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Why Special Relativity ?
Bl \ost beams at CERN are relativistic

Bl Strong implications for beam dynamics:

> Transverse dynamics (e.g. momentum compaction,
radiation, ...)

» Longitudinal dynamics (e.g. transition, ...)
> Collective effects (e.g. space charge, beam-beam, ...)
> Luminosity in colliders

> Particle lifetime and decay (e.g. u, m, Zy, Higgs, ...)



Small history

1678 (Romer, Huygens): Speed of light c is finite
(c =~ 3 - 10° m/s)

1630-1687 (Galilei,Newton): Principles of Relativity

1863 (Maxwell): Electromagnetic theory, light are waves
moving through static ether with speed c

1887 (Michelson, Morley): Speed ¢ independent of direction,
=% no ether

1892 (Lorentz, FitzGerald, Poincaré): Lorentz

transformations, Lorentz contraction
1897 (Larmor): Time dilation
1905 (Einstein): Principles of Special Relativity

1907 (Einstein, Minkowski): Concepts of Spacetime



OUTLINE

Principle of Relativity (Newton, Galilei)
- Motivation and Idea

- Formalism, examples

Principle of Special Relativity (Einstein)
- Why ?
- Formalism and consequences

- Four-vectors and applications (accelerators)

Mathematical derivations and proofs are mostly avoided ...
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Setting the scene ..

Where we describe physics and physics laws:
- In space coordinates: ¥ = (z,y, z)

- In time: ¢

A ”Frame”:

- Where we observe physical phenomena and
properties as function of their position ¥ and moment
in time t.

- In different frames r and ¢t are usually different.

An "Event”:

- Something happening at r at time ¢ is an ”event”,

given by four numbers (x,y,z2), t



Setting the scene ..

Assuming two frames /' and I":

- Event described in F using: ¥ = (z,y,2) and ¢

- Event described in F’ using: 2/ = («/,v/,7') and t/



Principles of Relativity (Newton)

We always observe and describe physics in a certain Frame
Laws of physics should be invariant

i.e. the same when we change the frame, for example:
> Frame displaced in Space
> Frame displaced in Time

> Frame moving at constant speed, an Inertial System

=» More formal: ”Physical laws have the same form in all

inertial systems, they are invariant”




Principles of Relativity (Galilei, Newton)

Assume a frame at rest (/') and another frame (F’) moving

in z-direction with constant velocity v = (v,,0,0)
Z z VX_)
y PA

Example: we would like to have
Force = m-a and  Force’ = m-d

(Mass m is the same in all frames)



Example: Pendulum

Motion described by coordinate O

Frequency of a pendulum is f



Example: Pendulum

Motion described by coordinate ©

Frequency of a pendulum the same in all inertial
systems: f = {’



How do we describe invariant laws ?
We have described an experiment in rest frame F
How can we describe it seen from a moving frame F’ 7

» Need to transform coordinates (z,y, z) and time ¢ to
describe (translate) results of measurements and

observations to the moving system (z’,3/,2') and t'.

> For Newton’s principle of relativity need (alilei
transformation for:

(x,y,2) and t =» (2',4y,2") and t'.

Then laws should look the same, have the same form



Galilel transformation

= x—u,t
r_

y =1
2= z




Consequences of (zalilei transformation

Velocity and transformation in z-coordinates.
Only for simplicity, can always rotate the
coordinate system.

For Galileil transformation:

Space and time are independent quantities

Space coordinates are changed, time is not
changed !



Illustration of Galileil transformation:

- In car frame F’ moving with speed v,:

Ball starts with vertical velocity v, = v
Ball goes up and down
- In rest frame for observer F': ball describes a curve

(parabola ?)



‘Illustration of Galileil transformation: I



‘Illustration of Galileil transformation: I

From moving frame:

To get equation of motion in rest frame z(¢) and y(?):
Galilei transform: y(t) = y'(t'), t = t', z(t) =2" 4+ v, -t =
To get y as function of £ we can re-write:

T

- t/:t:—
Vg

and get for the trajectory in the rest frame:

h 1 22

y(x)za'flj 992

This is a parabola, observed from the rest frame.



Consequences of (zalilei transformation

Velocities can be added

- From Galilei transformation, take derivative:

v =x—uv,t
¥=1x—v, => UV =v-—1,

- A car moving with speed v’ in a frame moving
with speed v, we have in rest frame v =9 + v,



Problems with Galilei transformation

Maxwell’s equations are different when (alilei

transformations are applied (because they predict the
speed of light)

Could exceed it when velocities are added:
08-¢c+05-c=13-c ?
c = 299792458.000 m/s

From experiments: Speed of light is upper limit and the

same in all frames and all directions

Enter Einstein: principles of special relativity



Principle(s) of Special Relativity (Einstein)

All physical laws (e.g. Maxwell’s) in inertial frames
must have equivalent forms, in particular:

Speed of light ¢ must be the same in all frames

Cannot distinguish between inertial frames by

measuring speed of light:
> Cannot determine absolute speed of an inertial frame
> No absolute space, no absolute time

Need Transformations (not Galileaen) which make the
physics laws (Maxwell !) look the same !



Coordinates must be transformed differently
Transformation must keep speed of light constant
Constant speed of light requires:
2?2 4+ g2 4 22— 2= 0 = 2?4+ 24+ 2% - =0
(front of a light wave)

To fulfill this condition: Time must be changed by

transformation as well as space coordinates
Transform (x,y,z2), t — (2/,y',2), t

=p Defines the Lorentz transformation



Lorentz transformation

v = A =~ (z—ut
5 = ( )

Yy =y

2= z
t— vz

t = Z_ — . (i
(1_2_5) Y ( 02)

Transformation for constant velocity v along

X-axI1s

Time 1s now also transformed



Definitions: relativistic factors

U

5?“:
C
1 1

o \/(1_;;_;) V(1 —52)

B, relativistic speed: 5, = [0, 1]

v relativistic factor: v = [1, o0]

(unfortunately, you will also see other § and v ... !)



Consequences of Einstein’s interpretation
Space and time and NOT independent quantities
Time has no absolute meaning

Relativistic phenomena:
> Velocities cannot exceed speed of light
» (Non-) Simultaneity of events in independent frames

> Lorentz contraction

> Time dilation

Formalism with four-vectors introduced (see later)



Addition of velocities
Galilei: v = v + v9
With Lorentz transform we have:

U1 T2
I CA L

C2

for vy,v9,v3,... = 0.5¢c we get:

0.5¢c + 0.5¢ = 0.8c

0.5¢c + 0.5¢ 4+ 0.5¢ = 0.93c

0.5¢ + 0.5¢ + 0.5¢ + 0.5¢c = 0.976¢

0.5¢c + 0.5¢ 4+ 0.5¢ 4+ 0.5¢c + 0.5¢ = 0.992c

=P Speed of light can never be exceeded by adding

velocities !

Special case: 0.5¢c + 1.0c = 1.0c



-  Simultaneity -



Simultaneity between moving frames
(the least intuitive concept)

> Assume two events in frame F' at positions xr; and x;

happen simultaneously at times t; = {5
t LT t A )
t] = . and t, = -

V-2 Ja-%)

r1 # xo in F implies that ¢| # t, in frame F’ !!

> Two events simultaneous at positions x; and z2 in F' are

not simultaneous in F’



Simultaneity between moving frames

1 2

U = cC A U = cC
S N e

> System with a light source (x) and detectors (1, 2) and
one observer (A) in this frame, another (A’) outside

> System at rest — observation the same in A and A’



Simultaneity between moving frames

1 2
v =cC A v =cC
“ x w‘
1 2

Speed of light is the same in both frames, (no adding of speeds):
For A: both flashes arrive simultaneously in 1,2
For A’: both flashes arrive simultaneously in 1,2

What if the frame is moving relative to A’ 7



Simultaneity between moving frames

1 2
U = cC A U = cC
S x -

Speed of light is the same in both frames, (no adding of speeds):
For A: both flashes arrive simultaneously in 1,2
For A’: flash arrives first in 1, later in 2
A simultaneous event in F is not simultaneous in F’

Why do we care 77



Why care about simultaneity ?
Simultaneity is not frame independent
This is a key in special relativity

Most paradoxes are explained by that (although not the
twin paradox) !

Different observers see a different reality, in particular
the sequence of events can change !

» For t; < t; we may find (not always !) a frame
where t; > ty (concept of before and after depends
on the observer)



Lorentz contraction



Consequences: length measurement

How to measure the length of an object ?

Have to measure position of both ends simultaneously !

Length of a rod in F’ is L' = z, — z}, measured
simultaneously at a fixed time ¢’ in frame F’ , what is the
length L seen in F' 77



Consequences: length measurement

We have to measure simultaneously (!) the ends of the rod
at a fixed time ¢ in frame /', i.e.: L = 2o — x; =>

vy =7v-(x1 —vt) and x5 =7 (13— Vi)



Lorentz contraction

In moving frame an object has always the same length

(it is invariant, our principle !)

From stationary frame moving objects appear
contracted by a factor v (Lorentz contraction)

Why do we care ?

Turn the argument around: assume length of a proton
bunch appears always at 0.1 m in laboratory frame (e.g.
in the RF bucket), what is the length in its own

(moving) frame ?
» At 5 GeV (y~5.3) — L’=0.53m
» At 450 GeV (y~ 480) — L’ =48.0m



Lorentz contraction - schematic

Spaceship seen from earth

=P Appears shorter at higher velocities



Lorentz contraction - schematic

Earth seen from spaceship

= Both observers see the other object contracted

= No inertial frame is privileged



- Time dilation -



Time dilation - the dilemma

Reflection of light between 2 mirrors seen in rocket and earth

Earth observer sees light
travel farther than does
the astronaut

Does longer travel for the same time mean that c is different 7



Time dilation - derivation

A clock measures time differences:
At = to — t1 in frame F

At = t;, — t] in frame F’

For Lorentz transformation of time in moving frame to rest

frame we have:

VT V-
t1 =7t ——-) and ty=~(t2 -

C2
At =ty —t1 =~ (ta —t1) =7 - At

=> At = ~yAt

Seen from the rest frame: time in moving frame goes slower ..



Moving clocks go slower



Moving clocks go slower




Ten minutes later ...

Travel by airplane:

On a flight from Montreal to Geneva, the time is slower by

25 - 30 ns (considering only special relativity) !



Remember the pendulum ?

-
I
[
Q

= Tl L

From the outside observer:
Galilei: frequency f the same in all inertial systems

Einstein: frequency f' smaller by factor v (seen from rest

system)



Time dilation

In moving frame time appears to run slower

Why do we care ?
» 1 have lifetime of 2 us (= 600 m )

> For v > 150, they survive 100 km to reach earth
from upper atmosphere

> They can survive more than 2 us in a u-collider

> Generation of neutrinos from the SPS beams



Proper Length and Proper Time

Time and distances are relative :
> 7 is a fundamental time: proper time 7
> The time measured by an observer in its own frame

> From frames moving relative to it, time appears longer

> L is a fundamental length: proper length £
> The length measured by an observer in its own frame

> From other frames it appears shorter



The importance of ”proper time”

AT is the time interval measured inside the moving frame

Back to p-decay
> 1 lifetime is ~ 2 us

> 1t decay in ~ 2 us in their frame, i.e. using the ”proper

time”
> 1t decay in ~ - 2 us in the laboratory frame, i.e. earth

> 1+ appear to exist longer than 2 us in the laboratory

frame, i.e. earth



The meaning of ”proper time”

How to make neutrinos (e.g. CNGS) 77
- Let pions decay: = — p + v,
- m-mesons have lifetime of 2.6 - 1078 s ( i.e. 7.8 m)

For 40 GeV m-mesons: v = 288

In laboratory frame: decay length is 2.25 km

(required length of decay tunnel)



First summary
Physics laws the same in different moving frames ...
Speed of light ¢ is maximum possible speed and constant
Constant speed of light requires Lorentz transformation
Moving objects appear shorter
Moving clocks seem to go slower

No absolute space or time: where it happens and when

it happens is not independent

= Next: how to calculate something and applications ...



Introducing four-vectors

Since space and time are not independent, must
reformulate physics taking both into account:

Separated time and space (Euclidean space):
t, a = (z,y,2)
Replace by vector including the time (Minkowski space):

A = (ct,x,y,2)

(time ¢ multiplied by ¢ to get the same units)
This is a position four-vector, you also find a” instead of A



Definitions of four-vectors

Not a unique definition in literature, one can find:

(ct,x,y,2)

(ct, —x, —y, —2)

(w,y, ct)

= (—x,—y,—2z,ct)

(ict,x,y, 2)
(—ict,z,y, 2)
(-

)

Always define them when you use them !



With four-vectors, Lorentz transformation can be written

in a compact form with matrix multiplication:

( ct’ \ ( v =B 0 0 \ ( ct \
x’ B —B v 0 0 x
g | 0 1 0 ’

0

\ ) Lo 0 0] \e)

Nota bene: this matrix is also used for Lorentz

transformation of fields, Lorentz force, derivatives, etc. ...



Scalar products revisited

Define a scalar product for (usual) vectors like: @ - b,

a = (:Eaayaaza) g — (xbaybazb)

Standard definition (Euclidean geometry):

Sy

a - = (xaayaaza) ° (wb,ybazb):(%w’ﬂb + Yo " Yo + Za°2b)

This product of two vectors is a scalar (number) not a
vector, and it has a meaning:

a-a = (xaayaaza) . (xaayaaza) — (aja‘xa + Yo Ya T Za'za) — d2

d is the length of the vector a !



More: distance between events in space

a2 = (er y2)

a]_:(xl! yl) /,/////

Distance between two points (here in 2D): d
d* = (dy — d1)?
* = (x2—x1, Y2 —11)? = (v2 —21)° + (y2 —y1)°

Distance d is always positive !



Scalar products for four-vectors

Define a scalar product for four-vectors like: A ® B

A = (Ctavxaayaaza> B = (Ctbaxbaybazb)

A@B:cta-ctb—ﬁ-l;:(cta-ctb — Ta Ty — Ya Y — Za - 2b)

Note the — sign !!

Does it have a meaning 7



Distance between events in space-time

We can describe a distance in the space-time between two
points A; and As:

AX = Ay — Ay = (cte — cty, x3 — X1, Y2 — Y1, 22 — 21)

Scalar product of the difference is the distance®? = D?:

D? = AA? = A2 — Az® — Ay? — AZ?

D? can be positive (time-like) or negative (space-like)



Another example: X = (ct,7), X = (Ctlaa;;)
XoX =t — 22 — oy — 2°

and
XIQX/ :C2t/2 . :U/2 . y/2 . Z/2

we have:
XoX = X' oX

because this is our condition for constant speed of light c !
This product is an invariant

Invariant Quantities have the same value in all inertial

frames (like c)



Why bother about four-vectors 7
We have seen the importance of invariants:
= Ensure equivalence of physics laws in different frames

= The solution: write the laws of physics in terms of

four vectors

= Without proof: any four-vector (scalar) product F © F
has the same value in all coordinate frames moving at

constant velocities with respect to each other:

F oF = F o F

Scalar products of four-vectors are invariant !



We have important four-vectors:

Coordinates : X = (ct,x,y, 2) = (ct, ¥)
Velocities : V=242 = ~(c&)=7(c,7)
Momenta : P =mV = m~y(c,v) = vy(me, p)
Force : F =% =~y (mc,p)

Any scalar product of two four-vectors:
XoOX, VoV, PoOP, PO X,V (o®F,.. are ALL invariants



A special invariant

From the velocity four-vector V:

we get the scalar product:
VoV =~*c-5*)=c*

= ¢ is an invariant, has the same value in all inertial frames

VoVv = V oV

= The invariant of the velocity four-vector V is the speed
of light ¢!



Transformation of mass

We want the invariance of the formula:
du
dt

Without proof (see e.q. Feynman) momentum conservation

FF = m-a = m

in all directions requires that the mass m must also be

m = w1 (2) = e

In a frame with v = 0 we call the mass the rest mass mg

transformed:

If the frame moves with a velocity v relative to an observer,

she will find the mass increased by the factor ~



Dynamics with four-vectors

Using the expression for the mass m:

DA 2
m = my 1—(—) = v-mg
C

and expand it for small velocities:

~ 1 2 1
m:m0—|—§m0v 0_2

and multiplied by c?:

1
moc2 + imov2

The second term is the kinetic energy

~

mc2



Relativistic energy
Interpretation:
E=mc? =myc*+T
» Total energy E is E = mc’

> Sum of kinetic energy plus rest energy

» Energy of particle at rest is Ey = mgc?

E=m-c?=~vymg-c?

using the definition of relativistic mass again: m = ymg



Interpretation of relativistic energy

2 is the total energy

For any object, m - c
> Object can be composite, like proton ..
> m is the mass (energy) of the object ”in motion”
> mo is the mass (energy) of the object ”at rest”
The mass m is not the same in all inertial systems, the
rest mass mg is ! (To prove it, try P ® P’)

For discussion: what is the mass m of a photon ?



Practical units

Standard units are not very convenient, easier to use:

[E] =eV [p] =eV/c [m]=eV/c

Mass of a proton: m, = 1.672 - 107?" Kg
Energy(at rest): m,c? = 938 MeV = 0.15 nJ

Bl Other example, 1 gram of material equivalent to:
- 250000 times the full LHC beam (9 - 103 J)
- 21.5 kilotons of TNT



Relativistic mass

The mass of a fast moving particle is increasing like:

mo

m = Ymgy =

L] Why do we care ?
- Particles cannot go faster than c !

- What happens when we accelerate 7



Relativistic mass

When we accelerate:

For v < c:

- E, m, p, v increase ...

E For v = c:

- E, m, p increase, but v does not !



Relativistic energy

We remember that:

therefore:

7 = 1+ —
moC

we get for the speed v, i.e. (:



=vlc

beta

1.2

Velocity versus energy (protons)

Velocity versus energy

protons
electrons
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1
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Why do we care 77

E (GeV) | v (km/s) v B T
(LHC)
450 299791.82 | 479.74 | 0.99999787 | 88.92465 us
7000 299792.455 | 7462.7 | 0.99999999 | 88.92446 us

> For identical circumference very small change in

revolution time

> If path for faster particle slightly longer, the faster

particle arrives later !




Four vectors

Use of four-vectors simplify calculations
significantly

Follow the rules and look for invariants

In particular kinematic relationships, e.g.
- Particle decay (find mass of parent particle)

- Particle collisions =»



Particle collisions

P1

® - <

What is the available collision energy ?

P2

P2



Particle collisions - collider

Assume identical particles and beam energies, colliding

head-on

P1 P2

_ ®

The four momentum vectors are:
Pl = (E,p) P2 = (FE,—p)
The four momentum vector in centre of mass system is:

P*=Pl+P2=(E+E,p—p) = (2E,0)



Particle collisions - collider

The four momentum vector in centre of mass
system is:

—

P =P1l+P2=(E+ E,p—p) =(2F,0)

The square of the total available energy s in the
centre of mass system is the momentum invariant:

s = P*©® P* = 4F?

E. =+vVP*® P*=2F

i.e. in a (symmetric) collider the total energy is
twice the beam energy



Particle collisions - fixed target

P1 P2

- @

The four momentum vectors are:

Pl1=(E,p)  P2= (mqg,0)
The four momentum vector in centre of mass system is:

P* = Pl+ P2=(FE+ myg,D)



Particle collisions - fixed target

With the above it follows:

P*@P*:E2+2mOE+m(2)—]52

since E? — p* = m} we get:

s = 2moE +m¢ + mg

if £ much larger than m, we find:

Eem = \/gz \Y; 2mob



Particle collisions - fixed target

Homework: try for £1 # E2 and ml # m2

Examples:

collision

beam energy

Vs (collider)

Vs (fixed target)

pp
pp

et+e—

315 (GeV)
7000 (GeV)
100 (GeV)

630 (GeV)
14000 (GeV)
200 (GeV)

24.3 (GeV)
114.6 (GeV)
0.320 (GeV)




Kinematic invariant

We need to make cross sections (and therefore luminosity)
invariant !

This is done by a calibration factor which is (without
derivation):

K =/(v; —13)2 — (0] x 03)2/c2

Here v1 and v3 are the velocities of the two (relativistic)
beams.

For a (symmetric) collider, e.g. LHC, we have:

—

1 = —2, 1 X 05 = 0 head — on!



For completeness ...

P1 P3 P1

\/
2N A

P3

P2 P4

Squared centre of mass energy:
s = (P14 P2)” = (P3 + P4)°

Squared momentum transfer in particle scattering

(small t - small angle, see again lecture on Luminosity):

t = (P1 — P3)® = (P2 — P4)°



Kinematic relations

We have already seen a few, e.g.:

»T=FE—-Fy=(y—1)k

> Ey = \/E2—c2p2
» etc. ...

Very useful for everyday calculations =»



Kinematic relations

cp T E Y
= \/<f—§>2+1 Vi~ wEy Vi-(8 | Vi-o
cp = cp VTQ2Ey+T) | /E2—E2 | Egy/72 -1
Ey = 55—1 T/(y—1) VE? — c2p? E/~
T = cp\/g—;} T F—Ey | Eo(y—1)
= cp/EypB 14+ T/Eq E/Ey y




Kinematic relations

Example: CERN Booster

At injection: T = 50 MeV
- E = 0.988 GeV, p = 0.311 GeV/c
-» ~v = 1.0533, 8 = 0.314

At extraction: T = 1.4 GeV
- E = 2.338 GeV, p = 2.141 GeV/c
-> v = 2.4925, = 0.916



Kinematic relations - logarithmic derivatives

a8 dp ar dE _ &y
B p T E Y
g _ dp 1 dp 1 __dT 1 _dy
B B V2 p y(y+1) T (Bv)? v
d 2d d dT 1 d
T=| 7 T | DO+ DIT | #T
dT dg 1\dp dT v dy
T — V(7+1)7 (1+;)? T (=1 v
dE 2d 2d 1\dT d
T=1 B1)F P (1-2)F E
dy _ 2 _ 1)\48 dp _ dB _ 1\dT dy
- ("~ 1 B p B (1 7) T gl
Example LHC (7 TeV): AP o 1074 = 28 — Au o 9. 1012




Summary

Special Relativity is very simple, derived from
basic principles
Relativistic effects vital in accelerators:
» Lorentz contraction and Time dilation
» Invariants !
» Relativistic mass effects

» Modification of electromagnetic field

Find back in later lectures ...



- BACKUP SLIDES -



Galilel transformation - schematic
tA "

____________><___

X' =x-vt

./ E Frame F : =

X

> Rest frame and Galilei transformation ...



Forces and fields

Motion of charged particles in electromagnetic fields E, B
determined by Lorentz force

L d ) L .
f= 2 (moyi) =g (E+7 x B)

or as four-vector:



Field tensor

Electromagnetic field described by field-tensor F'**:

-B, B,
B, 0 — B,
B, B, 0 )

P =

NERNCNE

derived from four-vector A4, = (P, A) like:

FHY = §hAY — §¥ A



Lorentz transformation of fields

> Field perpendicular to movement transform



Lorentz transformation of fields

y=1 Y>>

» In rest frame purely electrostatic forces

» In moving frame E transformed and B appears



Addition of velocities (Galilei)

(an everyday example ...)

Great Circle Route A

Jetstream Route

Jetstream up to 350 - 400 km /hour !
Can save one 1 hour or more on an eastbound flight !



