

E.D. Courant and H.S. Snyder 1957

Theory of the Alternating-Gradient Synchrotron [1]:

$$\left(\frac{\Delta\beta}{\beta}\right)_{\text{max}} = 4.0 \left(\frac{\Delta k}{k}\right)_{\text{rms}}$$

"Thus if the variation in k from magnet to magnet were 1% (...) we would have a β -beating of 4%. Any particular machine (...) would be unlikely to be worse by more than factor of 2."

 \rightarrow Expected β -beating below 8% for any machine

120% in LHC, commissioning 2016

\approx **400%** in PEP-II, commissioning 2005

Even $\Delta \beta/\beta \approx 700\%$ was reached when LER tune was pushed closer to the half integer

Colliders in the tune space

β -beating versus time

Dipole magnetic field

Lorentz force:

$$\vec{F} = q\vec{v} \times \vec{B}$$

Dipole errors

- ★ An error in the strength of a main dipole causes a perturbation on the horizontal closed orbit.
- ★ A tilt error in a main dipole causes a perturbation on the vertical closed orbit.

Orbit perturbation formula

From distributed angular kicks θ_i the closed orbit results in:

$$CO(s) = \frac{\sqrt{\beta(s)}}{2\sin\pi Q} \sum_{i} \sqrt{\beta_i} \theta_i \cos(\pi Q - |\phi(s) - \phi_i|)$$

Attention to the denominator $\sin(\pi Q)$ that makes closed orbit to diverge at the integer resonance $Q \in \mathbb{N}$.

Another source of orbit errors is offset quadrupoles.

Quadrupole field and force on the beam

Note that $F_x = -kx$ and $F_y = ky$ making horizontal dynamics totally decoupled from vertical.

Offset quadrupole - Feed-down

An offset quadrupole is seen as a centered quadrupole plus a dipole. This is called feed-down.

Quadrupole strength error

Ideal PSB lattice without errors.

Quadrupole strength error

 β functions change (β -beating= $\frac{\Delta\beta}{\beta} = \frac{\beta_{pert} - \beta_0}{\beta_0}$). Tunes change too (ΔQ).

Quadrupole strength error - Formulae

Tune change (single source):

$$\Delta Q_x pprox rac{1}{4\pi} \overline{eta_x} \Delta k_i L_i, \quad \Delta Q_y pprox -rac{1}{4\pi} \overline{eta_y} \Delta k_i L_i$$

 β -beating from many sources:

$$rac{\Delta eta}{eta}(s) pprox \pm \sum_i rac{\Delta k_i L_i \overline{eta_i}}{2 \sin(2\pi Q)} \cos(2\pi Q - 2|\phi(s) - \phi_i|)$$

Attention to the denominator $\sin(2\pi Q)$ that makes β -beating diverge at the integer and half integer resonances, $2Q \in \mathbb{N}$.

Phase beating and higher orders

$$\Delta\phi(s_0,s) = \int_{s_0}^s rac{\mathrm{d}s'}{eta(s')} \left(rac{1}{1+rac{\Deltaeta}{eta}(s')}-1
ight)$$

For first and higher order expansions see [2, 3, 4]. $\Delta \phi$ is given in [5] as function of Hill's determinant:

$$D = \left| \delta_{nm} + \frac{\theta_{n-m} |1 - \delta_{0(n-m)}|}{\theta_0 - (2n)^2} \right|_{-\infty}^{\infty}, \ \theta_m = \frac{2Q \oint \mathrm{d}s e^{-im\phi/Q} \beta \Delta k}{\pi}$$

or using RDTs [4], $f = \left| \frac{\oint ds \Delta k \beta_x e^{i2\phi_x}}{1 - e^{2\pi i Q_x}} \right| + \mathcal{O}(\Delta k^2)$,

$$\frac{\Delta eta_x}{eta_x}(s) = 2 \sinh f \left[\sinh f + \cosh f \sin \phi_f \right]$$

Average beta function in a quad (\overline{eta})

$$\overline{eta} pprox rac{1}{3} \left(eta_1 + eta_2 + \sqrt{eta_1 eta_2 - L^2}
ight)$$

A. Hofmann and B. Zotter [6]

Tilted quadrupole

A tilted quadrupole is seen as a normal quadrupole plus another quadrupole tilted by 45° (this is called a skew quadrupole).

Skew quadrupole \rightarrow x-y Coupling

Note that $F_x = k_s y$ and $F_y = k_s x$ making horizontal and vertical dynamics to couple.

Transverse coupling in the 1-turn map

In the ideal uncoupled case:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f} = \begin{pmatrix} M_{11} & M_{12} & 0 & 0 \\ M_{21} & M_{22} & 0 & 0 \\ 0 & 0 & M_{33} & M_{34} \\ 0 & 0 & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f}$$

In presence of coupling:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f}$$

Motion with coupling

To first order in the coupling the transverse motion can be approximated as [7, 8]

$$x(N,s) \approx \sqrt{\beta_{x}(s)} \Re \left\{ \sqrt{2J_{x}} e^{i(2\pi Q_{x}N + \phi_{x}(s) + \phi_{x0})} \right.$$

$$-2if_{1010} \sqrt{2J_{y}} e^{-i(2\pi Q_{y}N + \phi_{y}(s) + \phi_{y0})}$$

$$-2if_{1001} \sqrt{2J_{y}} e^{i(2\pi Q_{y}N + \phi_{y}(s) + \phi_{y0})} \right\}$$

$$f_{\frac{1010}{1001}} = \frac{\oint dsk_{s} \sqrt{\beta_{x}\beta_{y}} e^{i(\phi_{x} \pm \phi_{y})}}{4(1 - e^{2\pi i(Q_{x} \pm Q_{y})})}$$

 f_{1001} drives the difference resonance $Q_x - Q_y = N$ and f_{1010} the sum resonance $Q_x + Q_y = N$

Bothering effects of coupling

Lepton machines: increases the vertical equilibrium emittance.

Hadron machines: makes it impossible to approach tunes below $\Delta \textit{Q}_{\min}$

ΔQ_{\min} formula

$$\Delta Q_{\min} = \left| rac{1}{2\pi} \sum_{j} k_{s,j} L_{j} \sqrt{eta_{x} eta_{y}} e^{-i(\phi_{x} - \phi_{y}) + is(\hat{Q}_{x} - \hat{Q}_{y})/R}
ight|$$

$$\Delta Q_{\min} = \left| \frac{4(\hat{Q}_x - \hat{Q}_y)}{2\pi R} \oint ds f_{1001} e^{-i(\phi_x - \phi_y) + is(\hat{Q}_x - \hat{Q}_y)/R} \right|$$

$$\lesssim 4|\hat{Q}_x - \hat{Q}_y||\overline{f_{1001}}|$$

 f_{1001} defines both the phase space and the stopband. See [9, 10, 11] for further details.

ΔQ_{\min} limits the resonance-free space

LHC beam-beam tune footprint and a hypothetical large coupling:

Interlude: Farey sequences (1802)

The Farey sequence of order n is the sequence of completely reduced fractions between 0 and 1 which have denominators less than or equal to $N \rightarrow$ **Resonances of order** N **or lower** (in one plane)

Farey sequences also in 2D res. diagram

Example, node at 1/1, order 5: $\frac{h}{k} \mapsto (h, k-h)$

Farey sequence

Phys. Rev. ST Accel. Beams 17, 014001 (2014)

Coupling control versus time

Sextupole field and force

$$F_x = \frac{1}{2}K_2(x^2 - y^2)$$
, $F_y = -K_2xy$

Ooops, We are entering the non-linear regime, however...

Offset sextupole

A sextupole horizontally (vertically) displaced is seen as a centered sextupole plus an offset quadrupole (skew quadrupole). Offset sextupoles are also sources of quadrupole and skew quadrupole errors.

27/49

Longitudinal misalignments

Longitudinal misalignments can be seen as perturbations at both ends of the magnet with opposite signs. Tolerances are generally larger for longitudinal misalignments.

Correction

- ★ Local corrections
 - Ideal correction: Error source identification and repair.
 - Effective local error correction.
 - MICADO (ISR-MA/73-17): Best few correctors (no guarantee of locality).
- ★ Global corrections
 - Pre-designed knobs for varying particular observables in the least invasive way (like tunes, coupling, β^* , etc.)
 - MICADO: Best N correctors
 - Response matrix approach
- ★ Passive corrections (optimizing, scanning, etc.)

Local correction: segment-by-segment

Key point: Isolate a segment of the machine by imposing boundary conditions from measurements and find corrections [12].

Pre-designed knobs - Tunes

In most machines it is OK to use all focusing quads to change Q_x and all defocusing quads for Q_y : PSB, PS, SPS

★ In the LHC dedicated tune correctors (MQT) are properly placed to minimize impact on

 β -beating:

Pre-designed knobs - Coupling

- ★ The full control of the difference resonance (f_{1001}) needs two independent families of skew quadrupoles.
- ★ PSB, PS and SPS can survive only with one family since $int(Q_x) = int(Q_y)$, making errors in phase with correctors.
- ★ In LHC there are two families to vary the real and imaginary parts of f_{1001} independently.

Best N-corrector challenge

- ★ LHC has about 500 orbit correctors per plane and per beam.
- ★ Imagine you want to find the best 20 correctors
- ★ How many combinations of these 500 correctors taking 20 at a time exist?
- **★** ...
- ★ (MICADO finds a good approximation to this problem)

33/49

Response matrix approach

- \star Available correctors: \vec{c}
- ★ Available observables: a
- ★ Assume for small changes of correctors linear approximation is good:

$$R\Delta\vec{c} = \Delta\vec{a}$$

- \star Use, e.g., MADX to compute R
- ★ Invert or pseudo-invert R to compute an effective global correction based on measured $\Delta \vec{a}$:

$$\Delta \vec{c} = R^{-1} \Delta \vec{a}$$

 \star This works for orbit, $\Delta \beta / \beta$, coupling, etc.

Correcting optics and coupling

$$\left(egin{array}{c} \Delta ec{\phi}_{\mathrm{x}} \ \Delta ec{\phi}_{\mathrm{y}} \ rac{\Delta ec{eta}_{\mathrm{x}}}{eta_{\mathrm{x}}} \ rac{\Delta ec{eta}_{\mathrm{y}}}{eta_{\mathrm{y}}} \ \Delta ec{D}_{\mathrm{x}} \ \Delta ec{Q} \end{array}
ight)_{\mathrm{meas}} = \mathbf{P}_{\mathrm{(theo)}} \cdot \Delta ec{k}$$

$$\left(egin{array}{c} ec{f}_{1001} \ ec{f}_{1010} \ ec{D}_{y} \end{array}
ight)_{
m meas} \ = \ \mathbf{T}_{
m (theo)} \cdot \Delta ec{k}_{
m s}$$

Pseudo-inverse via SVD

$$R = U \left(egin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{array}
ight) V^T$$

Imagine $\sigma_3 \ll \sigma_2 \leq \sigma_1$, then just neglect σ_3 :

$$R^{-1} = V \left(egin{array}{ccc} rac{1}{\sigma_1} & 0 & 0 \ 0 & rac{1}{\sigma_2} & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight) U^T$$

SLC: Cleaning BPM data with SVD, 1999

$$B_{t-b-t} = USV^T$$
 bpm
 $matrix$

Bad BPMs easily identified as uncorrelated signals.

Noise removed by cutting low singular values

J. Irwin et al., Phys. Rev. Letters 82, 8

Three world records via passive corrs.

Dynamic linear imperfections

- ★ Ground motion and vibrations in quadrupoles produce sinusoidal dipolar fields
- ★ Electrical noise can cause currents in quadrupoles and dipoles to oscillate in time
- ★ Electromagnetic pollution can act directly on the beam.
- ★ Slow variations $(f << Q_{x,y}f_{rev})$ just cause a time varying orbit and optics
- ★ Fast variations $(f \approx Q_{x,y} f_{rev})$ can cause resonances and emittance growth

An oscillating dipolar field

- \star Let $Q_{dip} = f_{dip}/f_{rev}$ be the tune of the dipolar field oscillation.
- ★ This causes the appearance of new resonances
- \star Linear resonances: $Q_x \pm Q_{dip} = N$
- Non-linear resonances of sextupolar order:

$$Q_x \pm 2Q_{dip} = N$$

$$2Q_x \pm Q_{dip} = N$$

 \star Note that $mQ_{dip} = N$ is not a problem

Oscillating dipolar field, $Q_{\!\scriptscriptstyle X} eq Q_{dip}$

Orbit oscillates with Q_{dip} but there is no emittance growth far from resonances.

Oscillating dipolar field, $Q_{x}=\overline{Q_{dip}}$

Linear growth in time \rightarrow Emittance growth.

An oscillating quadrupolar field

- \star Let $Q_{quad} = f_{quad}/f_{rev}$ be the tune of the quadrupolar field oscillation.
- ★ This causes the appearance of new resonances
- \star Linear resonances: $2Q_x \pm Q_{auad} = N$

Oscillating quadrupolar field, $2Q_{\scriptscriptstyle \! X} eq \overline{Q_{\scriptscriptstyle \! quad}}$

Tune is modulated with Q_{quad} , displaying sidebands at $Q_x \pm Q_{quad}$ but there is no emittance growth far from resonances.

Oscillating quadrupolar field, $2Q_x = \overline{Q_{quad}}$

Exponential growth, clear signatures depending on the oscillating field type.

Concluding...

Luminosity imbalance CMS/ATLAS

ATLAS was not happy to get lower luminosity. This was due to β -beating at the IPs.

Space charge simulations with measured optics in J-PARC, K. Ohmi et al., IPAC 2013

K. Ohmi et al.: "Estimation of errors of accelerator elements is inevitable to study beam loss."

Bibliography

- E.D. Courant and H.S. Snyder, Annals of Physics 3 (1958).
- R. Miyamoto, PhD thesis, Uni. of Texas at Austin (2008).
- [2] [3] [4] N. Biancacci et al., Phys. Rev. Accel. Beams 19, 054001 (2016).
- A. Franchi, arXiv:1603.00281 (2016).
- [5] Chun-xi Wang, Physical review E **71**, 036502 (2005).
- [6] A. Hofmann and B. Zotter, Issued by: ISR-TH-AH-BZ-amb, Run: 640-641-642 (1975).
- F. Schmidt and R. Bartolini, LHC Project Report 132 (1997).
- [8] R. Tomás et al., Phys. Rev. ST Accel. Beams 8, issue 2, 024001.
- M. Minty and F. Zimmermann, Measurement and Control of Charged Particle Beams, Springer, Berlin (2003).
- Y. Alexahin et al., Journal of Instrumentation 6, P10006 (2011).
- T. H. B. Persson et al., Phys. Rev. ST Accel. Beams 17, 051004.
- R. Tomás et al., Phys. Rev. ST Accel. Beams 15, 091001 (2012).