CERN Accelerator School and Paul Scherrer Institute (PSI)

will-hold a course on

SYNCHROTRON RADIATION **& FREE-ELECTRON LASERS**

Seehotel Waldstätterhof Brunnen, Switzerland 2 - 9 July 2003

This course on particle accelerators is intended for staff in laboratories, universities and companies manufacturing associated equipment.

of a lysozyme protein crystal taken with the Pilatus silicon pixel detector at the Swiss Light Sour

Fax: +41 22 767 54

Further information and application forms : **CERN Accelerator School** AC Division CH-1211 Geneva 23 Web: http://schools.web.cern.ch/Schools/CAS e-mail Suzanne.von.Wartburg@cern.ch Switzerland

Energy recovery linacs

Sverker Werin MAX-lab

8 July 2003

- Source development
- What is an ERL?
- Quality of radiation
- Special ERL topics
- Instabilities and limitations
- Challenges and development
- ERLs yesterday, today and tomorrow

Energy recovery linacs

Sverker Werin MAX-lab

8 July 2003

Path of development

Light sources

- 1st generation parasitic SR on high energy physics storage rings
- 2nd generation dedicated bending magnet sources
- 3rd generation dedicated undulator sources
- 4th generation....

Have today

- Repetition rate
- Stability
- Tunability
- Polarisation
- Brilliance average/peak

Need in the future

- Coherence
- Power
- Fs pulses
- Diffraction limited radiation
- Brilliance average/peak

3.5 generation storage ring

Gives us

- Coherence
- Power
- Pulse slicing \rightarrow fs pulses
- Some diffraction limited radiation
- Brilliance average/peak

Free electron laser

#5

MAX-lab

S. Werin

- Coherence
- Power
- Fs pulses
- Diffraction limited radiation
- Brilliance average/peak
- Low repetition rate

http://www.bessy.de/publications/01.felscientific/sc.html

Energy Recovery Linac

#6

MAX-lab

Articles on "ERL" or "Energy Recovery Linac"

Gives us

- Coherence
- Power
- Fs pulses
- +Diffraction limited radiation
- Brilliance average/
- Medium repetition rate

What is an ERL?

S. Werin

What is an ERL? Step 2

 Emittance defined by source/gun (not ring equilibrium)

<=0.1 nmRad

- Brilliance >= storage rings
- Pulse length small (not ring equilibrium)

< 100 fs

- SC linac save RF power, independent of current
- CW operation (gun limit)

KHz-MHz

Low dump energy, less radioactivity

<10 MeV

Linac power

$$P_{wall} = \frac{\hat{E} L}{Z_s}$$

$$Q-value$$

$$W = \frac{Q P_{wall}}{\omega}$$

$$E = E_0 \left(1 - e^{-\frac{\omega t}{Q}} \right)$$

9 MAX-Iab S. Werin

Brilliance

$$Flux = \frac{photons}{s*0.1\%BW*A}$$

What counts

$$Brilliance = \frac{Flux}{4\pi^{2}\Sigma_{x}\Sigma_{x'}\Sigma_{y}\Sigma_{y'}}$$
$$\Sigma_{x} = \sqrt{\sigma_{x}^{2} + \sigma_{r}^{2}}$$
$$\Sigma_{x'} = \sqrt{\sigma_{x'}^{2} + \sigma_{r'}^{2}}$$

To compare

Peak brilliance During the peak of a bunch Average brilliance

Forever or during a macro pulse from the accelerator

Brilliance

Cornell

SPring8

ERL

1E+5

1E+6

11 MAX-Iab S. Werin

Diffraction limit

$$Brilliance = \frac{Flux}{4\pi^{2}\Sigma_{x}\Sigma_{x'}\Sigma_{y}\Sigma_{y'}}$$
$$\Sigma_{x} = \sqrt{\sigma_{x}^{2} + \sigma_{r}^{2}}$$
$$\Sigma_{x'} = \sqrt{\sigma_{x'}^{2} + \sigma_{r'}^{2}}$$

12 MAX-lab S. Werin

 $\mathcal{E} = \sigma_r \sigma_{r'}$

Emittance comparison

13 MAX-Iab S. Werin

Emittance comparison

S. Werin

14

Pulse length

Linac (FEL, ERL)

Storage ring	10 ps	Lifetime sacrifice		
+ bunch slicina	50 fs	Low flux. simple		

 ~ 20 fs Photo cathode laser, space charge, CSR (coherent synch.rad.), slippage

Quick duty Discuss with your neighbour

Please talk!

16

MAX-lab

A 20 fs electron bunch passes a 100 period long undulator producing radiation at a wavelength of 60 nm.

How long is the radiation pulse?

The radiation from one e⁻ consists of a wave train with 100 periods at 60 nm \rightarrow 100*60 nm = 6*10⁻⁶ m

The length in time is $6*10^{-6}/c = 6*10^{-6}/3*10^{8} = 20$ fs

Add the pulse length and the total length will be 20 + 20 = 40 fs

Energy savings ...?

A 100 mA 5 GeV electron beam carries 500 MW power.

Stornorrfors powerstation 591 MW @ 1000 m³/s

Save energy!

17 MAX-lab

Energy savings -> go superconducting

LBL LUX proposal

600 MeV linac – 4 recirculations

10 KHz

	NC	SC
RF-power peak	240 MW	0.288 MW
RF-power average		
Cooling power		

Energy savings (nasty version)

Cornell ERL2 - 5 GeV 100 mA

۷.

ESRF - 5 GeV 200 mA

	Cornell	ESRF	
RF-power peak	1.1 MW	2.6 MW	
RF-power average	1.1 MW	2.6 MW	
Cooling power	16.4 MW	0	
	17.5 MW	2.6 MW	

Radiation savings ...?

Beam Break Up (BBU)

Displacement of the bunch due to transverse wakefields induced by a previous bunch beeing off center.

Damp modes Good alignment

22 MAX-Iab S. Werin

Coherent Synchrotron Radiation

A sufficiently short bunch will radiate coherently.

#23

MAX-lab

S. Werin

The radiation from the tail can irradiate the head of the bunch.

- \rightarrow Energy spread
- \rightarrow Emittance growth if dispersion

Cure:

Longer bunches, less current 🧲

Shielding, larger radius (

Challenges

- 🥏 Guns
- Optics in arcs
- Control of RF
- Beam loss
- Instabilities (BBU...)
- HOM cooling

► CW

- Multi energy, CSR
- ► The beam "runs" the RF
- Messes up RF
- Limits current
- More power to SC cooling

Around the world

MUSL-2 – Univ. Of Illinois

Stanford SCA

First energy recovery

T.I. Smith, et al, NIM A 259 (1987) 1-7

50 MeV

JAERI – ERL + FEL

17 MeV 5 mA

In operation

28 MAX-Iab S. Werin

N. Nishimori et.al., EPAC 2002, Paris

S-DALINAC - Darmstadt

29

MAX-lab

S. Werin

130 MeV

http://linac.ikp.physik.tu-darmstadt.de/linac/introduction.html

Jlab FEL

MAX-lab

S. Werin

Jefferson Lab Newport News, VA

IR Demo FEL In operation since 1999 40 MeV 5 mA FEL upgrade 2003 -160 MeV 10 mA

http://www.jlab.org/FEL/feldescrip.html

MARS

Multipass Accelerator Recuperator Source

Novosibirsk

31 MAX-Iab S. Werin

G. Kulipanov et.al. SRI 2001, ERL workshop

LUX - LBL

Multi-user facility proposal Repetition rate 10 kHz Pulse length < 100 fs Current 10 µA

3 GeV proposal

33

S. Werin

Deflecting cavities .

http://jncorlett.lbl.gov/FsX-raySource/

Cornell-Jefferson ERL

34

MAX-lab

S. Werin

Proposal

Cornell, Ithaca NY

Energy 100 MeV phase I 5 GeV phase II

Current 10/100 mA

PERL

NSLS, Long Island

4 GLS

Daresbury, UK

36 MAX-lab S. Werin

http://www.4gls.ac.uk/

Erlangen, Germany

37 MAX-Iab S. Werin

http://www.erlsyn.uni-erlangen.de/

KEK ERL

Photon Factory - KEK	
Energy	2.5 ~ 5.0 GeV
Beam Current	~100 mA
Horizontal Emittance	~0.01 nmRad
Bunch Length	1 ps ~ 100 fs

Summary

ERLs will give us

- **Fs pulses** (some tricks needed)
- CW (almost) KHz-MHz repetition rate
- Brilliance ≥ new rings above 5 GeV
- Diffraction limited < 2-5 KeV = "Ultimate source"

Reduced radiation from dump (v. linacs)

Ņ	Proof of principle done	
---	-------------------------	--

- Many new proposals, especially in the US
- Compact CW driver for FEL

But

- Small energy savings •
- Instabilities limits current •
- HOMs limits short bunches

		Diffraction limit	Coherence	Fs pulses	Multi user	Brilliance, average	Brilliance, peak	Rep. rate
	Storage ring	-hor, +vert	-	-	+	0	-	+
	FEL	0	+	+	0	0	+	-
# 20	ERL	0	-	+	+	0	-	0
# 39 MA	K-lab							

S. Werin

#

