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LHC Collimation

Beam collimation - definitions O

collimate /'koli mert/

vB (transitive)

1. to adjust the line of sight of (an optical instrument)
2. to use a collimator on (a beam of radiation or particles)
3. to make parallel or bring into line

Etymology: 17th Century: from New Latin collimare, erroneously for Latin
collineére to aim, from com- (intensive) + lineare, from linea line
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Beam halo collimation

Controlled and safe disposal of halo particles produced by
unavoidable beam losses.

Achieved by reducing the transverse cross section of the beam.
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Beam halo collimation

Controlled and safe disposal of halo particles produced by
unavoidable beam losses.

Achieved by reducing the transverse cross section of the beam.

Betatron (and off-momentum) halo particles

Particles with large betatron amplitudes (or energy deviations) with
respect to the beam’s reference particle.

Gaussian beams: typically, particles above 3 RMS beam sizes.
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collinedre to aim, from com- (intensive) + fineare, from linea line
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Beam halo collimation

Controlled and safe disposal of halo particles produced by
unavoidable beam losses.

Achieved by reducing the transverse cross section of the beam.

Betatron (and off-momentum) halo particles

Particles with large betatron amplitudes (or energy deviations) with
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Gaussian beams: typically, particles above 3 RMS beam sizes.
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Beam halo collimation

Controlled and safe disposal of halo particles produced by
unavoidable beam losses.

Achieved by reducing the transverse cross section of the beam.

Betatron (and off-momentum) halo particles
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Beam halo collimation

Controlled and safe disposal of halo particles produced by
unavoidable beam losses.

Achieved by reducing the transverse cross section of the beam.

Betatron (and off-momentum) halo particles

Particles with large betatron amplitudes (or energy deviations) with
respect to the beam’s reference particle.

Gaussian beams: typically, particles above 3 RMS beam sizes.
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Beam halo collimation

Controlled and safe disposal of halo particles produced by
unavoidable beam losses.

Achieved by reducing the transverse cross section of the beam.

Betatron (and off-momentum) halo particles

Particles with large betatron amplitudes (or energy deviations) with
respect to the beam’s reference particle.

Gaussian beams: typically, particles above 3 RMS beam sizes.

Main design goal for the collimation system at the LHC

Ensure that beam losses in superconducting magnets remain below
quench limits in all operational phases.
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®| T = 1.9 K, quench limit
~ 50-100 md/em?3

Proton beam: 145 MJ
(design: 362 MJ)

LHC upgrade studies aim at increasing
the stored energy by another ~ factor 2!
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Important roles of collimation

« Halo cleaning versus quench limits
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Important roles of collimation \\

« Halo cleaning versus quench limits

e Passive machine protection
First line of defense in case of accidental failures.
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« Halo cleaning versus quench limits

e Passive machine protection > See talk by J. Wenninger
First line of defense in case of accidental failures.

« Concentration of losses/activation in controlled areas
Avoid many hot locations around the 27km-long tunnel

 Reduction total doses on accelerator equipment
Provide local protection to equipment exposed to high doses (like the
warm magnets in cleaning insertions)

« Cleaning of physics debris (collision products)
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« Halo cleaning versus quench limits

e Passive machine protection > See talk by J. Wenninger
First line of defense in case of accidental failures.

« Concentration of losses/activation in controlled areas
Avoid many hot locations around the 27km-long tunnel

 Reduction total doses on accelerator equipment
Provide local protection to equipment exposed to high doses (like the
warm magnets in cleaning insertions)

« Cleaning of physics debris (collision products)
Avoid SC magnet quenches close to the high-luminosity experiments

¢ Opt|m|ze baCKQrOund in the experiments > Main role of collimation
Minimize the impact of halo losses on in previous hadron colliders
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Control and probe the transverse or longitudinal shape of the beam

S. Redaelli, CAS, 08/11/2013 7



Important roles of collimation &

LHC Collimation
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« Halo cleaning versus quench limits

e Passive machine protection > See talk by J. Wenninger
First line of defense in case of accidental failures.

« Concentration of losses/activation in controlled areas
Avoid many hot locations around the 27km-long tunnel

 Reduction total doses on accelerator equipment
Provide local protection to equipment exposed to high doses (like the
warm magnets in cleaning insertions)

« Cleaning of physics debris (collision products)
Avoid SC magnet quenches close to the high-luminosity experiments

g Opt|m|ze baCKQrOund in the experiments > Main role of collimation

Minimize the impact of halo losses on in previous hadron colliders
(no big issue for the LHC) (SppS, Tevatron, ...)

« Beam tail/halo scraping, halo diagnostics

Control and probe

This lecture: focus on LHC, the only CERN machine with a
collimation system that addresses all this requirements!

S. Redaelli, CAS, 08/11/2013



11 collimation (normal

LHC ring layout

IR5:CMS

IR4: RF + Beam
instrumentation

IR3: Momentum

IR6: Beam
dumping system

IR7: Betatron

conducting magnets)
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Injection ring 1
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LHC ring layout <

'
CERN

2 of 8 LHC (warm)
insertion regions
(IRs) are dedicated
to beam

IR5:CMS

Ili ti : IR4: RF + Beam IR6: Beam
collimation: instrumentation dumping system
IR3: Momentum IR7: Betatron

11 collimation (normal
conducting magnets)

collimation (normal [
conducting magnets)

IR8: LHC-B

IR2:ALICE

IR1: ATLAS

Injection ring 1 / Injection ring 2

S. Redaelli, CAS, 08/11/2013 8




2 of 8 LHC (warm)
insertion regions
(IRs) are dedicated

IR5:CMS

to beam

collimation! IR4:RF + Beam

instrumentation

IR3: Momentum

LHC ring layout

IR6: Beam
dumping system

IR3+250m 11 | collimation (normal
conducting magnets)

IR2:ALICE

Injection ring 1

S. Redaelli, CAS, 08/11/2013

IR1: ATLAS

IR7: Betatron
collimation (normal | [
conducting magnets)

IR8: LHC-B

/

Injection ring 2

LHC Collimation
\
\
CERN

IR7+250m



2 of 8 LHC (warm)
insertion regions
(IRs) are dedicated
to beam
collimation!

LHC ring layout

IR5:CMS

IR4: RF + Beam
instrumentation

IR3: Momentum
IR3+250m 11 | collimation (normal
conducting magnets)

IR6: Beam
dumping system

LHC Collimation
Project
\
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CERN
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IR2:ALICE

Injection ring 1
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conducting magnets)

IR8: LHC-B

IR1: ATLAS

/ Injection {Why so many?

100 collimators
installed in 7 IRs (all
IR’s but IR4) and in
the transfer lines!
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Radiation doses in collimation region (>
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Why do we have beam losses?

ldeal world (perfect machine): no beam losses
throughout the operational cycle

LHC: injection, ramp, squeeze, collisions, beam dump.
No need for a collimation system!
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ldeal world (perfect machine): no beam losses
throughout the operational cycle

LHC: injection, ramp, squeeze, collisions, beam dump.
No need for a collimation system!

In reality, several effects can cause beam losses:

- Collisions in the interaction points (beam burn up)

- Interaction with residual gas and intra-beam scattering

- Beam instabilities (single-bunch, collective, beam-beam)

- Dynamics changes during OP cycle (orbit drifts, optics
changes, energy ramp, ...): “operational losses”

- Beam resonances.

- Capture losses at beginning of the ramp.

- Injection and dump losses.
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ldeal world (perfect machine): no beam losses
throughout the operational cycle

LHC: injection, ramp, squeeze, collisions, beam dump.
No need for a collimation system!

In reality, several effects can cause beam losses:

- Collisions in the interaction points (beam burn up)

- Interaction with residual gas and intra-beam scattering

- Beam instabilities (single-bunch, collective, beam-beam)

- Dynamics changes during OP cycle (orbit drifts, optics
changes, energy ramp, ...): “operational losses”

- Beam resonances. o We do not need to study all
- Capture losses at beginning of the ramp. | that in detail to understand
- Injection and dump losses. beam collimation!

These effects can increase the population of the
beam halos and ultimately cause beam losses!
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Beam loss mechanisms are modelled by
assuming a non-infinite beam lifetime, 1

=
¢ - : [z
— = | :Beam intensity &
- . T
](t) — ]() € b versus time _*qé')
&
©
@
1 dI 1
- : Loss rate
Iy dt Th

Beam lifetime [ h ]

S. Redaelli, CAS, 08/11/2013 11



LHC Collimation
Pr

Beam lifetime O

)
IIIII

Beam loss mechanisms are modelled by N
assuming a non-infinite beam lifetime, 1 o F
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Beam losses can be characterized by the time-dependent
beam lifetime along the operational cycle.
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Beam loss mechanisms are modelled by
assuming a non-infinite beam lifetime, 1

=
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Beam lifetime [ h ]

Beam losses can be characterized by the time-dependent
beam lifetime along the operational cycle.

LHC example at 7 TeV: 1h lifetime at the full intensity of 3.2x1074

(320 hundred trillion) protons corresponds to a loss rate of about
90 billion proton per second, i.e. 0.1MJ/s = 100 KW!
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Project
LHC lifetime in a physics fill 3
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Example of a typical physics fill in 2012.

These losses from the beam core must be caught before they

reach sensitive accelerator components!
In particular, what “leaks” into the cold magnets must remain

below quench limits of superconducting magnets
> this is what the collimation system is designed for!
[LHC cleaning challenge: need an “inefficiency” ~20-100mJ/100kJ !
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Normalized aperture, [mm / 0Z]

Aperture and single-stage cleaning (>

LHC Collimation
)
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¥ CERN

Bottle
neck

. Cold aperture -

Closed orbit

_______________________________________________________________________

Circulating
beam

Warm region > —— Cold machine —
| (SC magnets)
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We need at least 3 primary
collimators in order to protect
the machine for all possible
transverse betatron losses!
Only horizontal collimation for
momentum losses.
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LHC Collimation

v CERN

If the “primary” collimator were a black absorber, it would
be sufficient to shield the aperture by choosing a gap NoO:
smaller that the aperture bottleneck !

In reality, part of the beam energy and a fraction of the
incident protons escape from the collimator!

See also Jorg W.’s talk.
Here: what matters in the leakage!
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In reality, part of the beam energy and a fraction of the
incident protons escape from the collimator!

See also Jorg W.’s talk.
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Xo : radiation length
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/y / - In reality, part of the beam energy and a fraction of the
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Here: what matters in the leakage!

Moliere’s multiple-
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scattered particles gain
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Distribution of energy lost after multi-turn
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The interaction with collimator jaw materials is itself a source
of betatron and off-momentum halo (secondary halo).

Electro-magnetic and hadronic showers developed by the
interaction carry an important fraction of the impacting beam
energy that “escapes” from the collimator.

Fraction of interaction with TCP

Note: multi-turn interactions occur with sub-micron impact parameters —
this has an important effect on the absorption efficiency. 18




LHC Collimation

Single-stage cleaning O

Simulated cleaning inefficiency for the horizontal case. LHC Loss Map
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Fraction of proton lost per unit length. y

S. Redaelli, CAS, 08/11/2013

Single-stage cleaning with a single primary
collimator made 60cm of Carbon: highest
leakage in cold elements (blue spikes): 1-3 %.
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Comparison to quench limits <

LHC Collimation
Project
\

Typical assumed quench limit at 7 TeV
(case of steady losses of ~second
timescales):

Rq (7 TeV) = 3.2 x 107 p/m/s

With the single-stage cleaning predicted
by this model, losses are up to:

Tb=1h = 90x 107 p/m/s (30 x Ry)
Tpb = 0.1h = 450 x 107 p/m/s (150 x Ry)

Single-stage cleaning is
apparently not adequate
for the LHC need!
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Two-stage collimation 2
. Primary Bottle
Cold aperture : collimator neck

L

—
Z —>
Secondary beam halo
+ hadronic showers

Circulating beamé

- Cleaning insertion — E«—Aro(s)—> — P —

“Secondary” collimators (TCSs) can be added to intercept the
secondary halo and the showers that leak out of the primary collimator.
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Two-stage collimation 0
. Primary Secondary Bottle
Cold aperture : collimator collimators neck

Secondary beam halo
+ hadronic showers

Circulating beamé

- Cleaning insertion — E«—Arc(s)—> — P —

“Secondary” collimators (TCSs) can be added to intercept the
secondary halo and the showers that leak out of the primary collimator.
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+6ncs

el AMorphous (0.6 m CFC)

<0 >mcs ~ 3.4 yrad (7 TeV)

-Bnmcs

There are two optimum phase locations to
catch the debris from the primary
collimators (TCPs).

Minimum: set of 2 secondary collimators
(TCSs) covering +6ucs and -Bucs.
Optimum: 4 TCSs (per plane) providing
redundant coverage.
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Where do we put secondarz collimators? \\

TCP T
Owes 000 m B >
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sl AmMorphous (0.6 m CFC) #® — i ' 5 ' -]
<0 >wmcs ~ 3.4 prad (7 TeV) < 1 B :
-Bmcs — y
L 0.5 -
There are two optimum phase locationsto £
catch the debris from the primary £ Of
collimators (TCPs). 3 - :
Minimum: set of 2 secondary collimators = -0.5
(TCSs) covering +Bucs and -Bucs. S :
Optimum: 4 TCSs (per plane) providing = -1t y
redundant coverage. 1 55 ]

Oscillation phase [ 2]

Optimum phases depend on TCP/TCS retraction

2 2
/1 — Nag COS @
_ TCP — "'TCs
YA fha = nA COS (v
TCP

Optics of a two-stage collimation system

nrce, Nrcs : TCP and TCS half-gap

J. B. Jeanneret
: collimator plane and CERN, CH-1211 Geneva, Switzerland
8 ¢ . (Received 13 October 1998; published 21 December 1998)
g scattering angle

COS [to = MTCP/NTCS
Phys.Rev.ST Accel.Beams 1:081001,1998
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Where do we put secondarT¥ collimators? \\
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Where do we put secondarx collimators? \\
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LHC Collimation

Multi-stage collimation at the LHC é

. Primary Secondary Bottle
Cold aperture : collimator collimators i § neck

Primary
beam halo

/ Secondary beam halo
+ hadronic showers

Circulating beamé

- Cleaning insertion — E«—Arc(s)—> — P —
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Multi-stage collimation at the LHC Y:SM

Bottle
neck

. Primary Secondary
Cold aperture : collimator collimators

Z

Tertiarj/ beam halo
+ hadronic showers

Primary —

peam halo Secondary beam halo
+ hadronic showers

Circulating beamé

- Cleaning insertion — E«—Arc(s)—> — P —
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LHC Collimation

Multi-stage collimation at the LHC é

. Primary Secondary Shower Bottle
Cold aperture : collimator collimators absorbers i neck

Z L,

Tertiarj/ beam halo
+ hadronic showers

Primary —

v eamh}, Secondary beam halo
+ hadronic showers

Circulating beamé

- Cleaning insertion — E«—Arc(s)—> — P —
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Multi-stage collimation at the LHC é

. Primary Secondary Shower Tertiary Bottle
Cold aperture : collimator collimators absorbers . collimators neck

P N
e | .

Tertiarj/ beam halo
+ hadronic showers

Primary
beam halo

, Secondary beam halo
+ hadronic showers

Circulating beamé

—>

- Cleaning insertion — E«—Arc(s)—> — P —
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Multi-stage collimation at the LHC V\m

. Primary Secondary Shower Tertiary Bottle
Cold aperture : collimator collimators absorbers . collimators neck

Protection
devices

Secondary beam halo
+ hadronic showers

Tertiary beam halo
+ hadronic showers

—>

- Cleaning insertion — E«—Arc(s)—> — P —
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LHC Collimation

Multi-stage collimation at the LHC \\W

. Primary Secondary Shower Tertiary Bottle
Cold aperture : collimator collimators absorbers . collimators neck

Protection
devices

Secondary beam halo
+ hadronic showers

Tertiary beam halo
+ hadronic showers

—>

- Cleaning insertion — E«—Arc(s)—> — P —

Including protection devices, a 5-stage cleaning in required!

The system performance relies on achieving the well-defined hierarchy
between collimator families and machine aperture.

S. Redaelli, CAS, 08/11/2013 25



LHC Collimation

Simulated 7 TeV performance '3

'
v CERN

LHC Loss Map
rg — — Collimator losses
E - Betatron — Warm losses
— 1 — kR R R LR LR R REEEETTEEEY CEEEEE PP P EP PP PEY — COld IOSSCS

R = cleaning
a0 —
=| 5 —
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3 -
§ 10_2 T s
103 I Momentum
E cleaning Local cleaning Local
e CMS) b Cleaning
107 E (ATLAS)
10_5 T T |
106%"' | | |I I | \I | | I | | | | I | III | | “I |I | |l“| |I
0 5000 10000 15000 20000 25000

S [m]

Achieve a few 10°in IR7.
Cold losses in experiments removed by local protection.
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Simulated 7 TeV performance &
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Main points to retain... D

g CERN

e Beam collimation is essential for modern high-power machines. Required to

safely dispose of unavoidable beam losses (beam halo cleaning).
LHC main concerns: (1) minimize risk of quenches with 360 MJ stored energy, (2)
passive machine protection in case of accidental failures. Many other important roles!
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e Beam collimation is essential for modern high-power machines. Required to

safely dispose of unavoidable beam losses (beam halo cleaning).
LHC main concerns: (1) minimize risk of quenches with 360 MJ stored energy, (2)
passive machine protection in case of accidental failures. Many other important roles!

e Collimation is achieved by constraining the transverse amplitudes of halo
particles: collimator jaws are set close to the beam to shield the aperture.

e Many sources of beam losses (collisions, gas or beam scattering, operational

losses,...) are modelled by looking at the time-dependent beam lifetime.
Required cleaning depends on minimum allowed beam lifetime for given quench limit.

e Single-stage collimation: efficiencies up to ~99%. This is not enough: the
leakage must be reduced by another factor 100-1000 to avoid quenches.

o Multi-stage collimation can provide the missing factors!
Secondary collimators are placed at optimum locations to catch product of halo
interactions with primaries (secondary halo+shower products)
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S. Redae

Beam collimation is essential for modern high-power machines. Required to

safely dispose of unavoidable beam losses (beam halo cleaning).
LHC main concerns: (1) minimize risk of quenches with 360 MJ stored energy, (2)
passive machine protection in case of accidental failures. Many other important roles!

Collimation is achieved by constraining the transverse amplitudes of halo
particles: collimator jaws are set close to the beam to shield the aperture.

Many sources of beam losses (collisions, gas or beam scattering, operational

losses,...) are modelled by looking at the time-dependent beam lifetime.
Required cleaning depends on minimum allowed beam lifetime for given quench limit.

Single-stage collimation: efficiencies up to ~99%. This is not enough: the
leakage must be reduced by another factor 100-1000 to avoid quenches.

Multi-stage collimation can provide the missing factors!
Secondary collimators are placed at optimum locations to catch product of halo
interactions with primaries (secondary halo+shower products)

LHC collimation: unprecedented complexity in particle accelerators!

A total of 44 collimators per beam, ordered in a pre-defined collimation hierarchy: two
dedicated warm insertions (2-stage collimation+shower absorbers), local cleaning in
experiments, physics debris cleaning and protection collimators.

lli, CAS, 08/11/2013
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Outline

™ Introduction

M Beam losses and collimation roles

M Single- and multi-stage cleaning

™ LHC collimation layouts and design
™ Achieved cleaning performance

M Conclusions
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Two warm cleaning insertions,
3 collimation planes

IR3: Momentum cleaning
1 primary (H)
4 secondary (H)
4 shower abs. (H,V)

IR7: Betatron cleaning
3 primary (H,V,S)
11 secondary (H,V,S)
5 shower abs. (H,V)

Local cleaning at triplets
8 tertiary (2 per IP)

Passive absorbers for warm
magnets

Physics debris absorbers

Transfer lines (13 collimators)
Injection and dump protection (10)

Total of 108
collimators

(100 movable).

Two jaws (4 motors)
per collimator!

S. Redaelli, CAS, 08/11/2013

TCP.6R3
TCSG.5R3

IP3

TCSG.4AL3
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TCLA.BSL3

TCLA.ASR3

TCSG.BS5R3
TCSG.ASR3
TCSG.4R3

TCSG.5L3
TCP.6L3

LHC collimation system layout

Momentum
cleaning

LHC Collimation
Project
\
\
CERN

. wTipceLr
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Betatron
cleaning
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Possible collimator designs

S. Redaelli, CAS, 08/11/2013
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Movable collimators: L-shaped, one-sided, two-sided.
Yy yA yA
I 0 > I 0 >y »
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Possible collimator designs
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IR7 collimator settings at 450 GeV (>

llllll

Atcp=5.70 Arcs=6.70 Atcca=100

20

JUnmmo o m

Collimator gaps [ mm ]

aol | -

a5 | .

19.8 19.9 20 20.1
Longitudinal coordinate, [ km ]
S. Redaelli, CAS, 08/11/2013
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P "1 LHC Collimation

IR7 collimator settingsat7 TeV (>

-

v CERN

Atcp=60 Atcs=70 Arca=100
20 [ I | I I | I | I I I | I I I | I I I I

Junmom o M [

I L o — | B[ N B _

i Gapmm == 1 1 mm IIIF? |
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a5 [ | R B[ I N R _
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P "1 LHC Collimation
P

IR7 collimator settingsat7 TeV

-

'
v CERN

Atcp=60 Atcs=70 Arca=100
20 | I I | I | I I I | I I

Jaunmim o1 T

o [ | S B N _
77 z z —

;Gapmin ==1.1mm

o Vi

‘ ............ . ....... 30y ...... B R .............. __

Collimator gaps [ mm ]
o

P N I [ — | I8 WY N I R -

A5 | L] . _ |
3 r Beam size change during beam acceleration:

P o | | | optimum settings can only be guaranteed with high-
19.8 19.9 precision movable collimators!
L« We could not inject with the 7 TeV gap!

S. Redaelli, CAS, 08/11/2013 33




P —— LHC Collimation

Reference design goals \\W

-

(melt 500 kg Cu, required for 1034 cm-2 s-1 luminosity)

High stored beam energy ~ 360 MJ/beam e(\o‘(\
\$)

(clean lost protons to avoid SC magnet quenches)

00
_ ‘ a\\
W
PG

High required cleaning efficiency 99.998 % (~10-5p/m) a,&\g
S

Small spot sizes at high energy - .
(small 7 TeV emittance, no large beta in restricted space) 200 Mm 6\3\0\\\\\;

Small collimator gaps \o®
(impedance problem, tight tolerances: ~ 10 um) ~2.1 mm (at 7 TeV) é\O(\

S. Redaelli, CAS, 08/11/2013 34




P ——— LHC Collimation

Collimator design

-

Main design GlidCop®
features: support bar
- Two jaws (position Collimator

and angle) bloc

- Concept of spare
surface

- Different angles
(H,V,S)

- External reference
of jaw position ,_

- Auto-retraction r \ Rl _

- RF fingers ; | ;

-Jaw cooling

Rack &
pinion
system

Linear
guideways

motor ' . Return
spring

A. Bertarelli et al.
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LHC Collimation

LHC collimator jaw design x;\m

Collimating Jaw (C/C composite)
Main support beam (Glidcop)
Cooling-circuit (Cu-Ni pipes)
Counter-plates (Stainless steel)
Preloaded springs (Stainless steel)

Clamping plates (Glidcop)

Carbon jaw
(10cm tapering for RF contact)

Special “sandwich” design to
minimize the thermal deformations:
Steady (~5 kW) —> <30 um
Transient (~30 kW) = ~ 110 um
Materials: Graphite, Carbon fibre
composites, Copper, Tungsten.

S. Redaelli, CAS, 08/11/2013



P —— LHC Collimation

A look inside the vacuum tank Q};

-

- RF contact
Longitudinal strip (Cu-Be)

A. Bertarelli, A. Dallocchio
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. - High stored energy:

- Small gaps:

. - Collimator hierarchy:
. - Machine protection:
- High-radiation environ.:

oo Trioh JIshEg

= Main collimation challenges:

LHC Collimation

Collimators needed in all phases (inj., ramp, squeeze, physics);
Function-driven controls of jaw positions mandatory;
Robustness and cleaning efficiency;

Big and distributed system (100 collimators).

Mechanical precision, reproducibility (< 20 microns);
Constraints on orbit/optics reproducibility;
Machine impedance and beam instabilities.

Collimators determine the LHC B reach.
Redundant interlocks of collimator jaw positions and gaps.

Radiation-hard components (HW + SW);
Challenging remote handling, design for quick installation.

. Heat load kW
“aw matore CFC Jaw temperature °C
Jaw length lgg z$ 16000 Bake-out temp. =
Jaw tapering cm 10 + 10 Minimal gap mm
Jaw cross section mm2 65 x 25 Maximal gap mm
Jaw resistivity uOm <10 Jaw position control um
Surface roughness um <16 Jaw angle control urad
Jaw flatness error




Outline &

™ Introduction

M Beam losses and collimation roles
M Single- and multi-stage cleaning

™ LHC collimation layouts and design
™ Achieved cleaning performance

M Conclusions
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Shower
absorbers

Primary
Cold aperture collimator

Protection
devices

Tertiary
collimators

- »

Ter!iary beam halo
+ .
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Mustrative schems

Cleaning insertion —Arc(s)—

® Setting hierarchy was tightened while gaining operational
experience and confidence in the machine (optics/orbit
stability, lifetime measurements, cleaning requirements, ....)

Configurations for LHC-run1 (2010-12) \Q

In practice

Aperture (o)

® Started with “relaxed” settings (easier commissioning, less
challenging tolerance), then achieved “tight” settings at 4

TeV equivalent in mm to design 7 TeV goal!

® Smaller beta* in ATLAS and CMS (not subiject of this lecture).

® Improve cleaning performance but reduce lifetime in 2012.

S. Redaelli, CAS, 08/11/2013
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Smallest collimator gaps in 2012

S. Redaelli, CAS, 08/11/2013
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Smallest collimator gaps in2012 (>
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Smallest collimator gaps in 2012

Transverse cuts from H, V and S

LHC Collimation

2€ coin

primary collimators in IR7
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>
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0

O
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N

CERN

A beam carrying up to 150MJ passes more than
11000 per second in such small collimator gaps!
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LHC Collimation

Side view of the vertical TCP \\""

Beam: RMS beam size 60 cm flat active length, gap = + 1.05 mm ( - 2€ Coin)

ov = 250 microns! : :
< > .
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o

L. Gentini
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LHC Collimation

Side view of the vertical TCP O

-

Beam: RMS beam size :
ov = 250 microns! ~ 60 cm flat active length, gap =+ 1.05 mm ( o€ Com)
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Distribution of collimator gaps in 2012
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LHC Collimation

Side view of the vertical TCP \S
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CERN

Beam: RMS beam size
ov = 250 microns!

60 cm flat active length, gap =+1.05 mm ( o€ Coin)
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LHC Collimation

Side view of the vertical TCP O
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Beam: RMS beam size
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Collimation cleaning
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Collimation cleaning &
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LHC Collimation
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LHC Collimation
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Collimation cleaning: 4.0 TeV, B'=0.6 m
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LHC Collimation

Collimation cleaning: 4.0 TeV, '=0.6 m (>
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LHC Collimation

Collimation cleaning: 4.0 TeV, B'=0.6 m >
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Most of the ring actually > 99.999%

Highest COLD loss location: efficiency of > 99.99% !
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Zoom in IR7

LHC Collimation
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Critical location (both beams): losses in the “dispersion suppressor”.
With “squeezed” beams: tertiary collimators (TCTs) protect locally the triplets.
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LHC Collimation

Comparison with measurements (>
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LHC Collimation

Comparison with measurements (>
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Conclusions .\i\

"
'''''

@ The collimation challenges for the LHC were presented.

@ The basic design strategy for collimation systems for high-
energy hadron accelerators was reviewed.

@ The present LHC collimation system was presented:
- solutions to the key design constraints and challenges;
- tunnel layouts for a complex multi-stage system;
- collimator design main features.

@ The main performance achievements during the LHC Run1
in 2010-12 were also discussed.

@ We are looking forward to collimating the ~7 TeV LHC
beams in 2015!
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’ CER

Collimation matters not covered here \\

™ Collimation in other CERN machines

LHC taken as case study because the complexity of its collimation system
cover all the collimation design goals.

™ Role of energy deposition studies in collimation system design

& Material science related to collimators and advanced designs

Robustness versus impedance
New material development to handle higher energy/brightness beams

& Collimator technology and handling for high radiation environment.
Optimized design and components to keep high performance with high doses.

™ Physics debris collimation and IR losses

& Collimation upgrade plans for the High Luminosity (HL) LHC era.

™ Advanced collimation concepts:

Collimator in cold regions, Hollow e-lenses as halo control devices,
crystal collimation...
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