

Superconducting Magnets

Gijs de Rijk CERN

CAS

Budapest, Hungary, 7th October 2016

High Field Accelerator Magnets

- Introduction: magnetic field and superconducting magnets
- How to get high fields in accelerator dipole and quadrupole magnets ?
- Superconductors for magnets
- Practical accelerator magnet design
- High field superconducting magnets for future accelerators
- Literature on High Field Magnets

Maxwell equations

Integral form

Differential form

$$\begin{split} \oint \vec{H} d\vec{s} &= \int_{A} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) d\vec{A} & \text{Ampere's law} & rot \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \\ \oint \vec{E} d\vec{s} &= -\frac{\partial}{\partial t} \int_{A} \vec{B} d\vec{A} & \text{Faraday's equation} & rot \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \int_{A} \vec{B} d\vec{A} &= 0 & \text{Gauss's law for} \\ \int_{A} \vec{D} d\vec{A} &= \int_{V} \rho dV & \text{Gauss's law} & div \vec{B} = 0 \\ \end{split}$$

$$\begin{split} \text{With:} \quad \vec{B} &= \mu \vec{H} = \mu_{0} (\vec{H} + \vec{M}) \\ \vec{D} &= \varepsilon \vec{E} = \varepsilon_{0} (\vec{E} + \vec{P}) \end{split}$$

 $\vec{J} = \kappa \vec{E} + J_{imp.}$

Magnetic field quality: multipole description

$$B_{y}(z) + iB_{x}(z) = 10^{-4}B_{1}\sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

with:

z = x + iy,

 B_x and B_y the flux density components in the x and y direction, R_{ref} the radius of the reference circle,

 B_1 the dipole field component at the reference circle,

 b_n the normal nth multipole component,

 a_n the skew nth multipole component.

In a ring shaped accelerator, where the beam does multiple passes, one typically demands :

 $a_n, b_n \le 1 \text{ unit } 10^{-4}$

In 3D, the longitudinal dimension of the magnet is described by a magnetic length

A circular yoke around the coil can give a 10-15% field increase

The magnetic length L_{mag} for SC magnets is adjustable by varying the length of the yoke: often the coils stick outside the end of the yoke: no easy rule of thumb for L_{mag}

Magnetic fields

From Ampere's law with no time $\mathbf{\hat{0}}_{\mathcal{A}}\vec{B} \times d\vec{l} = \mathcal{M}_0 I_{encl.}$ dependencies (Integral form) We can derive the law of Biot and Savart \vec{B} $\vec{B} = \frac{III_0I}{2\rho w}$ If you wanted to make a B = 8 T magnet with just two infinitely thin wires placed at 50 mm distance one needs : $I = 5 \cdot 10^5$ A 100 LHC dipole coil 80 turns of 11850 A at 8.3 T = $9.48 \cdot 10^5$ A) 80 ➔ To get high fields one needs very large currents in small 60 y (mm) volumes 40 20 For LHC dipole@8.3 T ~1 MA in 3300 mm² : ~300 A/mm² 0 (overall current density in the coil area) 0 80 100 20 60 x (mm)

Courtesy E. Todesco

Coils for generating the Perfect Dipole Field

- Conductors 2 solid Intercepting ellipses (or circles)
 - A uniform, opposite polarity, current density in the area of two intersecting ellipses produces a pure dipolar field, but:
 - The aperture is not circular
 - Not easy to simulate with a flat cable

Thick conductor shell with a $cos\theta$ current distribution $J = J_0 \cos\Theta$

- Pure dipolar field
- Easier to reproduce with a flat rectangular cable

Magnet types and higher orders

a "pure" multipolar field can be generated by a specific coil geometry

Budapest, 7-Oct-2016, SC magnets, GdR

CAS

What is specific about accelerator magnets ?

- Cylindrical volume with perpendicular field
- Dipoles, quadrupoles, etc

Field quality:

Artist view of a dipole, from M. N. Wilson « Superconducting Magnets »

 $\cos\Theta$ coil : $J = J_0 \cos\Theta$

Field quality formulated and measured in a multipole expansion,

$$B_{y} + iB_{x} = 10^{-4} B_{1} \overset{\stackrel{\text{\tiny }}{\overset{\text{\tiny }}{\underset{n=1}}} \left(b_{n} + ia_{n} \right) \overset{\stackrel{\text{\tiny }}{\underset{\substack{\in}}{\underset{n=1}}} \left(x + iy \overset{\stackrel{\text{\tiny }}{\overset{\text{\tiny }}{\underset{\substack{\in}}{\underset{n=1}}}} \right) \overset{\text{\tiny }}{\underset{\substack{\in}{\underset{\substack{\in}}{\underset{n=1}}}} \left(x + iy \overset{\stackrel{\text{\tiny }}{\overset{\text{\tiny }}{\underset{\substack{\in}}{\underset{n=1}}}} \right)}$$

- $b_n, a_n \in few \times units$
- Long magnets: dipoles from 6 m (Tevatron) to 15 m (LHC)
- Often magnets are bend (9.14 mm sagitta for the LHC dipoles)

The state of the art: Comparison between dipoles and solenoids

We can see roughly a factor 2 due to Coil «efficiency» and to force-stress management

Superconducting accelerators magnets; the state of the art

- Maximum attainable field slowly approaches 16 T
 - 20% margin needed (80% on the load line):

for a 16 T nominal field we need to design for 20 T

magnets, GdR SC Budapest, 7-Oct-2016, CAS

Scaling of force on coil quadrant vs. Field Plot for recent production and R&D dipoles

The electromagnetic loads in a 20 T dipole would be a factor 5 to 8 larger than in the LHC dipoles

CERN

Stored Energy

Scaling of the energy per unit length of magnet vs. Field Plot for recent production and R&D dipoles

Scaling of the energy per unit length of magnet in recent production vs. R&D dipoles

Existing Superconducting Accelerator dipole magnets (1)

Existing Superconducting Accelerator dipole magnets (2)

Existing Superconducting Accelerator dipole magnets (3)

	Machine	place	Туре	Energy (GeV)	Peak Dipole field (T)	# dipoles	Dipole Length (m)	Ring circ. (km)	Year
R	Tevatron	FNAL (USA)	p-pbar FT/coll.	1000 x 1000	4.4	774	6.12	6.28	1983/ 1987
lets, Gd	HERA	DESY (D)	e ^{-/+} - p collider	40x920	5	416	8.82	6.34	1992
, SC magn	RHIC	BNL (USA)	p-p, Au- Au, Cu- Cu, d-Au	100/n	3.5	2x192+12	9.45	3.83	2000
)ct-2016	LHC	CERN (Eu)	p-p, Pb-Pb	7000 x 7000	8.34	1232	14.3	26.66	2008

20 years were needed to go from 4 T to 8 T !

Type II Superconductors

Below a the critical surface the material is "superconducting". Above the surface it is "normal conducting"

- \Box Θ_c Critical Temperature (at zero field and current density)
- *B_{c2}* Critical Field (at zero temperature and current density)
- J_c Critical Current Density (at zero temperature and field)

The Critical surface depends on the material type Nb-Ti, Nb₃Sn, etc) and the processing

Superconducting means: R = 0

J: few x 10³ A/mm² inside the superconductor

Courtesy L. Bottura

Quantized fluxoids

in a superconductor

CAS Budapest, 7-Oct-2016, SC magnets,

GdR

Superconductivity

Typical operational conditions (0.85 mm diameter strand)

18

Superconducting materials: Nb-Ti

- Niobium and titanium combine in a ductile alloy
 - It is easy to process by extrusion and drawing techniques.
- When cooled down to about 9 K it becomes a type II superconductor.
 - T_c is ~9.2 K at 0 T.
 - B_{C2} is ~14.5 T at 0 K.

The cost is approximately 100-150 US\$ per kg of wire.

Courtesy: M.N. Wilson

Superconducting materials: Nb₃Sn

- Niobium and tin form Nb₃Sn
 - Brittle and strain sensitive
- When cooled down to about 18 K it becomes a type II superconductor.
 - T_{C0m} is ~18 K at 0 T and 0 strain.
 - B_{C20m} is ~28 T at 0 K and 0 strain.

The cost is approximately 700-1500 US\$ per kg of wire.

Courtesy: A. Godeke

Available Superconductors

 10^{4}

Nb-Ti

Maximal J, at 1.9 K for entire LHC Nb1

4.2 K LHC Insertion

Nb-Ti: the workhorse for 4 to 10 T

Up to $\sim 2500 \text{ A/mm}^2$ at 6 T and 4.2K or at 9 T and 1.9 K

Well known industrial process, good mechanical properties

Thousands of accelerator magnets have been built

10 T field in the coil is the practical limit at 1.9 K

Nb₃Sn: towards 20 T

Up to ~3000 A/mm² at 12 T and 4.2 K

quadruole strand strand production (CERN-T. Boutboul $\overline{\mathbf{z}}$ (Boutboul et al. 2006) 07). Reducing the temperature from 4.2 K prduces a ~3 T shift in J, for Nb-Ti 4.2 Density (A/mm², 10^{3} 2223: B1 Controlled 3 Tape Plane Nb-Ti MEM'13 Sumitomo YBCO: B || Tape plane YBCO B1 4.22 K Hiah Field Electric (2012 Tape Plane → YBCO: B ⊥ Tape plane MRI srand (Luvata prod.) Bi-2212: OST NHMFL 100 bar OP 10^{2} High-J_c Nb₃Sn **Whole Wire** Bi-2223: B ⊥ Tape plane (prod.) Output Solution = Output S Bronze Nb₃Sn MgB2: 2nd Gen. AIMI 18+1 High Sn: High Sn Bronze Filaments . The OSU/ HTR Nb-Ti: LHC 1.9 K ASC'02 and CMC'03 paper: 🛶 🛯 Nb-Ti: LHC 4.2 K • ** • Nb-Ti: Iseult/INUMAC MRI 4.22 K 4543 filament Hiah Sn Bronze 16wt.%Sn-0.3wt%Ti (Miyazak MgB2: 18+1 Fil. 13 % Fill 10 5 10 15 20 25 30 35 40

Applied Magnetic Field (T)

YBCO B Tape Plane

Complex industrial process, higher cost, brittle and strain sensitive

25+ short models for accelerator magnets have been built

~20 T field in the coil is the practical limit at 1.9 K, but above 16 T coils will get very large

HTS materials: dreaming 40 T (Bi-2212, YBCO)

Current density is low, but very little dependence on the magnetic field Used in solenoids (20T range), used in power lines – no accelerator magnets have been built (only 1 model) – small racetracks have been built

45

April 2014

High temperature superconductor zoo

Superconducting strands: Nb-Ti

Nb-Ti is the workhorse for present accelerators, medical magnets, cyclotrons, etc

Strands and Cables for LHC Dipole Magnets

Performance specification					
STRAND	Type 01	Type 02			
Diameter (mm)	1.065	0.825			
Cu/NbTi ratio	$1.6-1.7 \pm 0.03$	$1.9-2.0 \pm 0.03$			
Filament diameter (µm)	7	6			
Number of filaments	8800	6425			
Jc (A/mm ²) @1.9 K	1530 @ 10 T	2100 @ 7 T			
μ ₀ M (mT) @1.9 K, 0.5 T	30 ±4.5	23 ±4.5			
CABLE	Type 01	Type 02			
Number of strands	28	36			
Width (mm)	15.1	15.1			
Mid-thickness (mm)	1.900 ±0.006	1.480 ±0.006			
Keystone angle (degrees)	1.25 ± 0.05	0.90 ±0.05			
Cable Ic (A) @ 1.9 K	13750 @ 10T	12960 @ 7T			
Interstrand resistance $(\mu \Omega)$	10-50	20-80			

Cable compaction ~ 91 %

Multifilament wires Fabrication of Nb-Ti multifilament wires

- Monofilament rods are stacked to form a multifilament billet, which is then extruded and drawn down.
- When the number of filaments is very large, multifilament rods can be re-stacked (double stacking process).

Multifilament wires Fabrication of Nb₃Sn multifilament wires

- Since Nb₃Sn is brittle, it cannot be extruded and drawn like Nb-Ti.
- The process requires several steps:
 - Assembly multifilament billets from Nb₃Sn precursor
 - Fabrication of the wire through extrusion-drawing
 - Fabrication of the cable
 - Fabrication of the coil
 - "reaction": the Cu, Sn and Nb are heated to 600-700 C and the Sn diffuses in Nb and reacts to form Nb_3Sn

Courtesy P. Ferracin, CERN

Nb₃Sn strand types

Superconducting strands and tapes: BSCO

- Available in strands (OST)
- Can reach 400 A/mm² (overall)
- Is fragile under stress and strain
- Powder in a silver tube
- Has to be reacted at 850° C with a temperature OST wire precision of 1° C in an oxygen atmosphere
 0.8 mm using
- Can be cabled in high current Rutherford cables Nexans

precursor

27

BiO

SrO

Difficult technology but could be promising for high field magnets in >20 T region

Superconducting tapes: YBCO

YBCO: Yttrium barium copper oxide

- Available in tapes : YBCO deposited on a substrate to impose the texture (1-2 μm)
- Can reach > 600 A/mm² (overall)
- Is strong under axial stress and strain
- Limited cabling possibilities:

 Difficult technology but could be promising for high field magnets in >20 T region.

Potted racetrack coils

YBCO SUPERPOWER Record field (25 T), adding 3 T NHMFL - Florida

Superconducting cables for magnets

We need multi-strand cables

- Superconducting accelerators are ramped up in time spans 100 s to 1000 s
- Coils are designed for voltages to ground of around 1000 V
- With the number of turns and the current the inductance is to be limited to keep the voltage below 1000 V
- Dipoles and Current:
 - Tevatron B = 4.4 T ; I ~ 4000 A
 - Hera B = 5 T ; I ~ 6000 A
 - LHC B = 8.3 T ; I ~ 12000 A
- For magnets 10 T < B < 15 T the current has to be 10kA < I < 15 kA
- For stability reasons strands are
 0.6 mm < strand diameter < 1 mm
- With a Cu-nonCu ratio (stability) around 1 and a Jc ~ 1000 A/mm²
 - ➔ a 1 mm diameter strand can carry ~400 A
 - ➔ so we need a 30 strand cable to get up to 12 kA

 $L \gg N^2$

Cable types

GdR

magnets,

SC

7-Oct-2016,

Budapest,

CAS

Rutherford cables

- Compact cables giving high overall current density
- Easy rectangular geometry for convenient winding

How to get high fields in accelerator dipole and quadrupole magnets ?

From Ampere's law one can derive the field resulting from the current in a line conductor and integrate this over the surface of a coil

- Dipole 60° sector coil [see ref 10, 14]
 - The field is proportional to the current density j
 - The field is proportional to coil width _
 - The field is *independent* of aperture

$$B_{1} = -4\frac{jm_{0}}{2\rho} \overset{\rho/3}{\overset{}{}_{0}} \overset{r}{\overset{}{}_{0}} \frac{\cos q}{r} r dr dq = -\frac{\sqrt{3}m_{0}}{\rho} jw$$

Cross-section of a dipole based on 60° sector coils

Cross-section of a quadrupole based on 30° sector coils

$$2\rho_{0r}$$
 Γ ρ

- with: r: inner radius coil w : coil width
 - ρ : radial coordinate
 - J: current density
- Quadrupole 30° sector coil [see ref 11, 14]
 - The gradient is proportional to the current density j
 - The gradient depends on *w/r*

$$G = -8\frac{jm_0}{2\rho} \overset{\rho/6}{\overset{\circ}{}_{r+w}} \underbrace{\cos q}_{r} r dr dq = -\frac{\sqrt{3}m_0}{\rho} j \ln \overset{\alpha}{\underset{e}{}_{r}} 1 + \frac{w \overset{\circ}{}_{r}}{r \overset{\circ}{}_{r}}$$

→ by having very high current density close to the beam pipe See: E. Todesco et al. ref[10] and indirectly : N. Wilson ref[1], K-H Mess et al. ref[2] For a in depth study of magnetic field calculations: S. Russenschuck ref[4]

The forces with high field dipole and quadrupole magnets

One can derive the maximum stress in the mid-plane for a sector dipole coil

Dipole 60° sector coil [see ref 1, 12] $S \gg j^{2} \frac{m_{0}\sqrt{3}}{6\rho} Max_{re[r,r+w]} \stackrel{\acute{e}}{\underset{\leftrightarrow}{\oplus}} 2r^{2} + \frac{r^{3}}{r} - 3r(r+w) \stackrel{\acute{u}}{\underset{\acute{u}}{\downarrow}}$ (Typically: for 8T: 40 MPa, for 13 T 130 MPa) Cross-section of a with: r : inner radius coil dipole based on 60° sector coils ρ : radial coordinate w: coil width J: current density Courtesy M. Wilson Quadrupole 30° sector coil [see ref 1, 13] $S \gg j^2 \frac{m_0 \sqrt{3}}{16\rho} Max_{re[r,r+w]} \stackrel{\acute{e}}{=} 2r^2 + \frac{r^4}{r^2} + 4r^2 \ln c \frac{r}{\rho} \frac{r}{r} \frac{r}{\rho} \frac{\dot{r}}{\rho}$ Cross-section of a quadrupole based on 30° sector coils

Electro-magnetic forces

The e.m. forces in a dipole magnet tend to push the coil

- Towards the mid plane in the vertical-azimuthal direction $(F_{y}, F_{\theta} < 0)$
- Outwards in the radial-horizontal direction (F_x , $F_r > 0$)

The e.m. forces in a quadrupole magnet tend to push the coil

- Towards the mid plane in the vertical-azimuthal direction $(F_{y}, F_{\theta} < 0)$
- Outwards in the radial-horizontal direction (F_x , $F_r > 0$)

Budapest, 7-Oct-2016, SC magnets, GdR CAS

SC magnets, GdR

CAS Budapest, 7-Oct-2016,

Conductor stability and AC behaviour

- Pure massive superconductor is not stable as they (Nb-Ti, Nb₃Sn) are poor normal conductors
- To 'cryogenically stabilize' the conductor one surrounds it in Cu:
 - good electrical conductivity
 - good heat transfer to the He
- During current ramping the filaments, will magnetize
 - ➔ make them thinner
- Filaments will have magnetic coupling
 twist the strand

Courtesy M. Wilson

- Practical low temperature superconductors are made as thin (5 μ m 100 μ m) superconducting filaments in a Cu matrix , which is twisted

Quench: a thermal runaway effect

Due to perturbations locally the conductor can get $T > T_c (J_l, B_l)$ A thermal runaway can then occur, called a

Quench

GdR SC magnets Budapest, 7-Oct-2016, CAS

With stored energies > MJ the coils can overheat if nothing is done (T = 3000K is possible !) What to do ?

- Detect the quench : SC: R=0 → V=0, quench V>0 (typically 100mV threshold)
- Switch power convertor off
- Heat up the whole coil with quench heaters
- Dump energy of the circuit into a dump resistor

Practical accelerator magnet design: Dipoles

Two types of coils are in use for high field magnets:

Cos(@) coil and Block coil

- Cos(Θ) coil (the traditional solution)
 - Allows a very good field quality ($b_n < 1.10^{-4}$) in thin coils
 - all (but one) existing accelerators use this type of coil
 - Is very efficient wrt the quantity of superconductor used
 - The EM forces cause a stress buildup at the midplane where also high fields are located
 - Wedges are needed in the straight part ('Keystoned' cable)
 - The ends are short, special geometry for which there is a large experience but not it is easy

saddle' coils make

better field

shapes

Courtesy M. Wilson

simplest winding

uses racetrack

coils

37

Practical accelerator magnet design: Dipoles

- Block coil (used on development magnets)
 - Used with thick coils the field quality is good
 - Not yet used in accelerators
 - Is less efficient (~10%) wrt to $cos(\Theta)$ for quantity of superconductor used
 - The EM forces cause a stress buildup at the outside edge of the coil where the fields are lower
 - The straight part is very easy : rectangular cable and wedges (field quality)
 - 'flared ends' look easy but there is little experience exists to make them

GdR

Quadrupole coil geometries

- Cos(Θ) coil
 - Allows a very good field quality ($b_n < 1.10^{-4}$)
 - all (but one) existing accelerators use this type of coil
 - Is very efficient wrt the quantity of superconductor used
 - The EM forces cause a stress buildup at the midplane where also high fields are located, (but are limited)
 - Wedges are needed in the straight part ('Keystoned' cable)

Courtesy M. Wilson

 The ends are short, special geometry for which there is a large experience but not it is easy

Prestress

- Why prestress ?
 - Field quality is determined by the cable positioning (be precise to ~0.02 mm)
 - Under the MN forces the coils will move
 - \rightarrow Apply prestress to fix the positioning
 - Very small amounts of heat can quench the coil: limit the movement (avoid stick-slip effects on ~10 μ m movements)
 - →Apply prestress to fix the positioning
 - How to put prestress ?

Three methods:

- 1. Compress at room temperature: collar system
- 2. Use room temperature prestress plus differential shrinkage at cooldown: Al or stainless steel shrinking cylinder and/or a (shrinking) key
- 3. Compress a bit at room temperature and use differential shrinkage at cooldown: Al shrinking cylinder + bladder and key system
- Order of magnitudes: LHC @ 8.34 T: 70 MPa warm, 30 MPa cold Fresca2 @ 13 T: 60 MPa warm, 130 MPa cold

Prestress: collars

"The classical solution"

- Thin collars put around the coil
- The coil is well contained in a fixed cavity
- Pressed together and locked with pins or keys
- At 300K apply a prestress 2-3 times of what is needed as part of the stress is lost during cooldown: for very high field tends to be too high (LHC:70 MPa at 300 K and 40 MPa at cold)
- Field quality is in good part determined by collar shape
- If the coils size is not so well controlled, the stress can be too high or too low
- Nb₃Sn is stress sensitive and this could be a problem

LHC dipole CERN

TQC quadrupole LARP-FNAL

Prestress: shrinking cylinder and/or prestress key

- The differential shrinking and room temperature prestress between a (thick) shell or key and the Fe (split) yoke provides prestress
- Pre-stress completely depends on dimensioning of the components and the materials

Figure 1: HFDA coil and magnet cross-sections. Courtesy A. Zlobin

Prestress: Al shrinking cylinder + bladder and keys

Developed at LBNL, example: TQS a LARP model quadrupole

300 K: Bladders pressurized with water (<600 bar) , then insert keys \rightarrow load between 10 MPa and 80 MPa

Cooldown: differential shrinkage between AL shell and Fe yoke load another ~100 MPa

Needs careful mechanical FE modeling before and strain measurements during bladder operations and cooldown

Looking in the kitchen of future magnet development

What is happening after the 8T magnets for LHC ? At CERN

- 1) Upgrade the LHC luminosity: HL-LHC (HILUMI)
 - use large aperture Nb_3Sn triplet quadrupoles (12T class)
 - improve collimation: use a few 11T dipoles to make space
- 2. Go to higher energies
 - 16 T Nb₃Sn dipoles in the LHC ring for E_{com} =26 TeV : HE-LHC
 - 16 T Nb₃Sn dipoles in a 100 km new ring for E_{com} =100 TeV : FCC (Future Circular Collider)

But even !

- 20 T HTS hybrid dipoles in the LHC ring: for E_{com} =33 TeV : HE-LHC
- 20 T HTS hybrid dipoles in a 80 km new ring for E_{com} =100 TeV : FCC

In China

A similar completely new project is being studied in China: SPPC (C=54 km, B=20 T, E_{com} =71 TeV)

For these, basic High Field Magnet development programs are since many years running in the US and Europe and recently in China

Superconducting accelerators magnets; the state of the art

- Maximum attainable field slowly approaches 16 T
 - 20% margin needed (80% on the load line):

for a 16 T nominal field we need to design for 20 T

CERN-European development evolution

Basic magnet technology development for HILUMI and beyond (2004-2013) ; US development evolution

History of LBNL and LARP Magnet Develop

Used bladder and key technology developed at LBNL

Sub-scale coils

By courtesy of D. Dietderich,

ERKELEY LA

ACCELERATOR TECHNOLOGY & ATA

Science

Basic HFM development : Some achievements at LBNL (1995-2004)

Since 20 years LBNL is running a high field dipole development program Some achievements:

- D20, 50 mm aperture, cosQ 4 layer dipole, reached 13.5 T@1.9K
- HD1, flat block coil, 8 mm aperture, reached 16 T
- HD2, flared end block coil, 36 mm aperture, reached 13.8 T

These pose a clear breakthrough above 10 T with a new coil layout (block coil) and a mechanical structure aimed (shell-bladder and keys) at high fields

Fig. 2. HD2 cross-section.

Fig. 1. HD2 assembled and pre-loaded.

A.D. McInturff, et al., Proc. of PAC 1997, 3212 48

Basic HFM development : EuCARD high field dipole (Fresca2):

- Fresca2 : CERN, CEA construction phase
- First tests 2014

- 156 turns per pole
- Iron post
- $B_{center} = 13.0 T$
- I_{13T} = 10.7 kA
- B_{peak} = 13.2 T
- E_{mag} = 3.6 MJ/m
- L = 47mH/m

- Diameter Aperture = 100 mm
- L coils = 1.5 m
- L straight section = 700 mm
- L yoke = 1.6 m
- Diameter magnet = 1.03 m

Courtesy Attilio Milanese, Pierre Manil

Fabrication of Fresca2 coils

Straightforward technology to wind block coils with flared ends: This is a lesson for FCC magnets !

HILUMI IT magnet zoo

GdR

SC magnets,

7-0ct-2016,

Budapest,

CAS

HL-LHC: MQXF low beta Nb₃Sn quadrupole

Spring 2016 the first model achieved the nominal and ultimate field at FNAL !

By courtesy of G. Ambrosio (FNAL), P. Ferracin (CERN et al)

A CERN LARP collaboration. Nominal Gradient 132.6 T/m Aperture diameter 150 mm Peak Field 12.1 T Current 17.5 A Loadline Margin 20% @ 1.9 K Stored Energy 1.32 MJ/m

HL-LHC: 11 T Dispersion suppressor magnet

11.2 T - Nominal field

25

31 53

- Present model program (CERN and FNAL)
 - demonstrated the required performance (11.25 T at 11850 A) and Achieved accelerator field quality

Nominal Field 11 T Aperture diameter 60 mm Peak Field 11.35 T Current 11.85 kA Loadline Margin 19.7% @ 1.9 K Stored Energy 0.96 MJ/m

Quench number

FCC development

Magnets for FCC and HE-LHC

20

15

5

0

Operational field (T)

- For a 17 + 17 TeV collider ۰
 - Need 20 T dipoles
- 2010 first ideas on HE-LHC magnets •
- Graded HTS Nb₃Sn Nb-Ti ٠

Material	N. turns	Coil fraction	Peak field	J _{overall} (A/mm ²)
Nb-Ti	41	27%	8	380
Nb3Sn (high Jc)	55	37%	13	380
Nb3Sn (Low Jc)	30	20%	15	190
HTS	24	16%	20.5	380

FCC: Magnet design for 16 T dipoles, LTS Nb₃Sn

US program lines

CAS

FCC: 16T dipole options

58

FCC Nb₃Sn performance targets

HTS: First attempt towards 20 T

6 T HTS (YBCO) insert for test in FReSCa2 To get to 19 T But without bore

60

CEA + CRNS Grenoble

CU

EuCARD2 5T accelerator quality ReBCO magnet

5 Tesla stand alone, (18 T in 13 T background), @ 4.5K, 40 mm aperture, 10 kA class cable, Accelerator Field quality

EuCARD2 5T : Feather0 - Feather-M2.0

- Feather0: First coil in the test station
- Feather2: winding of first coil with dummy cable in progress

CERN HTS program plan (planning phase)

Final remark

Superconducting accelerator magnets in the 4 T - 8 T range are "state of the art" using Nb-Ti conductor

Magnets in the 12 T range using Nb₃Sn are in the prototyping phase for HILUMI

Development models have been shown to work up to 16 T

For future colliders 16 T magnets are being designed

Development for HTS magnets for the 20 T range has started

Lots of fun ahead !

Literature on High Field Magnets

- Books
- 1) M. Wilson, Superconducting magnets / Oxford : Clarendon Press, 1983 (Repr. 2002). 335 p
- 2) K-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets, Singapore, World Scientific, 1996. 218 p.
- Y. Iwasa, Case studies in superconducting magnets : design and operational issues . 2nd ed. Berlin : Springer, 2009. -682 p.
- 4) S. Russenschuck, Field computation for accelerator magnets : analytical and numerical methods for electromagnetic design and optimization / Weinheim : Wiley, 2010. 757 p.
- 5) CERN Accelerator school, Magnets, Bruges, Belgium 16 25 June 2009, Editor: D. Brandt, CERN–2010–004

- Conference proceedings and reports
- 6) 21st International Conference on Magnet Technology, Hefei, China, 18 23 Oct 2009, IEEE Trans. Appl. Supercond. 20 (2010)
- 7) The 2010 Applied Superconductivity Conference, Washington DC, US, 1-6 Aug 2010, , IEEE Trans. Appl. Supercond. 21 (2011)

Literature on High Field Magnets (2)

- Papers and reports
- 8) S. Caspi, P. Ferracin, "Limits of Nb3Sn accelerator magnets", *Particle Accelerator Conference* (2005) 107-11.
- 9) S. Caspi, P. Ferracin, S. Gourlay, "Graded high field Nb3Sn dipole magnets", *19th Magnet Technology Conference, IEEE Trans. Appl. Supercond.*, (2006) in press.
- 10) E. Todesco, L. Rossi, "Electromagnetic Design of Superconducting Dipoles Based on Sector Coils", Phys. Rev. Spec. Top. Accel. Beams 10 (2007) 112401
- 11) E. Todesco, L. Rossi, AN ESTIMATE OF THE MAXIMUM GRADIENTS IN SUPERCONDUCTING QUADRUPOLES, CERN/AT 2007-11(MCS),
- 12) P. Fessia, et al., Parametric analysis of forces and stresses in superconducting dipoles, IEEE, trans. Appl, Supercond. Vol 19, no3, June 2009.
- 13) P. Fessia, et al., Parametric analysis of forces and stresses in superconducting quadrupole sector windings, sLHC Project Report 0003

Websites

15) http://www.magnet.fsu.edu/magnettechnology/research/asc/plots.html

Acknowledgements

For this lecture I used material from lectures, seminars, reports, etc. from the many colleagues. Special thanks goes to:

Giorgio Ambrosio (FNAL), Luca Bottura (CERN), Shlomo Caspi (LBNL), Arnaud Devred (ITER), Paolo Ferracin (LBNL), Attilio Milanese (CERN), Jeroen van Nugteren, Juan-Carlos Perez (CERN), Lucio Rossi (CERN), Stephan Russenschuck (CERN), Ezio Todesco (CERN), Davide Tommasini (CERN), Martin Wilson

www.cern.ch