Light Sources based on Storage Rings

Lenny Rivkin

Paul Scherrer Institute (PSI) and Swiss Federal Institute of Technology Lausanne (EPFL)

Electron Beam Dynamics, L. Rivkin, Introduction to Accelerator Physics, Budapest

Light sources: > 50 producing synchrotron light 60'000 users world-wide

Electron Beam Dynamics, L. Rivkin, Introduction to Accelerator Physics, Budapest

THE ELECTROMAGNETIC SPECTRUM 10-8 10-9 10-10 10-11 10-2 10-6 10-7 10-12 10^{3} 10² 10-3 10-5 10¹ 10-1 10-4 1 Wavelength (in meters) longer Mo shorter 8 Size of a This Period wavelength Cell Water Molecule 의미비 Baseball Protein Soccer Bacteria Virus Field House Common name of wave "HARD" X RAYS RADIO WAVES INFRARED VISIBLE ULTRAVIOLET MICROWAVES "SOFT" X RAYS GAMMA RAYS Sources 17 Microwave FM Radio Radar rf Radioactive Light Bulb AM Oven The ALS Cavity X-Ray Elements Machines People Radio Frequency (waves per 1017 1012 1013 1015 1018 1019 10^{8} 109 10^{10} 1011 1014 1016 1020 106 107 second) higher lower Energy of one photon (electron volts) 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 102 103 105 10-1 10¹ 10^{4} 106 1

Wavelength continuously tunable !

Materials - key to our technologies

Materials - key to our technologies

The "brightness" of a light source:

Bertha Roentgen's hand (exposure: 20 min)

3 types of storage ring sources:

1. Bending magnets: **B** ~ **N**_e

3 types of storage ring sources:

3 types of storage ring sources:

Anatomy of a light source

Undulator based beamline

Synchrotron storage ring

Bright beams of particles: phase space density

Incoherent, spontaneous emission of light:

Coherent, stimulated emission of light

Large phase space

Permanent magnet undulators

Permanent magnet materials: SmCo₅, NdFeB e.g. a pencil made of such material corresponds to 15'000 A-turns!

Hybrid undulator: permanent magnets and iron

(PFL —

Electron Beam Dynamics, L. Rivkin, Introduction to Acce

Field tuning with gap

Permanent magnet material	Remanent field [T]
SmCo ₅	0.9 – 1.0
Sm ₂ Co ₁₇	1.0 – 1.1
NdFeB	1.0 – 1.4

Selection of wavelength in an undulator II

The path difference $\delta L \equiv n\lambda \approx (1-\beta)\lambda_u, \quad 1-\beta \approx \frac{1}{2\gamma^2}$ $\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2}\right)$ detour through slalom $K = 0.0934 \cdot \lambda_u [mm] \cdot B[T]$

Undulator radiation

$$\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

In-vacuum undulators / s.c. undulators

Electron Beam Dynamics, L. Rivkin, Introduction to Accelerator Physics, Budapest

Undulator line width

 $N_{\mu} = \infty \implies$

Undulator of infinite length

- radiation pulse has as many periods as the undulator
- the line width is

Due to the electron energy spread

Radiation cone of an undulator

- Undulator radiates from the whole length L into a narrow cone.
- Propagation of the wave front BC is suppressed under an angle θ_0 ,

if the path length AC is just shorter by a half wavelength compared to AB (negative interference). This defines the central cone.

$$\Delta L = AB - AC = \frac{1}{2}L(1 - \cos\theta_0) \approx \frac{1}{4}L\theta_0^2$$

Negative interference for $\Delta L = \frac{\lambda}{2}$

$$\theta_0 = \sqrt{\frac{2\lambda}{L}}$$
 $R_0 = \sqrt{\frac{\lambda \cdot L}{2}}$

$$\varepsilon_0 = \theta_0 R_0 = \lambda$$

W. Joho

WHAT DO USERS EXPECT FROM A HIGH PERFORMANCE LIGHT SOURCE ?

- PROPER PHOTON ENERGY FOR THEIR EXPERIMENTS
- **BRILLIANCE**
- STABILITY

$$\mathbf{B} = \frac{\Phi}{(2\pi)^2 \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}}$$

FIGURE OF MERIT

$$\Sigma^2 = \sigma_e^2 + \sigma_\gamma^2$$

$$\Sigma_{x}\Sigma_{x'} \approx \sigma_{x}\sigma_{x}' \sim \varepsilon_{x}$$

Photon beam size (U):

$$\sigma_{\gamma} = \sqrt{\frac{\lambda}{L}}$$

The electron beam "emittance":

The brightness depends on the geometry of the source, i.e., on the electron beam emittance

Emittance = $S \times \Omega$

Undulator radiation from 6 GeV beam with zero emittance, energy spread (example ESRF)

Emittance 4 nm·rad, 1% coupling, finite energy spread

Electron beam phase space

Emittance

Units of
$$\varepsilon \ [m \cdot rad]$$

Transverse electron beam distribution

- Gaussian
- "Typical" particle: 1σ ellipse (in a place where $\alpha = \beta' = 0$)

Area = $\pi \cdot \varepsilon$

$$\sigma_{x} = \sqrt{\varepsilon \beta}$$

$$\sigma_{x'} = \sqrt{\varepsilon \beta}$$

$$\varepsilon = \sigma_{x} \cdot \sigma_{x'}$$

$$\beta = \frac{\sigma_{x}}{\sigma_{x'}}$$

Radiation effects in electron storage rings

Average radiated power restored by RF

- Electron loses energy each turn to synchrotron radiation
- RF cavities accelerate electrons back to the nominal energy
- Radiation damping
 - Average rate of energy loss produces **DAMPING** of electron oscillations in all three degrees of freedom (if properly arranged!)
- Quantum fluctuations
 - Statistical fluctuations in energy loss (from quantized emission of radiation) produce RANDOM EXCITATION of these oscillations

Equilibrium distributions

 The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam

Small emittance lattices

Equilibrium horizontal emittance

$$\varepsilon_{x0} \equiv \frac{\sigma_{x\beta}^2}{\beta} = \frac{C_q E^2}{J_x} \cdot \frac{\langle \mathcal{H} \rangle_{mag}}{\rho}$$

- one tries to optimize the \mathcal{H} function in **bending** magnets $\mathcal{H} = \gamma D^2 + 2\alpha DD' + \beta D'^2$
- the equilibrium emittance can be written as:

Theoretical minimum emittance

Minimum emittance lattices

Tight focus in the middle of the bending magnets – need space!

Many bending magnets - need space!

X-ray emittance from electron source: a convolution of electron and photon phase space

R. Hettel

HITTING THE DIFFRACTION LIMIT

BRIGHTNESS:

Light of wavelength λ focused to spot size Δx will diffract with angle $\Delta \psi = \sim \lambda / \Delta x$

Coherence fraction

Transverse coherence

- High brightness gives coherence
- Wave optics methods for X-rays (all chapters in Born & Wolf)
- Holography

The knee of a spider

phase contrast imaging

ELECTRON INTENSITY

x position [µm]

A revolution in storage ring technology

Pioneer work: MAX IV (Lund, Sweden)

Emittance reduction from nm to 10...100 pm range

The MAX IV Laboratory in Lund, Sweden

The world is moving to ever brighter ring sources

2-bend achromat

BNL: NSLS-II (2014): 3 GeV, <1000pm x 8 pm, 500 mA (New) 1st multi-bend achromat ring upgrade

France: **ESRF-II** (2020): 6 GeV, 160 pm x 3 pm, 200 mA (**New**)

7- bend achromat

Sweden: **MAX-4** (2016): 3 GeV, 230 pm x 8 pm, 500 mA (**New**)

U.S.

5- bend achromat

Brazil**: SIRIUS** (2016/17): 3 GeV, 280 pm x 8 pm, 500 mA (**New**)

APS-U: 6 GeV, 60 pm x 8 pm,

200 mA (Upgrade

ALS-U: 2 GeV, 50 pm x 50 pm, 500 mA (Upgrade proposal)

Other international upgrades: Japan (Spring 8, 6 GeV), China (BAPS, 5 GeV), Germany (PETRA-IV, France (SOLEIL), Switzerland (SLS, 2.4 GeV), Italy (ELETTRA) and others are

Brightness and coherence of 3rd and 4th gen rings

Legend: 0.2km/2GeV: ALS-II, 52 pm 0.8km/3GeV: NSLS-III, 30 pm 1.1km/6GeV: APS-II, 80 pm 2.2km/6GeV: PEP-X, 5 pm 6.2km/9GeV: tauUSR, 3 pm

For 6 GeV rings, a common set of IDs, including advanced SCUs, was assumed

M. Borland

Sirius: 5 Bend Achromat

- **PM Superbend** ٠
- B = 2T٠
- Gap = 28 mm
- Field flexibility = 6% (using lateral control gap)

ß [m]

20 units total

$\epsilon_{x/v}$ = 190-270/3 pm.rad @ 3 GeV, 350 mA, C = 518

New optics with lower β at the 6 m straig **M** sections to match the electron beam • phase-space to the photon beam phase-space from IDs. κ = 1%

APS-U – hybrid 7BA

ALS-U – hybrid 9 Bend Achromat

$\epsilon_{x/y}$ = 50/50 pm.rad @ 2 GeV, 500 mA

SLS 2.0 upgrade plans

 $\varepsilon_x = 140 \text{ pm.rad} @ 2.4 \text{ GeV}$

oletip Field

0.0

bend

1.0

S [m]

1.5

2.0

0.5

- variation (2 T peak)
- options for 5-6 T peak field superbends
- anti-bends for beam dynamics \Rightarrow star-shaped lattice

Diffraction limited rings: the new wave

Storage rings in operation (\cdot) and planned (\cdot) . The old (-) and the new (-) generation.

R. Bartolini

Compact light source COSAMI

Conventional, normal conducting magnetic structure

Electron Beam Dynamics, L. Rivkin, Introduction to Accelerator Physics, Budapest

Injector and storage ring integration

When an electron collides with a photon...

Also known as **Compton** or Thomson scattering

 $\boldsymbol{\varepsilon}_f = \frac{4\gamma^2 \varepsilon_i}{1 + \gamma^2 \boldsymbol{\omega}^2}$

backscattered photon has the maximum energy

- at an angle of $1/\gamma$ the energy drops by a factor of 2
- undulator's periodic magnetic field could be viewed as a «photon», with useful parallels between the two cases

Compact light source based on Compton scattering

Compact Light Source

www.lynceantech.com