INSTABILITIES |
LONGITUDINAL INSTABILITIES

LONGITUDINAL DYNAMICS
A particle with momentum deviation Ap has a different orbit length
L, revolution time T{, and revolution frequency wy
AL Ap Awy ATy 1\ Ap Ap
AR e ] G b
with momentum compaction a, and 7. = . — 1/~%. At the transi-
tion energy E7 = moc*yrwith v = 1/a? the revolution frequency
dependence on momentum (or energy) changes sign

1
?
1

E > FEr — < a. — 1n.>1 — wydecreases with AE

E < Er — > a, — 1. <1 — wpincreases with AE .

,}/2

For synchrotron radiation sources the electrons are ultra-relativistic
and we approximate Ap/p =~ AE/E = €, 1. =~ «.. For isochronous
(low alpha) rings this has to be checked.
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With an RF cavity of voltage V and frequency wgr = hwy and a SR

energy loss per turn U the energy gain or loss 0 F' is
SE = eV sin(hwy(ts + 7)) — U

with t,= synchronous arrival time at the cavity, 7= deviation from it
and synchronous phase ¢, = hwyts. For hwyT < 1 we develop

Se — 5 (A_E) _ eV sin(¢s) N hwoeV cos ¢ U

E E E | E
For ¢ < 1 we use a smooth approximation
, 21 weVsin Oy w%hef/ COS Qg wo U
de=€¢lp=€é—, €= - ——.
T T T e T mE | mE
The energy loss U can depend on energy deviation ¢
oU oU
U ~Uy+—=AE+—r.
(€,7) 0+ o5 + 5

giving for the derivative of the energy loss
. woev sin @ N w%hev COS Qs woUp  wydU Wy idU
B 2mE 2mE ! 2n B 2w dEE 2 B dt T

For synchronous particle e =0, 7 =0 we have Uy = eV sin O

, 2h6\7 COS Qg wo dU 1 wydU
= W _ € - ——
C T YT orE T T %dE T Eardt |

T = 7)€.
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These two first order equations are combined into a second order one
of a damped/growing oscillation

wo dU ghncef/ COS Qg Ne wo dU

————7=0.
TomdE’ T wE | Eordi|
Using )
e _thnCchosgbs 0 lwydU
0 " orE 7 221dE’
seeking a solution ¢/“!, and assuming s < wy we get
2 . 2 wo 77ch
_ ) DIy
w” + jwa +(w30+27rEdt)
. wo e AU . lwp 1. dU
- s P 2R s T (ws
v =Ja \l(w +2 Edt) o R jas  (wio + 291w E dt)
Calling
lwy n. dU
Awi = =
227Tw30E dt
gives

ce= A (e—a5+j(wso+Awi)t 4 Be—&s—j(wsojLAi)t) .
For initial values €(0) = €, €(0) = —a,é we get A =B =¢€/2

e(t) = € e " cos((wyn + Aw;)t).

With w, = wy = wo\/hnceV cos ¢s /2w E for U = 0.
Stability if w?, > 0

E>FErn <0 —cosps <0, E<Eprn.>0 — cosps > 0.

For stability with energy loss U we also need

lwdV
Y T SondE

energy loss U has to increase for a positive energy deviation of the
beam.
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STATIONARY BUNCH WITH IMPEDANCE

Spectrum of a stationary bunch

We consider a single traversal of a bunch of charge ¢ and current ()
which is (for convenience) symmetric in t, I(t) = I(—t). lts spectrum
is given by the Fourier transform

I(t), I(w e L.

1 00
= [* It
)= = [ 10
time domain

t

|
|
I g
|
|
|
!
0

frequency domain

o\ _
Q
3

Gaussian bunch
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time domain

Ik () <

[(t+ 1) I(t) (t — Tp)
A
| 6 1

Ty t

frequency domain

Ow
<
.1||‘Ii‘ lil‘|l:.

0
A bunch circulating with many revolutions k of time T} in a ring repre-

sents a periodic current can be express by a Fourier series representing
a line spectrum

k=00 00 ‘ 00
Ix(t)= Y It—KIy)= Y L™ =1+2 Zl I, cos(pwyt)
p=

k=—o00 p=—00
with
L myye oot L [To/2 W s
I, = 7 oy I(t)e =77 I(t) cos(pwot) = ﬁ](pwo).

Since we assumed a symmetric bunch I(t) = I(—t) we have I, real
and only cosine terms. With this definition we have I, ~ I at low
frequencies.
Gaussian bunch

QW o q _p

[,=—¢€ 2w =—¢e 2u,
b 27 TQ
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Voltage induced by the stationary bunch
In an impedance Z(w) = Z,(w)+jZ;(w) the stationary bunch current
induces a voltage
Vielt) = > Z(pwy)LeiPt,
p=—00

Combining positive and negative frequencies, using symmetry relations

Zr(—w) =Z,(w) , Zi(—w)=—Z;(w) and Z(0) =0

Vi(t) =2 Z L, [ Z,(pwy) cos(pwot) — Zi(pwy) sin(pwot)] -

Energy loss of a stationary circulating bunch
The energy lost of the whole stationary bunch in one turn in an im-
pedance Z(w) is
To/2
Wy, = _;O o I (®)Vic(t)dt.

The product in the above expression contains

Ie(t) = > L Vi(t)= S Z(pwo) L™,
p'=—00 p=—0C

%Q forp' =p

0 forp' #p

while the integral over cos(p'wyt) sin(pwot) always vanishes.

Ty
contains integral /TOZ cos(p'wt) cos(pwot)dt =
7

Wb:TO Z ] Z(pr) _2T()ZI Z (pr)

p=—00
The loss is only due to Z,.. This is the energy loss of the whole bunch
containing [V, particle. More relevant is the one per electron U

U=— ] wo) = — > 17, (pwy).
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OSCILLATING BUNCH WITH A CAVITY
Spectrum of an oscillating bunch

time domain

1 T
[ 0 I ' 0 [
]K(t k< >l< >l
| A1) U ke-To-71) | N(t-2Th—m)
: : & /
|
| | |
| [ [
| |
0 T 2T
frequency domain
positive frequencies only
I(w) T
HHH‘I‘“*“I]I]M]I,I
0 —wr <o w

A bunch executes a synchrotron oscillation with frequency w, = wy@
and amplitude 7. It gives a modulation of its passage time ¢, at a
cavity in successive turn k

Ig(t) = § I(t—kTo—m) , with 7, = T cos(2mQsk) ~ T cos(wst)
k=—0c0
leading to a phase modulation of the current

Ik(t) = § I, e/polt=reostwst) — 109 S T cos(puo(t—7 cos(wst))).

pP=—00 w>0

We omit the dc-part I call wy, = Qswy and develop for pwyT < 1

Ig(t) = 23 I,|cos(pwt) + pwoT sin(pwot ) cos(wst)]

w>0

~ 2 Y I, |cos(pwot) + sl

w>0

(sin((p + Qs)wot) + sin((p — Qs)wot))| -

The modulation by the synchrotron oscillation results in sidebands in
the spectrum. The are out of phase and increase first with frequency.
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Voltage induced by an oscillating bunch
The voltage induced in an impedance Z(w) = Z,(w) + jZ;(w) by an
oscillating current is
I(t) = Icos(wt) — V(t) =1 (Z(w)cos(wt) — Zi(w)sin(wt))
I(t) = Isin(wt) — V(t) =1 (Z(w)sin(wt) + Z;(w) cos(wt))..

The current of the oscillating bunch is

Ik(t) =2 %O: I, |cos(pwot) + il

w>0

(sin((p + Q. )wot) + sin((p — Qs)wot))] |

We start with a resistive impedance Z, and get the voltage

Vieelt) = 2 X 1, [Z,(pwo) cos(pwpt)

w>0

BT (2,((p + QuJen) in(p + QuJen) + Zel(p = QuJe) sin(p = QuJent))|.

We split the trigonometric functions

Vier(t) =2 ijo L, [ Z,(pwy) cos(pwyt)

pwoT
2

+

+

1Z:((p + Qs)wp) (sin(pwot) cos(wst) + cos(pwpt) sin(wst))
Z((p — Qs)wop) (sin(pwot) cos(wst) — cos(pwot) sin(wst) )]

The synchrotron motion, a modulation of the arrival time each revo-
lution £, is approximated as a modulation in time

T = fcos(Qﬂ'st‘) — T = %COS(CUJ) , T = —WsT Sil’l(&)st).

and we get the voltage induced in the resistive impedance

Viet) = 2 3 I, [Z,(puwo) cos(puot)

N pgoo Z:((p+ Qs)wn) (Smw)T - Cos(p“’ot)wis)
+Z,((p — Qs)wo) (Siﬂ(PWOt)T T Cos(pwot)wis)”
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The voltage induced in the reactive (imaginary) part Z; is

Via(t) = 23 I [~ Zs(pwo) sin(pwo)

w>0

(0 + Q) Z{ (0 + Q) cos(p+ Qu)ent)
+(p - QS)ZZ((p - QS)WO) COS((p _ Qs)th))] :

Splitting the trigonometric functions and using 7and 7

_|_

Vii(t) = — Z;(pwy) sin(pwy)

&
“"%ﬁmg

S

Q) Zu{(p = QuJo) (cos(pnt)7 — sin(pent) ) )|

Ws

]
( P+ Qs)Zi((p+ Qs)wy) (Cos(pwot)T + Sin(pwo)i)
+(p —

In the following we assume a narrow band impedance dw < wy span-
ning only one revolution harmonic p with its two sidebands.

Zr(w) (@)
oo
Z1(w) Zy(w)
.............. _ \UJ///,
I(w)
0 il L
(p+1)wy Pwo (p=1)wo
TVR(@ I w
I
pc‘do
WM - o
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Average voltage seen by a bunch during the traversal £
The average voltage seen by the NV, particles during a turn k is the
convolution of the single traversal bunch current I(¢, k) with the
oscillating voltage excited over many turns in the cavity.

1 o
(V) = o, / I(t, k) Vi (t)dt = T — [ I(t, k) Vi (t)dt.

We assume small excursion 7 = 75 and take only first order in 7,7

dI
It = KTy —7) = 1) = 7.

Since I(t) is even its derivative is odd. We meet the integrals

/_Ozo I(t) cos(pwt)dt = \/%i(pwo) B 27?1

dl o
/Esm(pwot)dt —pr/I(t) cos(pwot)dt = _pwow—]

/I sin(pwot)dt = 0 /— cos(pwot) = 0.

The average voltage due to the resistive impedance is

) = 22 [Zutpan) = BT (2, (p+ Qulen) = Z4d(p - Qo)

First term, independent of 7, is energy loss of stationary bunch. The
others are proportional to 7 = 1.AF/E and can give instabilities.
For the reactive impedance we have

21291;0“)07 —Zi(pwo) + % (Zi(p+ Qs)wo) + Zi((p — QS)WO»]

which is proportional to 7 and creates a synchrotron frequency change.
We abbreviate for later applications

Zgr = Z(pwo) , Z;; = Z,((p + Qs)wo) , Z = Z:((p — Qs)wo)
Zy = Zilpwo) , Zg = Zi(p+ Qs)wo) , Zyy = Zi((p — Qs)wo)

(Vi) =

212 0 PwoT /4 B 2]2pw07' 0o L/ _
(V) = ]—Op [Zpr T 9w (Zpr ZPT)]+ pjo —Zpi t 2 (Zpi T Zpi)]
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ROBINSON INSTABILITY

Qualitative treatment

The most important longitudinal instability is based on the interac-
tion between the bunch and a cavity with memory, called Robinson
instability. As a qualitative treatment we consider a single circulat-
ing bunch interaction with a cavity of resonance frequency w, and
impedance Z(w) of which we consider only the resistive part Z,.

The revolution frequency wy depends on energy deviation AE

AWO AFE

= E

While the bunch is executing a coherent dipole mode oscillation €(t) =
€ cos(wst) its energy and revolution frequency are modulated. Above
transition w; is small when the energy is high and wj is large when
the energy is small. If the cavity is tuned to a resonant frequency
slightly smaller than the RF frequency w, < pwy the bunch sees a
higher impedance and loses more energy when it has an energy
excess and it loses less energy when it has a lack of energy. This
leads to a damping of the oscillation. If w, > pwy this is reversed and
leads to an instability. Below transition energy the dependence of the
revolution frequency is reversed which changes the stability criterion.
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Quantitative treatment

We consider a narrow-band cavity and one circulating bunch executing
a synchrotron oscillation 7 = 7 cos(ws,t) and producing sidebands to
revolution frequency harmonics which induce an averaged voltage (V')
and resulting energy loss U = e(V) in a turn. We will now include
this in the energy gain/loss in the equation of synchrotron oscillation

Se — 5 (%) _ eV sin(¢s) N hwoeV cos¢s U

E E B

For 0e << 1 we use a smooth approximation

_ 2T woev sin ¢y w%hef/ COS Qg wo U
de=¢€ly=¢é—, é = _ A=
L omE | orE | 2nE
The energy loss U depends on 7 and 7
21° PwoT 212 pwoT 1
_Z"p |0 0 + - pt’*0 0, Lot _
V=" [Zpr T o (Z — Zpr>]+T ~Zyi+ 5 (Zy + Zm’>]
Vsing, 20220 )
giving é = wOGQWSll;gb — 7_'}0 P iheV
21 1) 2
wiheV cos @ 2Ippwo7' o L,/ _
+ mE T I —Zpi 2 (sz’ + sz’)
pwoT /. _
o (2} - 2,
T = 7)E.
: 2127 hieeV cos
For equilibrium V sin ¢, = % , using W’ = —w? ! 627T§)S¢
IPw,
PNz — 73
210hV cos @,
2 pl; 0 + -
21ohV cos ¢,
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1 1
Wr hwy W

p]pQWSO

: Zt — 77
2IyhV cos gbs( rr pr)
2 p12 0 + —
21V cos ¢,

This second order equation describes a damped oscillation
€ = ée” ' cos(wyt + @)
with the damping or growth rate
_ wsoplﬁ(?; — Zy,)
210hV cos ¢y

The growth rate is given by the difference of the resistive impedance at

S

the upper and lower synchrotron sideband. Above transition cos ¢4 <
Oand a; > 0, ie stability if Z, > Z;; already obtained from
qualitative arguments.

The RF cavity itself has a narrow-band impedance around hwg which
can drive an instability. Since the bunch length is much shorter than
the RF wavelength we have I, = I}, = Ij so that

N ws()]()(Z]j;, — Z_)

7
&SN p

21,V cos bs

There is also a frequency shift due to the reactive impedance
2 _ )2 (1 n pl,Zy  pL(Z)+ Zpi))

° 50 IyhV cos ¢y IyhV cos ¢y .

w
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Qualitative understanding

turn k T, turnlk—l—l
| |
T Oscillating bunch |
(1 (1
k( ) I (Qs — 0.25) k( ) |
| N |
| t | t
I(t) ; Stationary bunch 1) ;
0 0
| + |
t t
I1(t) | Perturbation 71 (1) |
/\: i
t t
Cavity field induced by the two sidebands
E. | Wy = (2 + QS)WO
N /T\t
E. . Wr = (2 - QS)WO .
| |
/—\ ! T

¢ Phase motion of the bunch center .
x 3—2 Y >T @l

€ €
@l v <A7T L

The growth rate is given by the side-band impedance difference

_wapl2(Z - Z;,)

pr
2IyhV cos Os

This can be understood qualitatively taking as example p = 2 and
Qs = ws/wy = 0.25. At v > 7y the voltage induced by the upper
sideband enhances the oscillation, the one from the lower sideband

S

reduces it. Below transition the situation is reversed.
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More accurate treatment

time domain

S

Ix(t

I(tho)

S

o

| |
Sle Sle =
|
|
|
|
|
|
|
|

(t To— T1 : t 2To— 7'2
I /
|
|
el I -
|
|

frequency domain

l\D

STy
oﬂ_

Ik(t) = %O: I(t — KTy — 1) , T = T cos(2mQsk) = 71, = T cos(wst)

The bunch position is a function of turns k& rather than time ¢ giving
current components

Wyt = wo(pxQs), ILpx = \/—_f(wpi) I(w) I(t)e “'dt.

N 1 o0
o ﬁ /—oo
This gives a slight modification of the growth rate of synchrotron
oscillations

T = 7 2%% cos ((wy + Awgy )t)

1 ((p+Qs) Zy(wpt) — (P — Qs) Zy(wp- ))

Ts 2hIOV COS Qg

The growth (or damping) rate depends on the difference in impedance
between the upper and lower sideband.
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General impedance
For an impedance of larger band-width we have to take the impedance
at the sidebands of all revolution harmonics pwy

1 Wy
?s B QhIOV COS g zp: ((p T QS)IJEJrZT(prr) —(p— QS)IZQ,_ZT(WZ)_))

I(w) ] Ow
! frequency domain
]. il ‘ ‘ II 1 \l\ ‘ll NN
0 %ws& ‘w()% w
|
A
|
|
|
W ™

r
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Many bunches

Global view of frozen motion
bunch:l 2 3 4 1

AET ¢

! .
v

Motion observed at a fixed location vs. time
bunch:l 2 3 4 1 2 3 4 1 2 3

AE /\\ /,\ :__/’\
\ \ TR i
\ : / \ /’

0
Spectrum
IQS
| | | — |
0 1 2 3 4 w/wp

M equidistant bunches have M independent modes of coupled bunch
oscillations labeled 0 < n < M — 1 related to oscillation phase dif-
ference A¢ of adjacent bunches n = A¢/(2rM). Each mode n has

one pair of sidebands in each frequency range of Mwy
wpr = wo(pM £ (n+ Qy))

The example shows M = 4, n = 1 and Qs = ws/wy = 0.25 The
growth rate of each mode n is given by a sum over the impedance
differences of each sideband pair.

1 W

T - ORIV cos s %: ((p + QS)IIirZT’(prr) —(p— QS)IE_ZT(wp_))

Bunch shape oscillations

In addition to the rigid dipole modes (m = 1) there are bunch shape
oscillations, quadrupole mode (m = 2), sextupole mode (m = 3), etc.
with the frequencies

wpt = wo(pM £ (n + mQs)).
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BUNCH LENGTHENING

A ring impedance consists often of many resonances with frequencies
wy, shunt impedance R, and quality factors (). At low frequencies,
w < wy, their impedances are mainly inductive

9 9
1 —jQ Rw

o

Zw)=R

Ui (gemt) Qe
The sum impedance at low frequencies of all these resonances divided
by the mode number n = w/wy is called

‘g _ Z RskWO
n

0 k Qrwrk
with L being the inductance. A bunch with current I;(¢) induces a
voltage V; = — LdI;/dt which is added to the RF-voltage

. dI
V(t) = V sin(hwyt) — Ld—tb.

Developing around t,, using 7 = t — t;, ¢5 = hwyts and using a

= Lwo.

parabolic bunch

]b(T)

Average current [
I(r) = I(1 = 7°/75)
dI,/dr = 3nlyT /75

T0 T

gives the voltage |

R . 3| Z/n|ol
V =Vsinggs + V cos ¢pshwyt (1+ ~ m1Z/nlols ) .
hV cos ¢s(wyTp)?

and synchrotron frequency shift for the particles in the bunch
Aws 3| Z/n|olo
ws 2KV cos Os(woTp)?
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bunch/x /\
| .

Only the incoherent frequency of individual particles changed (reduced
for v > ~p, increased for v < yr). The coherent dipole (rigid bunch)
is not affected. This separates the coherent synchrotron frequency
from the incoherent distribution and leads to a loss of Landau damping.
The reduction of longitudinal focusing increases the bunch length given
by a 4th order equation for protons with constant phase space area

4 3|2 1
()} e (n)__,
700 hV cos ¢s(woT0)® \ 700

and a 3rd order one for electrons having fixed energy spread. The

assumed parabolic bunch current is the projection of an elliptic phase
space distribution. In this case the bunch form is not changed just its
length increased. This is more complicated for other distribution like
for the Gaussian shown in the figure.

0.4
0.3

0.2
: . \/27Th2]0‘2/n‘0

0.1- =
: V cos ¢p(hwyoro)?
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