

Synchrotron Light Machines and FELs II Rasmus Ischebeck, Paul Scherrer Institut

molecular chassis

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

rotating molecular motor

The Royal Swedish Academy of Sciences

Rasmus Ischebe

-

....

....

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

Wikimedia Commons, DESY

Electron bunch

 $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \gg 1$

Magnetic field in the undulator $B_{y}(0,0,z) = B_{0}\sin(2\pi z/\lambda_{u})$

 $B_{x}=0$ $B_y = B_0 \cosh(2\pi y/\lambda_u) \sin(2\pi z/\lambda_u)$ $B_z = B_0 \sinh(2\pi y/\lambda_u) \cos(2\pi z/\lambda_u)$

Motion of the electrons in the lab frame

$$m_e \gamma \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{F} = -e\vec{v} \times \vec{B}$$

 $m_e \gamma \frac{\mathrm{d} v_x}{\mathrm{d} t} = e v_z B_y = e v_z B_0 \sin(k_u z)$

$$\implies v_x(z) = -\frac{Kc}{\gamma} \cos(k_u z)$$

with
$$K = \frac{eB_0}{m_e ck_u}$$

$$x(z) = -\frac{K}{k_u \gamma \beta_z} \sin(k_u z)$$

The electrons emit in a narrow cone with opening angle $\vartheta = \gamma$

The fundamental harmonic of this radiation is given by:

$$\lambda = \frac{\lambda_u}{\gamma^2} \cdot \frac{(1 + K^2/2)}{2}$$

mean speed of the electrons:

$$\overline{\beta}_z = 1 - \frac{2 + K^2}{4\gamma^2}$$

external electromagnetic wave:

 $\vec{E} = \vec{u}_x \tilde{E}_x \cos(kz - \omega t + \psi_0)$

Energy gain:
$$\frac{dW}{dt} = -e\vec{E}\cdot\vec{v}$$
$$= e\tilde{E}_x\cos(kz-\omega t+\psi_0)\frac{cK}{\gamma}\cos(k_u z)$$
$$= \frac{e\tilde{E}_xcK}{2\gamma}\left[\cos((k+k_u)z-\omega t+\psi_0) + \frac{e\tilde{E}_xcK}{2\gamma}\right]$$

 $\cos((k-k_u)z-\omega t+\psi_0)$

Sven Reiche

The Importance of the FEL Parameter p

FEL parameter ρ . Typical values = $10^{-4} - 10^{-2}$

$$\rho = \frac{1}{\gamma_0} \left[\left(\frac{f_c K}{4k_u \sigma_x} \right)^2 \frac{I}{2I_A} \right]^{\frac{1}{3}} \begin{bmatrix} f_c \\ I \\ \sigma \\ I_A \end{bmatrix}$$

Scaling of 1D theory Gain length Efficiency

$$L_g = \frac{\lambda_u}{4\pi\sqrt{3}\cdot\rho} \qquad P_{FEL} \approx \rho P_{beam}$$

Beam Requirements: Energy Spread

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

c: coupling factor (~0.9 for planar undulator)

electron peak current

 σ_x : transverse beam size

A: Alfven current (~17 kA)

SASE Spike LengthBandwidth
$$L_c = \frac{\lambda}{4\pi\rho}$$
 $\frac{\Delta\omega}{\omega} = 2\rho$

Synchrotron Light Machines and FELs II Rasmus Ischebeck, Paul Scherrer Institut

>Motivation

>Physical processes in a free electron laser

>Free electron lasers for XUV and X-Rays

>Components of a free electron laser

7

AT

EFN

100

1.1.*******

Synchrotron Light Machines and FELs II Rasmus Ischebeck, Paul Scherrer Institut

>Motivation

>Physical processes in a free electron laser

>Free electron lasers for XUV and X-Rays

>Components of a free electron laser

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

29

three cell **RF** cavity

symmetric **RF** power coupler

läserbeam

Ultra precise mach photo cathode

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

cooling channels

PSI

Single-crystal CeB₆ Cathode for XFEL/SPring-8 & SCSS Low-emittance Injector

No HV breakdown for 4 years daily operation

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

After 20,000 hours operation 1 crystal changed.

Diameter : ϕ 3 mm Temperature : ~1500 deg.C Beam Voltage : 500 kV Peak Current: 1 A Pulse Width : ~2 µs Beam Chopper: 1 nsec

tion

A contract of the second secon

++++1

1015

1 100 H

A LOUGH COM

The importance of emittance

Transversely coherent FEL radiation is generated if:

In the case of SwissFEL:

[1] E. Prat, et al., Phys. Rev. ST-AB 17, 104401 (2014).

[2] L. Serafini and J. B. Rosenzweig, Phys. Rev. E 55, 7565 (1997).

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

- ε_N : normalized emittance γ : Lorentz factor λ: FEL radiation wavelength

A way to minimize ε_N is to apply a scheme known as "invariant envelope matching" [2,3]:

[4] S. Bettoni et al., Phys. Rev. ST-AB 18, 123403 (2015).

PAUL SCHERRER INSTITUT Magnetname : HFA - 01 2014 Strom / Spannung : 10A / 1.36V 8.5 kg

MAG3422 HFA01

.

¥

E

Effect of the adjustements on the field errors

Sample-flowing systems

Microdroplet Openjet Capillary Gas nozzle

Synchronized Elements

- Photocathode laser
- RF accelerating cavities
- Transverse deflecting structures
- EO bunch length diagnostics

- Seed lasers
- Experiments

Boris Keil

-8

Rea

18

100.0

í,

Ċ.

100

Contraction of the

Contraction of

11.1

Lasing off

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

Lasing on

6

Relative arrival time

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

Pulse length from slope1

Pavle Juranić et al., FEL 2014

Synchrotron Light Machines and FELs II Rasmus Ischebeck, Paul Scherrer Institut

>Motivation

>Physical processes in a free electron laser

>Free electron lasers for XUV and X-Rays

>Components of a free electron laser

© 2016 Paul Scherrer Institut

Rasmus Ischebeck

PAUL SCHERRER INSTITU

Thank you for slides, illustrations, photos and movies:

- > BioVisions, Harvard University
- > Bruce Patterson
- > Chris Milne
- > DESY
- > Eduard Prat
- > Eugenio Ferrari
- > Florian Löhl
- > Heinz Graafsma
- > LCLS, SLAC
- > Luc Patthey
- > Marco Calvi
- > Nick Veasey
- > Peter Heimgartner
- > Patrick Krejcik
- > Pavle Juranic
- > PSI
- > Royal Swedish Academy of Sciences
- > Simona Bettoni
- > Sven Reiche
- > SXFEL, SINAP
- > Tsumoro Shintake
- Slides available at: <u>http://www.ischebeck.net</u>

64

Questions?

