{\parallel} = \vec{E}_{\parallel}$$

$$\vec{B}'_{\parallel} = \vec{B}_{\parallel}$$

Field perpendicular to movement transform

Lorentz transformation of fields

- > In rest frame purely electrostatic forces
- \triangleright In moving frame \vec{E} transformed and \vec{B} appears

Addition of velocities (Galilei) (an everyday example ...)

Jetstream up to 350 - 400 km/hour!
Can save one 1 hour or more on an eastbound flight!