Transverse Dynamics *E. Wilson - CERN*

- Components of a synchrotron
- Dipole Bending Magnet
- Magnetic rigidity
- Bending Magnet
- Weak focusing gutter
- Transverse ellipse
- Fields and force in a quadrupole
- Strong focusing
- Equation of motion in transverse co-ordinates
- Twiss Matrix
- The lattice
- Dispersion
- Chromaticity

Components of a synchrotron

• RING.GIF, Fig. sans nom 1_PULSE, Annexe1C

Dipole Bending Magnet

Magnetic rigidity (vectors)

$$\frac{d\mathbf{p}}{dt} = |\mathbf{p}| \frac{d\theta}{dt} = |\mathbf{p}| \frac{d\theta}{ds} \frac{ds}{dt} = \frac{|\mathbf{p}|}{\rho} \frac{ds}{dt}$$
$$= e\mathbf{v} \times \mathbf{B} = e\frac{ds}{dt} B$$

$$(B\rho) = \frac{p}{e} = \frac{pc}{ec} = \frac{\beta E}{ec} = \frac{\beta \gamma E_0}{ec} = \frac{m_0 c}{e} (\beta \gamma)$$

 $(B\rho)[T.m] = \frac{pc[eV]}{c[m.s^{-1}]} = 3.3356(pc)[GeV]$

Fig.Brho 4.8

Bending Magnet

• Effect of a uniform bending (dipole) field $\sin (\theta / 2) = \frac{1}{2\rho} = \frac{1B}{2(B\rho)}$ • If $\theta << \pi/2$ then $\theta \approx \frac{1B}{(B\rho)}$

Sagitta $\pm \frac{\rho}{2} (1 - \cos(\theta/2)) \approx \pm \frac{\rho \theta^2}{16} \approx \frac{1\theta}{16}$

Vertical Focusing

- People just got on with the job of building them.
- Then one day someone was experimenting
- Figure shows the principle of vertical focusing in a cyclotron
- In fact the shims did not do what they had been expected to do
- Nevertheless the cyclotron began to accelerate much higher currents

Gutter

Transverse ellipse

Fields and force in a quadrupole

SOLUTION IS TO ALTERNATE THE GRADIENTS OF A SERIES OF QUADS

Strong focusing

Equation of motion in transverse coordinates

Hill's equation (linear-periodic coefficients)

where
$$\frac{d^2 y}{ds^2} + k(s)y = 0$$

 $k = -\frac{1}{(B\rho)}\frac{dB_z}{dx}$ at quadrupoles

like restoring constant in harmonic motionSolution (e.g. Horizontal plane)

$$y = \sqrt{\beta(s)}\sqrt{\varepsilon}\sin[\phi(s) + \phi_0]$$

Condition

$$\varphi = \int \frac{ds}{\beta(s)}$$

 $\sqrt{\beta(s)}$

- Property of machine
- Property of the particle (beam) ε
- Physical meaning (H or V planes) Envelope $\sqrt{\epsilon\beta(s)}$ Maximum excursions

$$\hat{y} = \sqrt{\varepsilon \beta(s)}$$

$$\hat{y}' = \sqrt{\varepsilon / \beta(s)}$$

Twiss Matrix

 All such linear motion from points 1 to 2 can be described by a matrix like:

$$\begin{pmatrix} y(s_2) \\ y'(s_2) \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} y(s_1) \\ y'(s_1) \end{pmatrix} = \mathbf{M}_{12} \begin{pmatrix} y(s_1) \\ y'(s_1) \end{pmatrix} .$$

We define the "Twiss" parameters:

$$\beta = w^2$$
, $\alpha = -\frac{1}{2}\beta'$, $\gamma = \frac{1+\alpha^2}{\beta}$

Giving the matrix for a ring (or period)

$$M = \begin{pmatrix} \cos \mu + \alpha \sin \mu &, & \beta \sin \mu \\ -\gamma \sin \mu, & \cos \mu - \alpha & \sin \mu \end{pmatrix}$$

Effect of a drift length and a quadrupole

The lattice

	LENGTH	ANGLE	K (V)	ALPHA(P) BETA(H)	ALPHA(H)	MUH/2PI BETA(V)	ALPHA(V)	HUV/2PI AH/2 AV/2
01	3.085000	0.000000	.015063	1.386440104.884855	2,452160	.004571 19.011703	*.520345	.026571 65,715663 9,917560
2	360000	0.000000	0.000000	1.374053103.127965	2.428089	.005122 19.395014	.544408	\$29555 64,547813 10,017039
03	6 260000	008445	0.000000	1.196124 75.348859	2.009521	016433 28.828710	.962519	872198 64.004371 12.212911
	400000	0 000000	0 000000	1 186405 73 751941	089775	A17287 29.609417	.989248	.074377 54.751341 12.376828
15	6 260000	008445	0.000000	1.060742 51.548094	1.564207	033474 44.610910	1.407071	101988 54.174091 15.192432
¥.	300000		0.000000	1 084550 50 318182	638130	A34692 45.718685	+1.433122	103302 45.428681 15.379447
~7	5. 360000	0000000	0.000000	081762 33 701223	1 110661	468035 .66. 274961	1.850527	191441 44.905056 18.517478
<u>،</u>	0,200000	,000440	0,000000	101/04 30 940011	1 1110000	A60703 67 601002	-1 876806	100344 36 080337 18 713708
	, 300000	0.000000	0,000000	**/0840 32 000011	495864	1000709 07 1001000	-9 302763	454861 36 534891 22 028267
04	8.200000	000440	0,000000	*ADAOI\ 51*\0100A	.0/0300	*14489104 804070	-2 440438	138631 30 060337 33 305634
10	2,342/00	0.000000	0.000000	AGIEDO 10 803140	DIDAdk	*110/00100.0002/2	421449030	1300001 30100327 2318900E4
11	3,080000	0.000000	01003/	1,034354 18,983068	• 218310	143368104 401050	2,447.300	* 3#31A1 50*34A415 53*/10050
12	.350000	0.000000	0,000000	1,050/30 19,354500	•,542318	1405/0103 100011	2 424007	*1#3\S0 Se*030050 S3*540510
13	6,260000	008445	0,000000	1,370047 28,764399	* 960879	189011 75,452122	2,007802	102051 39 08A03A \$3'100151
14	380000	0,000000	0,000000	1,391035 29,504322	• 986287	191088 73,935822	1,982463	.105830 30.540047 19.707412
15	6,260000	,008445	0.000000	1,763219 44,472640	•1.404847	218731 51,724094	1,565610	171975 43,750575 19,557880
16	390000	0,000000	0,000000	1,788053 45,578591	-1,430924	,220109 50,513067	1,539589	173189 44,298587 16,358398
17	6.250000	008445	0.000000	2,213103 66,113699	=1,849484	238298 33,849177	1,122280	, 197377 53, 470174 16, 165762
18	400000	0.000000	0.000000	2,241952 57,603985	=1.876229	239251 32 962034	1,095579	199283 54 079136 13 233307
19	6,260000	008445	0.000000	2,719868 93,714254	=2.294790	251780 21 859390	677943	336745 63,830251 13,058741
20	2.352700	0.000000	0.000000	2,909420104,882261	-2.452099	255558 19,038995	520847	355140 67 592709 10 634409
21	3.085000	0.000000	.015063	2,946010104,882266	2,452098	250189 19.038106	- 520546	281673 68,853088 9,924676
22	360000	0.000000	0.000000	2.925443103.125421	2.428027	260680 19.421551	- 544579	\$\$4653 67,665889 10,023890
23	6.260000	008445	0.000000	2.594240 75.347037	2.009467	271992 28,854181	.962177	327246 67.105194 12.218305
24	400000	0.000000	0.000000	2.574765 73.750162	1.982722	272846 29.634602	.988874	389424 57.546939 12.382087
25	6.260000	008445	0.000000	2.296428 51.546933	1.564162	289032 44.628208	#1.406185	386957 56.950187 15.195377
26	390000	0.000000	0.000000	2.280734 50.337057	1.538085	290251 45.735180	1.432204	358331 47.899567 15.382238
27	6.260000	008445	0.000000	2.055264 33.700612	1.119525	314534 66.276862	.1.849098	376466 47.356928 18.517744
28	380000	0.000000	0.000000	2.043182 32.889428	1 094117	316392 67.691805	1.874435	377369 39.127022 18.713817
20	6.260000	008445	0 000000	1.876577 01.781395	675597	383041 03.766993	2.290782	389888 38.663082 22.025838
30	2 342700	0 000000	0 000000	1 815875 18 983101	818917	372318104 865902	-2.446875	393648 31.892336 23.292251
	3 49546700	0,000000	0.00000	1 943542 10 983148	- E18041	308098104 863544	2 447012	348990 30 007086 03 719898
91	3 000000	0.000000	******	ttaisans tetaastie		*320280100*00%04#	e*++/a16	tabuten antheyaon tativitabe

Envelope and trajectories

Closed orbit of an ideal machine

Particle trajectories

- In general particles executing betatron oscillations have a finite amplitude
- One particle will have zero amplitude and follows an orbit which closes on itself
- In an ideal machine this passes down the axis

Closed orbit Zero betatron amplitude

Dispersion

- Low momentum particle is bent more
- It should spiral inwards but:
- There is a displaced (inwards) closed orbit
- Closer to axis in the D's
- Extra (outward) force balances extra bends

Dispersion in the SPS

- This is the long straight section where dipoles are omitted to leave room for other equipment - RF -Injection - Extraction, etc
- The pattern of missing dipoles in this region indicated by "0" is chosen to control the Fourier harmonics and make *D(s)* small
- It doesn't matter that it is big elsewhere

Dispersed beam cross sections

- These are real cross-section of beam
- The central and extreme momenta are shown
- There is of course a continuum between
- The vacuum chamber width must accommodate the full spread
- Half height and half width are:

$$a_V = \sqrt{\beta_V \varepsilon_V}$$
, $a_H = \sqrt{\beta_H \varepsilon_H} + D(s) \frac{\Delta p}{p}$.

Physics of Chromaticity

The Q is determined by the lattice quadrupoles whose strength is:

$$k = \frac{1}{(B\rho)} \frac{dB_z}{dx} \propto \frac{1}{p}$$

Differentiating:
From gradient error analysis

$$\delta Q = \frac{1}{4\pi} \beta \delta(kl)$$

Giving by substitution

$$\Delta Q = \frac{1}{4\pi} \int \beta(s) \delta k(s) \, ds \, .$$

Q' is the chromaticity
"Natural" chromaticity

$$\Delta Q = \frac{1}{4\pi} \int \beta(s) \Delta k(s) ds = \begin{bmatrix} -\frac{1}{4\pi} \int \beta(s) k(s) ds \\ -\frac{1}{4\pi} \int \beta(s) k(s) ds \end{bmatrix} \frac{\Delta p}{p} \, .$$

$$\Delta Q = \frac{Q}{2} \cdot \frac{\Delta p}{p}$$

Q' = $-\frac{1}{4\pi} \oint \beta(s) k(s) k(s) ds \approx -1.3Q$
N.B. Old books say $\xi = \frac{p}{Q} \frac{dQ}{dp} = \frac{Q}{Q}$

Measurement of Chromaticity

 We can steer the beam to a different mean radius and a different momentum by changing the rf frequency and measure Q

$$\Delta f_a = f_a \eta \frac{\Delta p}{p} \qquad \Delta r = D_{av} \frac{\Delta p}{p}$$
Since
$$\Delta Q = Q ' \frac{\Delta p}{p}$$

$$\therefore Q ' = f_a \eta \frac{dQ}{df_a}$$

Correction of Chromaticity

- Parabolic field of a 6 pole is really a gradient which rises linearly with x
- If x is the product of momentum error and dispersion
- The effect of all this extra focusing cancels chromaticity

$$\Delta k = \frac{B''D}{(B\rho)}\frac{\Delta p}{p} \; .$$

 Because gradient is opposite in v plane we must have two sets of opposite polarity at F and D quads where betas are different

$$\Delta Q = \left[\frac{1}{4\pi} \int \frac{B''(s)\beta(s)D(s)ds}{(B\rho)}\right] \frac{dp}{p}$$

Transverse dynamics - Summary *E. Wilson - CERN*

- Components of a synchrotron
- Dipole Bending Magnet
- Magnetic rigidity
- Bending Magnet
- Weak focusing gutter
- Transverse ellipse
- Fields and force in a quadrupole
- Strong focusing
- Equation of motion in transverse co-ordinates
- Twiss Matrix
- The lattice
- Dispersion
- Chromaticity