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Review of Instabilities Mechanisms

OVERVIEW
The motion of a single particle in a storage ring is determined by the
external guide fields (dipole and quadrupole magnets, RF-system,
etc.), initial conditions and synchrotron radiation. Many particles
in a beam may represent a sizable charge and current which act as
a source of electromagnetic fields (self fields). They are modified
by boundary conditions imposed by the beam surroundings (vacuum
chambers, cavities, etc.) and act back on the beam. This can
lead to a frequency shift (change of the betatron or synchrotron
frequency), to an increase of a small disturbance of the beam, i.e.
an instability or to a change of the particle distribution, e.g.
bunch lengthening. These phenomena are called collective effects
being due to a coherent or collective action of many particles.
The role played in this process by the electrical properties of the
beam surroundings is expressed by an impedance.

As an example we take a bunch in a storage ring going through
a cavity where it induces electromagnetic fields which oscillate and
slowly decay away. In the next turn the same bunch finds some
field left and gets influenced by it. Depending on the phase of the
field seen in the next turn a small initial perturbation is increased or
decreased leading to an exponentially growing or decaying oscillation

of the bunch.
chavity(t>
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Multi-turn effects

In the example the induced fields have a memory and the instabil-
ity is built up over many turns. These self fields are often small
compared to the guide fields and their effects is treated as a per-
turbation in 3 steps.

a) We determine the stationary particle distribution given by the
guide field, initial condition and synchrotron radiation.

b) We consider small disturbances and calculate the fields they cre-
ate including the boundary conditions (impedance).

c) We calculate the effect of these fields to see if the initial dis-
turbance is increased (instability) or decreased (damping) or the

oscillation mode changed (frequency shift).
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As disturbances we consider orthogonal (independent) oscillation
modes and investigate the stability of each. This works for weak
interactions which don't alter the nature of the modes but determine
only their exponential growth over many turns. Multi-turn effects
are driven by narrow frequency band impedances with memory.
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Multi-bunch effects
With many circulating bunches their individual oscillations can be
coupled by an impedance with a shorter memory bridging just the
bunch spacing instead of the revolution time. Multi-turn and multi-
bunch instabilities have the same qualitative properties and are called
multi-traversal effects.

bunch 4 ‘/cavity(t>

bunch 2 bunch 1 2 3 4 1

Cures: damp cavity modes, feed-back system.
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Single traversal effects

Strong self-fields from broad band impedances change the station-
ary distribution and modify oscillation modes which are no longer
independent. A self consistent solutions is difficult to obtain. The
most common such effect is bunch lengthening. Small vacuum
chamber aperture changes represent at low frequencies an inductive
impedance wL in which the bunch current I(¢) induces a voltage

dl

Vi(t) = —L—.

It is added to the external RF-voltage, reduces its slope and increases
the bunch length, called potential well bunch lengthening.

Cure: smooth chamber.
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Longitudinal and transverse effects

Longitudinal effects involving synchrotron (energy, phase) oscilla-
tions and longitudinal impedances. They contain longitudinal insta-
bilities, shift of synchrotron frequencies and bunch lengthening.
transverse effects involve betatron oscillations and transverse im-
pedances. They contain transverse instabilities and betatron fre-
quency shifts.

In both cases the longitudinal particle distribution (bunch length)
is important since it can be "resolved” by the impedance while the
transverse distribution is usually not resolved and does not affect
the instability.

The most important longitudinal single traversal effects are syn-
chrotron frequency shifts and bunch lengthening. In the transverse
case the effect of the chromaticity is important which can lead to
head-tail instabilities.
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LONGITUDINAL IMPEDANCES
Longitudinal impedance and wake potential of a resonator

() G

bunch

>

S

Cavities have narrow band oscillation modes which can drive coupled
bunch instabilities. Each resembles an RCL - circuit and can, in
good approximation, be treated as such. This circuit has a shunt
impedance R, an inductance L and a capacity C. In a real cavity
these parameters cannot easily be separated and we use others which
can be measured directly: The resonance frequency w,, the
quality factor () and the damping rate «:

1 C R, Wy
wr—\/L— Q= RJZ o Rer,a—@

R Q
C = .
Qu, wy Ry

L =
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Driving this circuit with a current I gives the voltages and currents
across the elements

L
Ir) I I]_L__— Ve = IlRRs
e Vo = 5/cht
(1) R —— L |v e
Vv, = LoE
L dt

Ve=Ve=V, =V, Ip+Ilc+1=1
Differentiating with respect to t gives

. . . Vv .V
=1 I I =—+CV + —
R+ 1o+ 1j, R3+ +L

Using L = Ry/(w,Q)and C' = Q/(w,R;) gives differential equa-

tion

WO wr R .
V4 V4wV =""1
Q Q

The solution of the homogeneous equation represents a damped

V(t) = Ve *cos (wr 4Q2t + qb)

V(t)=e ™ (A COS (wr Wt) + Bsin (wr — Zl(l.gﬂt))

oscillation
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Green (wake) function
We calculate the response of RCL circuit (cavity mode) to a delta
function pulse (very short bunch) I(t) = qd(t)

I

e

—/\— 1) R _% L v Q = RSE
I(t) = qd(t) Wr
a = —
7 20
V4 =V4wV="2]
Q Q
The charge q will charge up the capacity to a voltage
V(0T) = g wé% q using C' = wfi%s

Energy stored in capacitor equals energy lost by charge

q° _ Wrquz _ V(0)
2C 20 2

where we introduced the parasitic mode loss factor

w, R

Kpm = 20

The charged capacitor C will now discharge first through the resistor

U= q = kpmq2

measured usually in [V /p(]

R and then also through the inductance L
q Ip 1LV(0*) wfRS 2wy K pm,
= = - q

VO =-G="¢="C R - 21T
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The resonance circuit has now the initial conditions
Q

The solution of the homogeneous differential equation is

V(t)=e ™ (Acos (wr 1—43¥t) + Bsin (wr 1—4(1¥t))
V(t)=e ™ Aa+ Bu, |1— — R
(t)=¢e ((— a + Bw, _4622) COS (wr ~ 10 )

The initial conditions give

1 20, kpm
A =2k,,q and — Ao+ Bw, |1 — TQQ = —qu.

The resonator voltage at t, excited by a I(t) = git att =0 is

in — L
V(t) = 2qkypme ™ (CQS (erl_—lt) s (wrW t))
@) 0k

V(0%) = 2kpng and V(0T) =
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This voltage induced by charge ¢ at t = 0 is seen by a second
point charge ¢’ traversing the cavity at ¢ and loosing or gaining an
energy U = ¢’V (t). This energy gain/loss per unit source and probe
charges is called Green or wake function G(t). For our resonator
(cavity resonance):

in (wpy/1 — 750 t
G(t) = Qkpme—at cos (wrﬁt) _sm (w \/741_Qg )
T TS

for () > 1 this simplifies to the damped oscillation

rRs T
G(t) ~ 2kpme " cos (wit) , kpm = WQ*Q , Q0= ;—Q
G(1)
2kpm,
1 - wake potential

The wake potential is related to the longitudinal field £, by a field
integral over the object length. Since the field changes this integra-
tion has follow a particle going with the speed of light through the
object taking the momentary field value

V =— /22 E.(z,t)dz = — f, ;2 E.(2)dz = —(E.);Axz.

with the transit time factor f; correcting the instantaneous integral
over z. We use a wake potential being positive where the particle
loses energy consistent with the sign used for resistors.

cas03a-11



Impedance

I ¥

R 2

We assume now a harmonic excitation of the circuit with a current
of the form [ = I cos(wt)
The differential equation of the harmonic excitation is

V4 2V 4wV ="2T=—""Jusin(wt
Q Q g sinh

The solution of the homogeneous equation is a damped oscillation

which disappears after some time. We are left with the particular
solution of the form V' (t) = Acos(wt) + Bsin(wt). Inserting this
into the differential equation and separating cosine and sine terms
gives

Wy W Wyw e w,w R

Q Q Q

The voltage induced by the harmonic excitation of the resonator

I

— (W —wHA+ B=0 and (w? —w?)B+

becomes r
. cos(wt) + Q T sin(wt)

V(t) = IR, T (ﬁj)Q
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Vie) = IR, cos(wt) + Q :sn;(wt)
1+ (<)

The voltage has a cosine term being in phase with the exciting

current. It can absorb energy and is called resistive term.

The sine term of the voltage is out of phase with the exciting
current and does not absorb energy, it is called reactive.

The ratio between the voltage and current is the impedance. It is
a function of frequency wand has a resistive part Z,(w)and a
reactive part Z;(w)

1 Q%
Zr(w) = Ry . (wa)z , Zi(w) = —R; 1+Q2( wrwz)Q

The resistive part of the impedance is always positive, the reactive
is positive below the resonant frequency w < w, and negative above
of it w > w,.
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Complex notation
We have used a harmonic excitation of the form

N ajwt —jwt
I(t):](:os(wt)zle —|—2€ with 0 <w < o0

It is often more convenient to use a complex notation
I(t) = I/ with — 0o <w < 00

giving more compact expressions. Using the differential equation
Wy w, R
Q Q

with I(t) = I exp(jwt) and seeking a solution of the form V/(t) =
Vo exp(jwt), where Vjis in general complex, one gets

V4 2V +w?V = I

and for the impedance which is defined as the ration V/I

iejwt

2 2

1% Ry 1 —jQ“—=*

Zw) = = - Ay = R / Qwiwjz

+J <wr—w) 1+Q2<Tth)

For Q > 1 the impedance is only large for w =~ w, or for |w —
wy|/w, = |Aw|/w, < 1and can be simplified
1 —j2Q5

T (&)

Te ™“!instead of I(t) = [e/*! is used,

3 — Zr"’sz'

Z(w) ~

Caution: sometimes [(t) =
this reverses the sign Z;(w).
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Green function and impedance of a resonator

Green function Green function

0\\//1\\/2 3 4 2m/w, 0\/1\/Qv3\\/4%ﬁ/wr

Impedance Impedance
Z(w) Z(w)
R R
ZR(CL)) ft -1 ”ZR(CU)
1! iy | (| T w [wy
Zi(w) Zy(w)
Q=30 Q@ =15.0

The resonator impedance has some specific properties:
atw =w, — Z;(w,) hasamaximum, Z;(w,) =0
0<w<w, — Zjw) >0 (inductive)
w > w, — Zij(w) <0 (capacitive)
and any impedance or wake potential has the general properties
Zy(w)=2Z(—w) , Ziw)=—-Z(—w)
Z(w) = /_Ozo G(t)e“'dt Z(w) ox Fourier transform of G/(t)
fort <0 — G(t) =0,

no fields before particle arrives.
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