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Components of a synchrotron

RING.GIF, Fig. sans nom 1_PULSE, Annexe1C
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Dipole Bending Magnet
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Fig.Brho 4.8
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Bending Magnet 

Effect of a uniform bending (dipole) field

If                              then

Sagitta
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Vertical Focusing

People just got on with the job of building them. 
Then one day someone was experimenting 
Figure shows the principle of  vertical focusing in a cyclotron
In fact the shims did not do what they had been expected to do 
Nevertheless the cyclotron began to accelerate much higher currents
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Gutter
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Transverse ellipse
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Fields and force in a quadrupole

 
k = −

1
Bρ( )

dBz

dx

 
lk = −

l
Bρ( )

⋅
∂Bz

∂x
=

1
f

  
dBz

dx

No field on the axis
Field strongest here

 B ∝ x
(hence is linear)
Force restores
Gradient

Normalised:

POWER OF LENS

Defocuses  in
vertical plane

SOLUTION IS  TO ALTERNATE THE
GRADIENTS OF A SERIES OF QUADS

Fig. cas 10.8

lk=
l
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Strong focusing
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Equation of motion in transverse co-
ordinates

Hill’s equation (linear-periodic coefficients)

where                                      at quadrupoles

like restoring constant in harmonic motion
Solution (e.g. Horizontal plane)

Condition

Property of machine
Property of the particle (beam) ε
Physical meaning (H or V planes)

Envelope
Maximum excursions

  
k = −

1
Bρ( )

dBz
dx

 β s( )
 
ϕ =

ds
β s( )∫

  ̂ y = εβ s( )  ′ ˆ y = ε / β s( )

 εβ s( )

y = β s( ) ε sin φ s( ) + φ0[ ]

d 2y
ds2 + k s( )y = 0
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All such linear motion from  points 1 to 2 can 
be described by a matrix like:

Twiss Matrix

  

y s2( )
y' s2( )

 

 
 

 

 
 =

a b
c d

 
 
 

 
 
 

y s1( )
y' s1( )

 

 
 

 

 
 = M12

y s1( )
y' s1( )

 

 
 

 

 
  .

We define the “Twiss” parameters:

Giving the matrix for a ring (or period)

β = w2  ,  α = −
1
2

′ β  ,  γ = 1+ α 2

β

M =
 cos µ + α sin µ , β sin µ

−γ  sin µ, cos µ − α   sin µ
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Effect of a drift length and a 
quadrupole
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The lattice
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Envelope and trajectories
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Closed orbit
Zero betatron
amplitude

Closed orbit of an ideal machine

In general particles executing betatron 
oscillations have a finite amplitude
One particle will have zero amplitude and 
follows an orbit which closes on itself
In an ideal machine this passes down the axis 

′ x 

x
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Dispersion

Low momentum particle is bent more
It should spiral inwards but:
There is a displaced (inwards) closed orbit
Closer to axis in the D’s
Extra (outward) force balances extra bends

D(s) is the “dispersion function”

 
x = D(s)

∆p
p

Fig. cas 1.7-7.1C
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Dispersion in the SPS

This is the long straight section where dipoles are 
omitted to leave room for other equipment - RF -
Injection - Extraction, etc
The pattern of missing dipoles in this region indicated 
by “0” is chosen to control the Fourier harmonics and 
make D(s) small
It doesn’t matter that it is big elsewhere
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Dispersed beam cross sections

These are real cross-section of beam
The central and extreme momenta are shown
There is of course a continuum between
The vacuum chamber width must accommodate the 
full spread
Half height and half width are:

aV = βV εV  ,    aH = βH εH + D s( ) ∆p
p

 .
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The Q is determined by the lattice quadrupoles whose 
strength is:

Differentiating:
From  gradient error analysis

Giving by substitution

Q’  is the chromaticity
“Natural” chromaticity

∆Q =
1

4π
β s( )∫ ∆k s( )ds =

−1
4π

β s( )∫ k s( )ds 
  

 
  

∆p
p

 .

∆Q = Q ′   
∆p
p

Physics of Chromaticity

∆k
k

= −
∆p
p

 .
  
k =

1
Bρ( )

dBz

dx
 ∝

1
p

∆Q =
1

4π
β s( )∫ δk s( )  ds  .

 
ξ =

p
Q

dQ
dp

=
Q ′  
Q

N.B. Old books say
  

Q ′    = −
1

4π
 β   s  ( )k  s  ( )ds∫   ≈ −1.3Q   

( )klQ βδ
π

δ
4
1

=
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We can steer the beam to a different mean radius and 
a different momentum by changing the rf frequency 
and measure Q

Since 

Hence

Measurement of Chromaticity

  
∆fa = faη

∆p
p

  
∆Q = Q ′   

∆p
p

 
∴Q ′   = fa η

dQ
dfa

 
∆r = Dav

∆p
p

 



Transverse dynamics - E. Wilson - Brunnen - Slide 22

Correction of Chromaticity

Parabolic field of a 6 pole is really a gradient which 
rises linearly with x
If x is the product of momentum error and dispersion

The effect of all this extra focusing cancels 
chromaticity

Because gradient is opposite in v plane we must have 
two sets of opposite polarity at F and D quads where 
betas are different

∆Q =
1

4π
B" s( )β s( )D s( )ds

Bρ( )∫
 

 
 

 

 
 

dp
p

 .

∆k =
B" D
Bρ( )

∆p
p

 .
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