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Why electrodynamics 7

Accelerator physics relies on electromagnetic concepts:
> Beam dynamics
> Magnets, cavities
> Beam instrumentation

> Powering

5 ..



\ Contents I

Some mathematics (intuitive, mostly illustrations)
Review of basics and Maxwell’s equations

Lorentz force

Motion of particles in electromagnetic fields
Electromagnetic waves in vacuum

Electromagnetic waves in conducting media
> Waves in RF cavities

> Waves in wave guides



‘ Small history I

1785 (Coulomb): Electrostatic field

1820 (Biot-Savart): Field from line current
1826 (Ampere): Field from line current
1831 (Faraday): Law of induction

1835 (Gauss): Flux theorem

1863 (Maxwell): Electromagnetic theory, light are
waves moving through static ether

1865 (Maxwell, Lorentz, Heaviside): Lorentz force

1905 (Einstein): Special relativity




Reading Material I

e J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..)

e L. Landau, E. Lifschitz, KlassischeF'eldtheorie, Vol2.
(Harri Deutsch, 1997)

e W. Greiner, Classical Electrodynamics, (Springer,
February, 22nd, 2009)

e J. Slater, N. Frank, FElectromagnetism, (McGraw-Hill,
1947, and Dover Books, 1970)

e R.P. Feynman, Feynman lectures on Physics, Vol2.

First some mathematics (vectors, potential, calculus ....)



Don’t worry ... I

Not strictly required for understanding
For those interested or a reminder !

I shall cover:
> Potentials and fields
» Calculation on fields (vector calculus)

> Illustrations and examples ...

(Apologies to mathematicians ...)



A bit on (scalar) fields (potentials) I

2-D potential

At each point in space (or plane): a quantity with a value
Described by a scalar ¢(x,y,z) (here in 2-D: ¢(x,y))
Example: ¢(x,y) = 0.1z -y — 0.2y

—p> We get (for z = —4, y = 2): ¢(—4,2) = —1.2



A bit on (vector-) fields ...
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Examples: I

> Temperature in a room

Scalar fields:

> Atmospheric pressure
> Density of molecules in a gas

> Elevation of earth’s surface (2D)

Vector fields:
> Speed and direction of wind ..

> Velocity and direction of moving molecules in a gas

> Slope of earth’s surface (2D)



Example: scalar field /potential ... I

Example for a scalar field ..



Example: vector field ...

Hurricane Katrina fusing only 'asc' data} [2005 Aug 28]

Jacksont¥ille
)

Housion

200 Km

Cancim

Altitude 1,860... Lat 26.7824° Lon -82.7940% Elev -25 met... 4

Example for an extreme vector field ..



Vector calculus ... I

Scalar fields and vector fields can be related:

To a scalar function ¢(z,y, z) we can apply the gradient
which then becomes a vector field F(z,y, z):

0p 0¢ 09 -
Vo = = F = (F, Fy, F
¢ (833’ ayv 87;) ( 1,42, 3)
and get a vector. It is a kind of ”slope” ! (example:

distance between isobars)

Example (2-D):

o(r,y) = 0lz-y—02y =+ V¢ = ﬁ(m,y) = (0.1y,0.1z — 0.2)



Operations on (vector-) fields ... I

We can define operations on vectors fields:

Divergence (scalar product of gradient with a vector):

div(F) = VF=Z—+

Physical significance: ”amount of density”, (see later)

Curl (vector product of gradient with a vector):

Oy 0z 0z or  Ox Oy

curl(F) = VXF~2<6F3 OF, OF O0F; OF, 8F1>

Physical significance: ”amount of rotation”, (see later)




VF >0

Divergence of fields ...
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(fluid)

(source)

(sink)



Integration of (vector-) fields ... I

Surface integrals: integrate field vectors passing (perpendicular)

e //ﬁ.d§
S

=P  ?count” number of field lines through the surface ...

through a surface S:



Curl of fields ... I

Here we have a field:

VxF = curlF = (0,0,2)
This is a vector in z-direction, perpendicular to plane ...



Integration of (vector-) fields ... I
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Line integrals: integrate field vectors along a line C:

”sum up” vectors (length) in direction of line C




Integration of (vector-) fields ... I

For computations we have important relations:

For any vector F:

Stokes’ Theorem (relates line integral to surface integral):

]{ﬁ.df: //vXﬁ-dﬁ
C S

Gauss’ Theorem (relates surface integral to volume

integral):
//ﬁdf?:///V-ﬁdV
s v



Integrating Curl ...

[ Jecurl W >0

... amount of rotation



What we shall talk about I

Maxwell’s equations relate Electric and Magnetic fields from
charge and current distributions (SI units).

E = electric field [V /m]

H magnetic field [A/ml]

D electric displacement [C/m?]

B magnetic flux density [T]

p electric charge density [C/m”]

j current density [A/m?]

o = permeability of vacuum, 4 7-1077 [H/m or N/A?]
€0 = permittivity of vacuum, 8.854 -107'? [F/m)]

speed of light, 2.99792458 -10° [m/s]

)
|



Divergence and charges ..
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VF <0 VF >0
(negative charges) (positive charges)

> Large charge = large number (or longer) field lines
> Small charge =» small number (or shorter) field lines

== Formal ”counting” —




Divergence and charges ..

Put ANY closed surface around charges (sphere, box, ...)

Add field lines coming out (as positive) and going in (as

negative)

=P If positive: total net charge enclosed positive

=P If negative: total net charge enclosed negative




Gauss’s Theorem I

(Maxwell’s first equation ...)

Csaussian

_ .\ '..f_,...:_::;':):»;111'i;1u* iffSE_’.dS_v’: %fffv VE.dV = %

.......

Flux of electric field £ through a closed region proportional to
net electric charge () enclosed in the region (Gauss’s Theorem).

Written with charge density p we get Maxwell’s first equation:

V-E=2

€0




Gauss’s Theorem I

(Maxwell’s first equation ...)

> Exercise: what are the values of the ”integrals” over the
surfaces Sy, So, S3, S4 7 (here in 2D)



Definitions I

> Magnetic field lines from North to South

> Q: which is the direction of the earth magnetic field

lines ?



‘Maxwell’s second equation ... I

[[,B dS=[[[, VB dav = 0
VB =0

Closed field lines of magnetic flux density (E) What goes out

ANY closed surface also goes in, Maxwell’s second equation:

VB =puoVH =0

== Physical significance: no Magnetic Monopoles



Maxwell’s third equation ... I

Faradays law:

Changing magnetic field introduces electric current in a coil
=% Can move magnet towards/away from coil

=» Can move coil towards/away from magnet



Maxwell’s third equation ... I

~ [ 984S = [V x EdS=§_ E-dF

¢ = ffség magnetic flux

Changing magnetic field through an area induces electric field in

coil in the area (Faraday)



Maxwell’s fourth equation ... I

From Ampere’s law, for example current density ;

Static electric current induces magnetic field

Vxéz,uof

or if you prefer:



Maxwell’s fourth equation ...

From displacement current, for example charging capacitor fd:

Parallel plate capacitor
showing alternating

E electric field
E /N

displacement / \ B magnetic field

current

hetween = »

its plates. N alternating
= » conduction

n . current
alternating U i
conduction — >
current \_/
+g charge \ / E —g charge

N

Changing electric field induce magnetic field

V x B = poja = eopro 2L




Maxwell’s fourth equation ... I

From Ampere’s law and displacement current, complete fourth

Maxwell equation:

—

VXB:,LL();

—

V x B = pojq = €oplo 2

or:

Y —

V x B = po(j + ja) = poj + eopio %



‘ Example: transformer I

Primary
winding
M tums

Secondary
winding
N tums

Primary . Mag neg;
cument , Flux. ¢ © — -
.
A 2] \ Se:con:l.ary
+ d { cument
—
Primary L +-4
voltage
1
Secordary
= voltage
B [ A5t [
N Transformer /

Core e

Transforms A.C. electric energy from one circuit into

another, using magnetic induction

> Changing primary current induces changing magnetic

flux in core
> Changing of flux induce secondary alternating Voltage
> Voltage ratio determined by number of windings



Maxwell’s fourth equation - application I

Without changing electric field, i.e. V X B = ,uof we get
Biot-Savart law. For a straight line current (uniform and

constant) we have then (that’s why curl is interesting):

1 Current

o oy
|

YE &

Induced magnetic
field

For magnetic field calculations in electromagnets



‘Maxwell’s Equations in material'

In vacuum:

BZEO'E, B):,uoﬁ

¢, is relative permittivity =~ [1 — 10°]

i, is relative permeability ~ [0(!) — 10°]




Summary: Maxwell’s Equations I

Written in Integral form



Summary: Maxwell’s Equations I

VD = 0
VB= 0
~ 0B
V X F = — 57
Tz oD
VXxXH= 7+ %

Written in Differential form



‘Some popular confusion .. I

V.F.A.Q: why this strange mixture of E,ﬁ,é,ﬁ 77

Materials respond to an applied electric E field and an applied
magnetic B field by producing their own internal charge and
current distributions, contributing to E and B. Therefore H and
D fields are used to re-factor Maxwell’s equations in terms of

the free current density ; and free charge density p:

iA=L — M
— 'U/O—) —
D = ekF + P

M and P are M agnetization and Polarisation in material



Applications of Maxwell’s Equations I

» Lorentz force, motion in EM fields
- Motion in electric fields

- Motion in magnetic fields
» EM waves (in vacuum and in material)
» Boundary conditions

» EM waves in cavities and wave guides



Lorentz force on charged particles I

Moving (¥) charged (¢) particles in electric (E) and
magnetic (B) fields experience a force f like (Lorentz force):

— —

f = ¢ (E + ¥ x B)
for the equation of motion we get (using Newton’s law and
relativistic v);
d e

—(moyd) = [ = ¢ (E + @ x B)

(More complicated for quantum objects, but not relevant here)



Motion in electric fields I

\\r P,
\r T 'q
F\ >
Y EY Y Fy q E
i 1L E 7| E
Assume no magnetic field:
Lmyty = f = ¢ F
dt 07 = = 4

Force always in direction of field E, also for particles at rest.



Motion in electric fields I

E q
Lmeyi) = f = q B
dt 07 = - q
The solution is:
B . E
i = ot =-> g = 1 t (parabola)
Y - Mo Y- Mo

Constant E-field deflects beams: TV, electrostatic separators (SPS,LEP)




Motion in electric fields I

-
|

Y

Y

d —>
o(moyd) = f = ¢ E
For constant field £ = (E,0,0) in x-direction the energy gain is:
moc’(y—1) = ¢EL

Constant E-field gives uniform acceleration over length L



Motion in magnetic fields I

electron

. L \Force
magnetic field \

Current

Assume first no electric field:

d - — - —
(moy?d) = f = ¢ U x B

Force is perpendicular to both, v and B
No forces on particles at rest !
Particles will spiral around the magnetic field lines ...



Motion in magnetic fields I

Magnetic field (B)

. — —— —

—

electron

We get a circular motion with radius p:

_ moyvL
p _ q . B

defines the Magnetic Rigidity: B.-p = == =

|
Q P

Magnetic fields deflect particles, but no acceleration (synchrotron, ..)



Motion in magnetic fields I

Practical units:
BIT)-plm] = 2%

c[m/s]

Example LHC:
B =8.33 T, p="7000 GeV/c =» p = 2804 m



‘Use of static fields (some examples, incomplete) I

Magnetic fields
> Bending magnets
» Focusing magnets (quadrupoles)

> Correction magnets (sextupoles, octupoles, orbit

correctors, ..)

Electric fields

> Electrostatic separators (beam separation in
particle-antiparticle colliders)

> Very low energy machines



‘Electromagnetic waves in vacuum I

Vacuum: only fields, no charges (p = 0), no current (j = 0) ...

) __ 9B
N\ OB
Vx(VxE) =-Vx(3)
—(V°E) = -2 (V x B)
— 2 =3
—(V?E) = —pesE
— 2 & 2 5
V’E = c%%tg — K€ %zg

2—’ 2 B 2B
VB:C%({?B ... 9°B

Equation for a plane wave with velocity in vacuum: c

V HO"€0



‘ Electromagnetic WavesI

= (wave length, 1 cycle)

|y\1A|cycle

E — E_’Oei(wt—E-f)
Electric = SO k-2
Field _ B = Bpe'Wi=Fo)
Magnetic .
Field k| = 2T7r = % (propagation vector)
A
w

= (frequency - 27)

Time

Magnetic and electric fields are transverse to direction of
propagation: E 1L B Lk



‘Spectrum of Electromagnetic waves I

- Increasing energy
Increasing wavelength e
0.0001 nm 0.01 nm 100m 1000 nm  0.01 cm 1cm Im 100 m
I | 1 1 1 1
Gamma rays Krays Ulira- Infrared Radio waves
violet

Radar TV FM AM

_//’Vi’s;heﬁghr\ -

400 nm 500 nm 600 nm 700 nm

Example: yellow light =» ~ 5.10'* Hz (i.e. ~
gamma rays =» < 3.10°!' Hz (i.e. < 12 MeV !)
LEP (SR) =»> < 2.10*° Hz (i.e. ~ 0.8 MeV !)




Boundary conditions for fields I

Need to look at the behaviour of electromagnetic fields at
boundaries between different materials (air-glass, air-water,

vacuum-metal, ...).

Important for highly conductive materials, e.g.:
> RF systems
> Wave guides

> Impedance calculations

Can be derived from Maxwell’s equations, here only the results !



‘Application and Observation'

> Some of the light is reflected

> Some of the light is transmitted and refracted



Boundary conditions for fields I

| Material 1 Material 2
€1 M € M2

%

d

What happens when an incident wave (I?Z) encounters a

boundary between two different media 7

> Part of the wave will be reflected (K,), part is transmitted
(K+)

> What happens to the electric and magnetic fields ?



Boundary conditions for fields I

Material 1 Material 2 Material 1 Material 2
€1 My € M2 €1 My €2 Mz
A Et ‘ Dt
—>En —»Dn

Assuming no surface charges:

> tangential E-field constant across boundary (E1¢ = FEa)

> normal D-field constant across boundary (D1, = Da,)




Boundary conditions for fields I

Material 1 Material 2 Material 1 Material 2
€1 My € M2 €1 My €2 Mz
A, As,
Hn B
— —— -

Assuming no surface currents:

> tangential H-field constant across boundary (Hi¢ = Hoa;)

> normal B-field constant across boundary (Bi, = Ban)




\Extreme case: i1deal conductor'

For an ideal conductor (i.e. no resistance) the tangential electric
field must vanish, otherwise a surface current becomes infinite.

Similar conditions for magnetic fields. We must have:

This implies:

> All energy of an electromagnetic wave is reflected from the
surface.

> Fields at any point in the conductor are zero.

> Constraints on possible mode patterns in waveguides and
RF cavities



‘Examplesz coaxial cables I

COPPER
WIRE

INSULATION
COPPER MESH
DQUTSIDE INSULATION

> GHz range, have a cutoff frequency



‘Examplesz coaxial cables I

> Mostly TEM modes: electric and magnetic field transverse

to direction



‘Examplesz cavities and wave guides I

Rectangular cavity and wave guide (schematic) with dimensions
axbxcand a x b:

X

b z b z

/ c

y y
> RF cavity, fields can persist and be stored (reflection !)

> Plane waves can propagate along wave guides, here in

z-direction



Examples: wave guides I

Wave
propagation




Consequences for RF cavities I

Assume a rectangular RF cavity (a, b, ¢), ideal conductor.
Boundary conditions cannot be fulfilled by wave in free space.
Without derivations, the components of the fields are:

E, = Eyo - cos(kyx) - sin(kyy) - sin(k.z) - e "

E, = Eyo - sin(kzx) - cos(kyy) - sin(k.z) - e "

E. = E.o - sin(kex) - sin(kyy) - cos(k.z) - e "

Bm = i(_E'y()kz - Ezok’y) . S’Ln(k‘xaj) . Cos(kyy) . COS(kZZ) . 6—7’,wt
w

By = é(EzOk':c - Ewgkz) . COS(]-C;I;$> . Sin(kyy) . COS(]{ZZ> . e—iwt

Bz = é(Emoky — EyOk:v) . COS(]'C;I;$> . COS(k‘yy> ) Szn(kzz) . e—iwt



Consequences for RF cavities I

This requires the condition:

2

2 2 2 w
ko +ky + k2 = =

and with all boundary conditions:

km: ) k: 9 kz: )
a Y b c

My T

The numbers m,, m,, m. are called mode numbers, important for

shape of cavity !



‘Consequences for wave guides I

Similar considerations lead to (propagating) solutions in

(rectangular) wave guides:

Em — E:L'O . COS(kmx) . Szn(kyy) . e—i(kzz—wt)
—i(kzz—wt)

Ey = Eyo - sin(kzx) - cos(kyy) - e
Ez =1- EzO : Sm(kmx) . Sin(kyy) . e_i(kzZ—Wt)

1 _q _
By = —(Eyok. — E.oky) - sin(kex) - cos(kyy) - e “(F=270
W
1 . —i(kyz—wt)
By, = —(F.oks — Exokz) - cos(kzx) - sin(kyy) e 7
W
1 —i(kyz—wt)
B, = — (Fxoky — Eyokz) - cos(kzx) - cos(kyy) - e 77

7-W



The fields in wave guides

Magnetic

field Magnetic
field
s \V—

“ , Electric
- field
-
7
~}~ Electric
TE mode field TM mode

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points

> Electric and magnetic fields through a wave guide
> Shapes are consequences of boundary conditions !

> Can be Transverse Electric (TE, no E-field in z-direction) or
Transverse Magnetic (TM, no B-field in z-direction)



Modes in wave guides'

o ————— ) PAT TERH ————=] =T\ HALF PATTEANS . VAT ———e]
1

s 5 3 | I . g [0 | y ?'l;
TH*”J L__.t —{ HIARE *'. Mexls
b 1 R R ol

il-‘]r HHE :III ﬁﬂ i l: ;Hf
A Feai SEl I beEl L - =
g P a 3

TE1 1 TE 2

E LINES
HLINES = == ="

> Modes in wave guides

> Field lines, high where density of lines is high



‘Consequences for wave guides I

We must satisfy again the the condition:
W2
k2 + ko + k2= =

C2

This leads to modes like:

The numbers m,, m, are called mode numbers for planar waves

in wave guides !



‘Consequences for wave guides I

Re-writing the condition as:

Propagation without losses requires k., to be real, i.e.:

w? My T My T

> ks +ky = (=) + (=)

c2 a

which defines a cut-off frequency w..
> Above cut-off frequency: propagation without loss

> Below cut-off frequency: attenuated wave



‘Cut off frequency (1D)I

Modes in wave guide

1 1 1 1
o 0.2 0.4 0.6 0.8 1

> Boundary condition = E = 0 at: x = 0 and x = a

> Requirement for wavelength A\, = 2%, m, integer

My ?

> m; = 1 defines cut off wavelength/frequency



Done ...

Review of basics and Maxwell’s equations
Lorentz force

Motion of particles in electromagnetic fields
Electromagnetic waves in vacuum

Electromagnetic waves in conducting media
> Waves in RF cavities

> Waves in wave guides



- BACKUP SLIDES -



Maxwell’s first equation - example I

Caussian

\ ' / surface

A charge ¢ generates a field E according to:

T

= q
E = —
Ameg 13

Surface integral through sphere S is just the charge inside the

E.d§ = 2 > _ 4
sphere 47T€0 sphere r €0

sphere:




Is that the full truth ? I

Magnetic field (B)

e — e . e,

—

electron

If we have a circulating E-field along the circle of radius R ?
=% should get acceleration !
Remember Maxwell’s third equation:

jqfﬁ.df _ _ifé.dg
C dt S
dP



Motion in magnetic fields I

This is the principle of a Betatron
> Time varying magnetic field creates circular electric field !
> Time varying magnetic field deflects the charge !

For a constant radius we need:
2

m v D
R € ¢ R

0 1 dp

‘B — “r

ot () e- R dt

=»>  B(r,t) = QWRQ//BdS

B-field on orbit must be half the average over the circle

=P Betatron condition



Other case: finite conductivity'

Assume conductor with finite conductivity (o. = p. ') , waves
will penetrate into surface. Order of the skin depth is:

2pc¢
U

i.e. depend on resistivity, permeability and frequency of the

0s =

waves (w).

We can get the surface impedance as:

7 B e

€ k
the latter follows from our definition of £ and speed of light.
Since the wave vector k£ is complex, the impedance is also

complex. We get a phase shift between electric and magnetic
field.



