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Technology of  Undulators and Wigglers
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• The main issue in the magnetic design of a planar  undulator or wiggler is to 
produce a sinusoidal field with a high peak field B and the shortest period λ0
within a given aperture (gap). 

• Three type of technologies can be used :
– Permanent magnets ( NdFeB , Sm2Co17 )
– Room temperature electromagnets ( iron and coils )
– Superconducting electromagnets (superconducting coils with or without iron)
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Periodic array of magnets
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Permanent Magnet Undulator
Hybrid Pure Permanent Magnet

Magnet (NdFeB, Sm2Co17,...)

Pole
(Steel)
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Magnetic Field of a Pure Permanent Magnet  Undulator
(Halbach Formula)

gap
s

z

O

λ0

h

Assume relative permeability of magnet =1
with remanent field Br, then the exact field 
computation gives :

0 0 0

sin( )
4 2  exp( )(1 exp(2 )) cos(2 )

4

n r

n gap h sB B n n n
n λ λ λ

π

= − π − π π
π

III, 6/30 , P. Elleaume, CAS, Brunnen July 2-9,  2003.

0

0

0

if 1 exp(2 ) 1
2

  exp( )

1 dominates

n r n

hh n

gapB B b n

n

λ
λ

λ

> ⇒ − π

⇒ = − π

⇒ =

∼

0 0

( )  1.8  exp( )cos(2 )z r
gap sB s B π
λ λ

≈ −π

b1 0.90
b3 0.30
b5 -0.18
b7 -0.13



Field from Pure Permanent Magnet vs Hybrid
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Numerical Computation of Magnetic Field

• No Iron (perm. magnet &  coil )
– Integration of Biot and Savart Law

– Simple Numerical Methods based on the current sheet or surface charge model. The total 
field is the linear sum of the field produced by each block. Particularly simple and efficient  
for parallellepipedic shapes

• With Iron ( perm. magnet &  coil & iron) : Best solved with numerical 
methods

– Finite Element Method
• Used dominantly for Dipole/Quadrupole/Sextupole … Magnets 
• 2D : POISSON  (Public Domain)

– from http://laacg1.lanl.gov/laacg/services/possup.html
• 3D : Commercial Codes (TOSCA, FLUX3D, ANSYS,…)

– Volume Integral Method : Radia
• Particularly adapted to undulators and Wigglers 
• Compute field and field integral  in 3D
• Public Domain http://www.esrf.fr/machine/groups/insertion_devices/Codes/software.html
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Design Process 

User Requirements :
Photon Energy Range

Linear/Circular Polarization
Divergence, Power Pre-Design :

Choice of Technology
Wiggler/Undulator

Period, Field,Length

Machine Constraints :
Minimum Gap

Electron Energy

Radiation Computation :
With Ideal Field

Photon Energy Range
Brilliance, Flux Detailed Design :

Central Period
End designBeamline Design :

…

Construction

Field Measurement 
and Shimming

Install in the Ring

Measurements of Radiation

Radiation Computation
With Real Field

Measure effect 
On the e-beam
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Magnetic Forces

Force between upper and lower magnetic arrays : 
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Undulator 0.8 40 1.6 8.1
Wiggler 1.5 120 1.6 85.9

FF F

FF

Force on each magnet can be large :
⇒ rigid holding structures
⇒ special assembly tools
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ESRF Undulators

Magnetic Force : 1-10 Tons
Gap Resolution :  < 1 µm
Parallellism < 20 µm
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Undulators are Fundamentally Small Gap Devices

• Like any accelerator magnet, the smaller the magnetic gap the less 
volume of magnetic material required to reach a specific field 
geometry.

• The lower the gap the higher the energy of the harmonics in the 
undulator emission.
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Application : Build a pure permanent magnet 
undulator with NdFeB Magnets (Br = 1.2 T)

Undulator with K=1

Gap 
[mm]

B 
[T]

Period 
[mm]

Fundamental [keV]
@ 6 GeV

Electron
Energy [GeV]

Fund = 15.2 keV

15 15.2
10.3
8.2

22
6.0
7.3

28 8.2

5 0.72
10 0.49
15 0.38
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Flexible Chambers

ESRF

NSLS
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In Vacuum Undulators

- Developed at NSLS, Spring-8 , ESRF
- Required by many new light sources

(SLS,CLS,LBL,Diamond,Soleil,..)
- Open the gap during injection if needed
- Allow a minimum magnetic gap of 3 to 6 mm
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ESRF In-vacuum Undulator
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Electro-Magnet Undulator

-Limited by the electrical power
requirement and associated cooling
of the coils :
Current Densities < 10-15  A/mm2

-Only interesting for long periods
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SRC Electro-magnet Undulator (Wisconsin USA)

http://www.src.wisc.edu/research/highlights/undulator/default.html
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Delta Superconducting Wiggler

- High field : up to 10 T => Shift the spectrum to higher energies
- Sophisticated engineering  & high cost
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SRS Superconducting Wiggler
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Local Field Measuring Bench

Optimized for fast longitudinal
field scanning :
- Optical & Laser Encoder
- 3-axis Hall probe sensor
- On-the-fly scanning 2000pts/m
- Measuring length 2-10 m
- Essential for phase shimming 
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Field Integral Measuring Bench

Either :
-Rotating multiturn coil
-Moving stretched wire

-Measure Horiz & Vertical
single and double field integrals
- Absolute accuracy < 10 Gcm
- Essential for multipole shimming
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Magnetic Field Errors of Permanent Magnet Insertion Devices : 

• Originate from :
– Non uniform magnetization of the magnet blocks (poles).
– Dimensional and Positional errors of the poles and magnet blocks. 
– Interaction with environmental magnetic field

• Need to purchase  highly uniformly magnetized blocs and 
– perform a systematic characterization  
– Perform a pairing of the blocks to cancel field integrals
– but still insufficient .

• Type of Field Errors
– Multipole Field  Errors (Normal and skew dipole, quadrupole, 

sextupole,…). 
– Phase errors which reduce the emission on the high harmonic numbers 
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Undulator Shimming

• Mechanical : Moving permanent magnet or iron pole vertically or 
horizontally

• Magnetic : Add thin iron piece at the surface of the blocks
– More precise and local
– Field reduction
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Magnetic shims

Phase Shim

Phase Shim
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Field Integral and Multipole Shimming

Horizontal Deflection
Quadrupole
Sextupole …

Vertical Deflection
Skew Quadrupole
Skew sextupole …

Gap/2 [mm]
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Phase Error and Phase Shimming

Each pulse interfere constructively If Tp =T for all p and for a wavelength so
that λ=2T/n where n is an integer (harmonic number). Real undulators have 
small field errors which result in fluctuations of Tp. These are also called phase 
errors.

Tp
Tp+1 Tp+2
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A Practical Example of Phase Shimming of an ESRF Undulator :
(period 35 mm,  N= 46 periods, Gap=11 mm)

Measured Vertical Field
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Remarks on Phase Errors

- Small phase errors may have a large impact on the undulator spectrum in particular on the 
high harmonic numbers. The associated magnetic field errors can be detected on the field plot 
where they appear as period and peak field fluctuations. Some of them (generating  internal 
angles) may also be visible from the wandering of trajectory. 

- Emittance and energy spread induce a broadening of the peak and may mask a part of the 
spectral flux lost due to phase errors. Nevertheless, in most cases, even with large emittance 
and energy spread, low phase error undulators perform much better on the high harmonics. 

- They are important for long undulators or undulators intended to be used on a high harmonic 
number

- They are usually not important in undulators used on the fundamental of the spectrum such 
as in Free Electron Lasers
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