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E.D. Courant and H.S. Snyder 1957

Theory of the Alternating-Gradient Synchrotron [1]:(
∆β

β

)
max

= 4.0

(
∆k

k

)
rms

“Thus if the variation in k from magnet to magnet
were 1% (...) we would have a β-beating of 4%.
Any particular machine (...) would be unlikely to be
worse by more than factor of 2.”

→ Expected β-beating below 8% for any machine
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120% in LHC, commissioning 2016
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≈400% in PEP-II, commissioning 2005

BETA-BEAT CORRECTION USING STRONG SEXTUPOLE BUMPS IN 

PEP-II* 

G. Yocky
#
, SLAC, Menlo Park, CA94025, USA

Abstract 
A method for correcting lattice beta mismatches has 

been developed for the PEP-II collider using orbit offsets 

in strong sextupoles.  The solution is first predicted in the 

MAD program by modelling closed orbit bumps in the 

plane of correction at the sextupoles strongest in that 

plane.  The derived solution is then tested in the machine 

to confirm prediction, and finally dialled into the machine 

under high-current conditions.  

INTRODUCTION 

During PEP Run 5, a large horizontal beta-beat 

developed in the LER (Fig 1) of approximately four to 

one.  The vertical beta-beat of about 1.4:1 (Fig 2) was less 

a worry.  Concern for the dynamic aperture of the 

machine as well as the desire to have a machine that 

matches the design lattice for future optics work led to the 

search for a fix. 

Several constraints limited the approach, however.  The 

most prominent of which was delivering luminosity to 

BaBar.  Given that any quadrupole magnet perturbed 

would require a full machine standardize, a process which 

takes 30 minutes, a beta-fix solution that includes 

electromagnets is less likely to find machine development 

time to test. 

 

Fig. 1:  LER horizontal beta-beat from 16-Aug-2005. 

Since the LER lattice has relatively few, strong 

sextupoles segregated into focussing and defocussing 

arcs, a closed orbit bump in a sextupole of the proper 

phase can be made that creates a beta-wave that cancels 

the beta deviation from design. 

By using the MAD program iteratively, it is possible to 

find a solution of closed orbit bumps in the sextupoles to 

find such a solution. 

 
Fig. 2:  LER vertical beta-beat from 16-Aug-2005. 

SOFTWARE 

In order to model the solution, two tools were used.  

Primarily, an OSX port of MAD 8.51 [1] was used 

iteratively with Matlab R14 to produce and analyze 

potential solutions.  A Matlab script was created that 

auto-generated the MAD input files for ease of use and to 

allow a looping mechanism that determined whether or 

not a potential solution was of the desired class or not. 

 

Figure 3:  LER horizontal beta-beat, MAD-derived 

modelled solution. 

_____________________ 
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Even ∆β/β ≈ 700% was reached when LER tune
was pushed closer to the half integer



Colliders in the tune space
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β-beating versus time
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Dipole magnetic field

x

y

Lorentz force:
~F = q~v × ~B



Dipole errors

F An error in the strength of a main dipole causes
a perturbation on the horizontal closed orbit.

F A tilt error in a main dipole causes a
perturbation on the vertical closed orbit.

x

y



Orbit perturbation formula

From distributed angular kicks θi the closed orbit
results in:

CO(s) =

√
β(s)

2 sinπQ

∑
i

√
βiθi cos(πQ − |φ(s)− φi |)

Attention to the denominator sin(πQ) that makes
closed orbit to diverge at the integer resonance
Q ∈ N.
Another source of orbit errors is offset quadrupoles.



Quadrupole field and force on the beam

x

y

~B

x

y

~F

Note that Fx = −kx and Fy = ky making horizontal
dynamics totally decoupled from vertical.
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Offset quadrupole - Feed-down

x

y

An offset quadrupole is seen as a centered
quadrupole plus a dipole. This is called feed-down.
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Quadrupole strength error
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Quadrupole strength error
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Quadrupole strength error - Formulae

Tune change (single source):

∆Qx ≈
1

4π
βx∆kiLi , ∆Qy ≈ −

1

4π
βy∆kiLi

β-beating from many sources:

∆β

β
(s) ≈ ±

∑
i

∆kiLiβi
2 sin(2πQ)

cos(2πQ − 2|φ(s)− φi |)

Attention to the denominator sin(2πQ) that makes
β-beating diverge at the integer and half integer
resonances, 2Q ∈ N .



Phase beating and higher orders

∆φ(s0, s) =

∫ s

s0

ds ′

β(s ′)

(
1

1 + ∆β
β (s ′)

− 1

)

For first and higher order expansions see [2, 3, 4].
∆φ is given in [5] as function of Hill’s determinant:

D =

∣∣∣∣δnm+
θn−m|1− δ0(n−m)|

θ0 − (2n)2

∣∣∣∣∞
−∞
, θm =

2Q
∮
dse−imφ/Qβ∆k

π

or using RDTs [4], f =
∣∣∣∮ ds∆kβxe

i2φx

1−e2πiQx

∣∣∣+O(∆k2) ,

∆βx
βx

(s) = 2 sinh f
[

sinh f + cosh f sinφf
]



Average beta function in a quad (β)

quadrupole (k ,L)

β1

β2
β

β ≈ 1

3

(
β1 + β2 +

√
β1β2 − L2

)
A. Hofmann and B. Zotter [6]

https://cds.cern.ch/record/1131122/files/CM-P00072144.pdf


Tilted quadrupole

x

y

A tilted quadrupole is seen as a normal quadrupole
plus another quadrupole tilted by 45◦ (this is called
a skew quadrupole).
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Skew quadrupole → x-y Coupling

x

y

~B

x

y

~F

Note that Fx = ksy and Fy = ksx making horizontal
and vertical dynamics to couple.



Transverse coupling in the 1-turn map

In the ideal uncoupled case:
x
x ′

y
y ′


f

=


M11 M12 0 0
M21 M22 0 0

0 0 M33 M34

0 0 M43 M44




x
x ′

y
y ′


i

In presence of coupling:
x
x ′

y
y ′


f

=


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




x
x ′

y
y ′


i



Motion with coupling

To first order in the coupling the transverse motion
can be approximated as [7, 8]

x(N , s) ≈
√
βx(s)<

{√
2Jxe

i(2πQxN+φx(s)+φx0)

−2if1010

√
2Jye

−i(2πQyN+φy (s)+φy0)

−2if1001

√
2Jye

i(2πQyN+φy (s)+φy0)
}

f 1010
1001

=

∮
dsks

√
βxβye

i(φx±φy )

4(1− e2πi(Qx±Qy ))

f1001 drives the difference resonance Qx − Qy = N
and f1010 the sum resonance Qx + Qy = N



Bothering effects of coupling

Lepton machines: increases the vertical
equilibrium emittance.
Hadron machines: makes it impossible to
approach tunes below ∆Qmin
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∆Qmin formula

∆Qmin =

∣∣∣∣∣∣ 1

2π

∑
j

ks,jLj
√
βxβye

−i(φx−φy )+is(Q̂x−Q̂y )/R

∣∣∣∣∣∣
∆Qmin =

∣∣∣∣∣4(Q̂x − Q̂y)

2πR

∮
dsf1001e

−i(φx−φy )+is(Q̂x−Q̂y )/R

∣∣∣∣∣
. 4|Q̂x − Q̂y ||f1001|

f1001 defines both the phase space and the
stopband. See [9, 10, 11] for further details.



∆Qmin limits the resonance-free space

LHC beam-beam tune footprint and a hypothetical
large coupling:
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Interlude: Farey sequences (1802)
The Farey sequence of order n is the sequence of
completely reduced fractions between 0 and 1 which
have denominators less than or equal to N →
Resonances of order N or lower (in one plane)

Farey diagram of order 5

0+1
1+10+1

2+1
1+1
2+1

1+2
2+3

?

1+1
2+3

?



Farey sequences also in 2D res. diagram

Example, node at 1/1, order 5: h
k 7→ (h, k − h)
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Coupling control versus time
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Sextupole field and force

x

y
~B

x

y
~F

Fx =
1

2
K2(x2 − y 2) , Fy = −K2xy

Ooops, We are entering the non-linear regime,
however...



Offset sextupole

A sextupole horizontally (vertically) displaced is seen
as a centered sextupole plus an offset quadrupole
(skew quadrupole). Offset sextupoles are also
sources of quadrupole and skew quadrupole errors.
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Longitudinal misalignments

s
k-k +kbeam

Longitudinal misalignments can be seen as
perturbations at both ends of the magnet with
opposite signs. Tolerances are generally larger for
longitudinal misalignments.
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Correction

F Local corrections
Ideal correction: Error source identification and
repair.
Effective local error correction.
MICADO (ISR-MA/73-17): Best few correctors
(no guarantee of locality).

F Global corrections
Pre-designed knobs for varying particular
observables in the least invasive way (like tunes,
coupling, β∗, etc.)
MICADO: Best N correctors
Response matrix approach

F Passive corrections (optimizing, scanning, etc.)

http://cds.cern.ch/record/790199/


Local correction: segment-by-segment
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Key point: Isolate a segment of the machine by
imposing boundary conditions from measurements
and find corrections [12].



Pre-designed knobs - Tunes
F In most machines it is OK to use all focusing

quads to change Qx and all defocusing quads
for Qy : PSB, PS, SPS

F In the LHC dedicated tune correctors (MQT)
are properly placed to minimize impact on
β-beating:

22500 22600 22700 22800 22900 23000

Longitudinal location (m)

0

50

100

150

200
β
(m
)

LHCB1, left of IP1

βy βx
Position of MQT magnets

A.S. Langner



Pre-designed knobs - Coupling

F The full control of the difference resonance
(f1001) needs two independent families of skew
quadrupoles.

F PSB, PS and SPS can survive only with one
family since int(Qx) = int(Qy), making errors
in phase with correctors.

F In LHC there are two families to vary the real
and imaginary parts of f1001 independently.



Best N-corrector challenge

F LHC has about 500 orbit correctors per plane
and per beam.

F Imagine you want to find the best 20 correctors

F How many combinations of these 500
correctors taking 20 at a time exist?

F ...

F (MICADO finds a good approximation to this problem)
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Response matrix approach

F Available correctors: ~c

F Available observables: ~a

F Assume for small changes of correctors linear
approximation is good:

R∆~c = ∆~a

F Use, e.g., MADX to compute R

F Invert or pseudo-invert R to compute an
effective global correction based on measured
∆~a:

∆~c = R−1∆~a

F This works for orbit, ∆β/β, coupling, etc.



Correcting optics and coupling



∆~φx
∆~φy
~∆βx
βx
~∆βy
βy

∆~Dx

∆~Q


meas

= P(theo) ·∆~k

 ~f1001

~f1010

~Dy


meas

= T(theo) ·∆~ks



Pseudo-inverse via SVD

R = U


σ1 0 0
0 σ2 0
0 0 σ3

0 0 0

V T

Imagine σ3 � σ2 ≤ σ1, then just neglect σ3:

R−1 = V


1
σ1

0 0

0 1
σ2

0

0 0 0
0 0 0

UT
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SLC: Cleaning BPM data with SVD, 1999
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FIG. 1. E�ect of cutting noise

Figure 1 demonstrates the e�ect of the noise-cut. 5000
pulses over 125 BPMs were generated to simulate various
signals in SLC. Then random noise, 1 �m for the �rst 7
and 10 �m for the rest BPMs, was added. After cutting
the noise, the residual noise was obtained by subtracting
the signals from the noise-reduced matrix. Figure 1 plots
the added noise in circles and residual noise in dots for
the �rst pulse. Results for all other pulses are similar.
It is remarkable that this simple procedure can signi�-
cantly reduce the random noise of each individual BPM
reading. In other words, we can improve BPM resolu-
tion individually by using a large number of BPMs and
su�ciently large number of pulses. Though simple and
powerful, this method seems not to have been used before
for beam dynamics analysis. However, a similar method
( i.e. setting signal instead of noise singular values to
zero) has been used for estimating BPM resolutions [8].

V. SINGULAR VALUE DECOMPOSITION

In this section we focus on the physical and statistical
meaning of the SVD results in order to illustrate their
usefulness and limitations for beam dynamics analysis.
Mathematically, an SVD of the matrix B yields

B = USV T =

dX
i=1

�iuiv
T
i (11)

where UP�P = [u1; � � � ; uP ] and VM�M = [v1; � � � ; vM ]
are orthogonal matrices, SP�M is a diagonal matrix with
nonnegative �i along the diagonal in nonincreasing order.
d = rank(B) is the number of nonzero singular values. �i
is the i-th largest singular value of B and the vector ui
(vi) is the i-th left (right) singular vector. Often (assum-
ing M < P since we are interested in overdetermined
system only) a trimmed down version is used, in which
only the �rst M columns of U and the �rst M rows of
S are kept. The singular values are uniquely determined
and the singular vectors corresponding to the distinct sin-
gular values are determined up to a sign. The singular
values reveal information of the matrix rank while each
set of singular vectors form an orthogonal basis of the
various spaces of the matrix. These properties make the
SVD extremely useful. There are direct relationships be-
tween SVD and the eigenvalue problem of real symmetric
matrices, which can be seen from

BTB = V S2V T and BBT = US2UT ; (12)

i.e. the column vectors of V (U ) are eigenvectors of
the real symmetric matrix BTB (BBT ) with eigenvalues
given by the corresponding diagonal term �2i 's.
Since BTB is the covariance matrix of BPM readings,

SVD in fact accomplishes the principal components anal-
ysis of BPM readings. Unlike the physical base decompo-
sition given in Eq.(6), the orthogonal base decomposition
in Eq.(12) is uniquely determined by B. From this we
can conclude that both the singular values (in S) and the
right singular vectors (in V ) should be repeatable for dif-
ferent ensembles of pulses, providing that the machine is
stable (i.e. all machine conditions are the same). On the
other hand, the U matrix will change from one ensemble
to another because BBT does not represent a stationary
statistical property of the system.
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Three world records via passive corrs.

εy = 0.9± 0.4 pm
via random walk optimization

HL-

LHC

L = 2.1× 1034 cm−2s−1

Luminosity optimized via
downhill Simplex
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Dynamic linear imperfections

F Ground motion and vibrations in quadrupoles
produce sinusoidal dipolar fields

F Electrical noise can cause currents in
quadrupoles and dipoles to oscillate in time

F Electromagnetic pollution can act directly on
the beam.

F Slow variations (f << Qx ,y frev) just cause a
time varying orbit and optics

F Fast variations (f ≈ Qx ,y frev) can cause
resonances and emittance growth
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An oscillating dipolar field

F Let Qdip = fdip/frev be the tune of the dipolar
field oscillation.

F This causes the appearance of new resonances

F Linear resonances: Qx ± Qdip = N

F Non-linear resonances of sextupolar order:

Qx ± 2Qdip = N

2Qx ± Qdip = N

F Note that mQdip = N is not a problem
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Oscillating dipolar field, Qx 6= Qdip
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Orbit oscillates with Qdip but there is no emittance
growth far from resonances.
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Oscillating dipolar field, Qx = Qdip

-15

-10

-5

 0

 5

 10

 15

 0  500  1000  1500  2000

x
 [

a
.u

.]

Turn number

Linear growth in time → Emittance growth.
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An oscillating quadrupolar field

F Let Qquad = fquad/frev be the tune of the
quadrupolar field oscillation.

F This causes the appearance of new resonances

F Linear resonances: 2Qx ± Qquad = N
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Oscillating quadrupolar field, 2Qx 6= Qquad
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Tune is modulated with Qquad , displaying sidebands
at Qx ± Qquad but there is no emittance growth far
from resonances.
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Oscillating quadrupolar field, 2Qx = Qquad
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Exponential growth, clear signatures depending on
the oscillating field type.
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Concluding...
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Luminosity imbalance CMS/ATLAS

Fill number in 2011

C
M

S
/A

T
L

A
S

(l
um

i
ra

ti
o)

5%

10%

ATLAS was not happy to get lower luminosity. This
was due to β-beating at the IPs.



Space charge simulations with measured
optics in J-PARC, K. Ohmi et al., IPAC 2013

 

 
Figure 1: Measured optics parameters, Twiss parameters 
(α,β), x-y coupling (r1-4). 
 

 
Figure 2: Beam loss given by space charge simulation 
with the measured optics. Top and bottom plots depict 
beam loss for optics errors in sextupoles and space charge 
elements, respectively. 

 
Figure 2 shows beam loss given by space charge 

simulation with the measured optics. In the top picture, 
measured optics V=BR is adopted at space charge 
elements, while V=BR, V=B and V=B0R are adopted at 
the sextupoles, in Green, Blue and Magenta lines, 
respectively. Strong beam loss is seen in Green (V=BR) 
and Magenta (V=B0R) lines. This behavior indicates that 
x-y coupling in sextupoles is dominant for the beam loss. 

In the bottom picture, V=B0 is adopted in sextupoles, 
while V=BR, V=B and V=B0R are adopted at the space 
charge elements in Green, Blue and magenta lines, 
respectively.  The loss rate is far less than the cases with 
optics erros in sextupoles. Error of beta function 
dominates in the beam loss compare than x-y coupling for 
space charge elements.  

 

LATTICE RESONANCE INDUCED BY 
MEASURED OPTICS 

We now study resonance characteristics induced by 
sextupole magnets for the measured linear optics. One 
turn map is modeled by tune spread due to space charge 
potential (U0(Jx,Jy)) and resonance (Gm(Jx,Jy)) from 
sextupoles hereafter as follows, 

 
 

(11) 
where resonance terms due to space charge and tune 
spread due to sextupoles are neglected. This model is 
motivated by the simulation results, in which the beam 
loss is mainly caused by optics error in sextupoles (Figure 
2).  

Beam particles are diffused by a resonance and its 
modulation due to synchrotron motion [3]. Resonance 
island width is essential parameter to characterize the 
emittance growth,  

,                       (12) 
where Λ, which is tune sloop in J space, is represented by 
second derivatives of the space charge potential, 

(13) 
Figure 3 shows d2U/dJx

2 of the space charge potential for 
a round beam. d2U/dJy

2 and d2U/dJxdJy have similar 
behavior. The tune sloop of space charge is far larger than 
that of lattice nonlinearity. The values of z axes are 
d2U/dJx

2=3x106 for J/ε=4 (2σ), 1x106 for J/ ε =9(3σ). The 
space charge force induces resonances far from the 
operating point, while their widths are small due to the 
large tune sloop. Lattice tune spread (weak space charge) 
induces resonances near the operating point, while their 
widths are large due to the small tune sloop. 
   The tune shift (spread) of the space charge potential is 
shown in Figure 4. Black and red dots show tune for peak 
and its half line density of the J-PARC beam in every 0.5 
ε step (0<Jxy<16 ε). Resonance lines overlapping the tune 
spread area are indicated by (mx,my), where the operating 
point is (νx, νy)=(0.4,0.75).  
   The resonance strengths (Gm) of sextupoles are 
evaluated by polynomial one turn map by 12-th order. 
The map is factorized by 
 
 

       (14) 
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K. Ohmi et al.: “Estimation of errors of accelerator
elements is inevitable to study beam loss.”
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