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Maxwell’s Equations for Magnets

In these lectures, we shall discuss solutions to Maxwell’s

equations for magnetostatic fields:

1. in two dimensions (multipole fields);

2. in three dimensions (fringe fields, insertion devices...)

In the first lecture, we will see how to construct multipole fields

in two dimensions, using electric currents and magnetic

materials, considering idealised situations.

In the second lecture, we will consider three dimensional fields,

and some of the effects of non-ideal geometries and materials.

Unfortunately, we have no time to discuss pulsed magnets,

septa...
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Maxwell’s Equations for Magnets

I shall assume some familiarity with the following topics:

• vector calculus in Cartesian and polar coordinate systems;

• Stokes’ and Gauss’ theorems;

• Maxwell’s equations and their physical significance;

• types of magnets commonly used in accelerators.

The fundamental physics and mathematics is presented in

many textbooks. I shall (try) to follow the notation used in:

A. Chao and M. Tigner, “Handbook of Accelerator Physics and

Engineering,” World Scientific (1999).
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Maxwell’s equations

James Clerk Maxwell

1831 – 1879

Maxwell’s equations are:

∇ · ~D = ρ ∇ · ~B = 0

∇× ~E =−∂ ~B
∂t ∇× ~H = ~J + ∂ ~D

∂t

where ~D = ε ~E is the electric displacement; ~B = µ ~H is the

magnetic flux density; ρ is the electric charge density; and ~J is

the current density.
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Maxwell’s equations

In these lectures, I shall consider only magnetostatic fields.

Maxwell’s equations for the magnetic field become:

∇ · ~B = 0, (1)

∇× ~H = ~J. (2)

In this first lecture, we shall show that multipole fields provide

solutions to these equations in two dimensions, i.e. where the

fields and currents are independent of one coordinate (z). We

shall also deduce the current distributions and material property

and geometries that can generate fields with specified multipole

components.
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Physical interpretation of ∇ · ~B = 0

Gauss’ theorem tells us that for any smooth vector field ~B:∫
V
∇ · ~B dV =

∮
S

~B · d~S, (3)

where the closed surface S bounds the region V .

Applied to Maxwell’s equation ∇ · ~B = 0, Gauss’ theorem tells

us that the total flux entering a bounded region equals the

total flux leaving the same region.
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Physical interpretation of ∇× ~H = ~J

Stokes’ theorem tells us that for any smooth vector field ~H:∫
S
∇× ~H · d~S =

∮
C

~H · d~̀, (4)

where the closed loop C bounds the surface S.

Applied to Maxwell’s equation

∇× ~H = ~J, Stokes’ theorem tells

us that the magnetic field ~H in-

tegrated around a closed loop

equals the total current passing

through that loop:∮
C

~H · d~̀ =
∫
S

~J · d~S = I. (5)
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Linearity and superposition

Maxwell’s equations are linear :

∇ ·
(

~B1 + ~B2

)
= ∇ · ~B1 +∇ · ~B2, (6)

and:

∇×
(

~H1 + ~H2

)
= ∇× ~H1 +∇× ~H2. (7)

This means that if two fields ~B1 and ~B2 satisfy Maxwell’s

equations, so does their sum ~B1 + ~B2.

As a result, we can apply the principle of superposition to

construct complicated magnetic fields just by adding together a

set of simpler fields.
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Multipole fields

Let us first consider fields that satisfy Maxwell’s equations in

free space, e.g. the interior of an accelerator vacuum chamber.

Here, we have ~J = 0, and ~B = µ0
~H; hence, Maxwell’s equations

(1) and (2) become:

∇ · ~B = 0, and ∇× ~B = 0. (8)

Consider the field given by Bz = constant, and:

By + iBx = Cn (x + iy)n−1 , (9)

where n is a positive integer, and Cn is a complex number.

Note that the field components Bx, By and Bz are all real; we

are only using complex numbers for convenience.
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Multipole fields

Now consider the differential operator:

∂

∂x
+ i

∂

∂y
. (10)

Applying this operator to the left hand side of (9) gives:(
∂

∂x
+ i

∂

∂y

)
(By + iBx) =

(
∂By

∂x
−

∂Bx

∂y

)
+ i

(
∂Bx

∂x
+

∂By

∂y

)
,

=
[
∇× ~B

]
z
+ i∇ · ~B. (11)

In the final step, we have used the fact that Bz is constant.
Also using this fact, and the fact that Bx and By are
independent of z, we see that the x and y components of ∇× ~B

vanish.

Applying the operator (10) to the right hand side of (9) gives:(
∂

∂x
+ i

∂

∂y

)
(x + iy)n−1 = (n−1) (x + iy)n−2+i2(n−1) (x + iy)n−2 = 0.

(12)
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Multipole fields

Hence, applying the operator (10) to both sides of equation

(9), we find that:

∇ · ~B = 0, ∇× ~B = 0. (13)

Therefore, the field (9) satisfies Maxwell’s equations for a

magnetostatic system in free space.

Of course, this analysis simply tells us that the field (9):

By + iBx = Cn (x + iy)n−1

is a possible solution to Maxwell’s equations in the situation we

have described: it does not tell us how to generate such a field.

Fields given by (9) are called multipole fields. Note that, since

Maxwell’s equations are linear, we can superpose any number

of multipole fields, and obtain a valid solution to Maxwell’s

equations.
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Multipole fields

C2 =real, normal quadrupole C2 =imaginary, skew quadrupole

C3 =real, normal sextupole C3 =imaginary, skew sextupole
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Multipole fields

For Cn = 0 for all n, we have:

Bx = By = 0, Bz = constant. (14)

This is a solenoid field, and is not generally regarded as a

multipole field.

In the conventional notation (see Chao and Tigner), we rewrite

the field (9) as:

By + iBx = Bref

∞∑
n=1

(bn + ian)

(
x + iy

Rref

)n−1

. (15)

The bn are the “normal multipole coefficients”, and the an are

the “skew multipole coefficients”. Bref and Rref are a reference

field strength and a reference radius, whose values may be

chosen arbitrarily; however their values will affect the values of

the multipole coefficients for a given field.
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Multipole fields

The interpretation of the multipole coefficients is probably best

understood by considering the field behaviour in the plane

y = 0:

By = Bref

∞∑
n=1

bn

(
x

Rref

)n−1

, and Bx = Bref

∞∑
n=1

an

(
x

Rref

)n−1

.

(16)

A single multipole component with n = 1 is a dipole field:

By = b1Bref is constant, and Bx = a1Bref is also constant.

A single multipole component with n = 2 is a quadrupole field:

By = b2Bref
x

Rref
, and Bx = a2Bref

x

Rref
. (17)

Both By and Bx vary linearly with x.

For n = 3 (sextupole), the field components vary as x2, etc.
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Generating multipole fields from a current distribution

To see how to generate a multipole field, we start with the

magnetic field around a thin wire carrying a current I0.

Generally, the magnetic field in the presence of a current

density ~J is given by Maxwell’s equation (2):

∇× ~H = ~J.

Consider a thin straight wire of infinite length, oriented along

the z axis. Let us integrate Maxwell’s equation (2) over a

circular disc of radius r centered on the wire, and normal to the

wire: ∫
S
∇× ~H · d~S =

∫
S

~J · d~S = I0, (18)

where we have used the fact that the integral of the current

density over the cross section of the wire equals the total

current flowing in the wire.
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Generating multipole fields from a current distribution

Now we apply Stokes’ theorem, which tells us that for any

smooth vector field F :∫
S
∇× ~F · d~S =

∮
C

~F · d~̀, (19)

where C is the closed curve bounding the surface S.

Applied to equation (18), Stokes’ theorem gives us:∮
C

~H · d~̀ = I0, (20)

By symmetry, the magnetic field must be the same magnitude

at equal distances from the wire. We also know, from Gauss’

theorem applied to ∇ · ~B = 0, that there can be no radial

component to the magnetic field.

Maxwell’s Equations 15 Part 1: Ideal Multipole Fields



Generating multipole fields from a current distribution

Hence, the magnetic field at any point is tangential to a circle

centered on the wire and passing through that point. We also

find, by performing the integral in (20), that the magnitude of

the magnetic field at distance r from the wire is given by:

~H =
I0
2πr

. (21)

If there are no magnetic materials

present, µ = µ0, so:

~B = µ0
~H =

µ0I0
2πr

. (22)
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Generating multipole fields from a current distribution

Now, let us work out the field at a point ~r = (x, y, z) from a

current parallel to the z axis, but displaced from it. The line of

current is defined by x = x0, y = y0.

The magnitude of the field is given, from (22) by:

B =
µ0I0

2π |~r − ~r0|
, (23)

where the vector ~r0 has components ~r0 = (x0, y0, z).

Since the field at ~r is perpendicular to ~r − ~r0, the field vector is

given by:

~B =
µ0I0
2π

(y − y0,−x + x0,0)

|~r − ~r0|2
. (24)
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Generating multipole fields from a current distribution
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Generating multipole fields from a current distribution

It is convenient to express the field (24) in complex notation.

Writing:

x + iy = reiθ, and x0 + iy0 = r0eiθ0, (25)

we find that:

By + iBx =
µ0I0
2π

(
r0e−iθ0 − re−iθ

)
∣∣∣r0eiθ0 − reiθ

∣∣∣2 . (26)

Using the fact that for any complex number ζ, we have

|ζ|2 = ζζ∗:

By + iBx =
µ0I0
2π

1

r0eiθ0 − reiθ

=
µ0I0
2πr0

e−iθ0(
1− r

r0
ei(θ−θ0)

). (27)
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Generating multipole fields from a current distribution

Using the Taylor series expansion:

(1− ζ)−1 =
∞∑

n=0

ζn, (28)

(valid for |ζ| < 1) we can express the magnetic field (27) as:

By + iBx =
µ0I0
2πr0

e−iθ0
∞∑

n=1

(
r

r0

)n−1

ei(n−1)(θ−θ0), (29)

which is valid for r < r0.
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Generating multipole fields from a current distribution

The advantage of writing the field in the form (29) is that by

comparing with equation (15) we immediately see that the field

is a sum over an infinite number of multipoles, with coefficients

given by:

Bref

Rn−1
ref

(bn + ian) =
µ0I0
2πr0

e−inθ0

rn−1
0

. (30)

If we choose:

Bref =
µ0I0
2πr0

, and Rref = r0, (31)

we see that:

bn + ian = e−inθ0. (32)
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Generating multipole fields from a current distribution

Now, let us consider the total field generated by a set of wires

distributed around a cylinder of radius r0, such that the current

flowing in a region at angle θ0 and subtending angle dθ0 at the

origin is:

I0 = Im cosm(θ0 − θm) dθ0, (33)

where m is an integer.

The total field is found by integrating over all θ0. From (29):

By + iBx =
µ0Im

2πr0

∞∑
n=1

(
r

r0

)n−1

ei(n−1)θ
∫ 2π

0
e−inθ0 cosm(θ0 − θm) dθ0

=
µ0Im

2πr0

(
r

r0

)m−1

ei(m−1)θ πe−imθm. (34)

We see that the cosine current distribution (33) generates a

pure 2m-pole field within the cylinder on which the current

flows.
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Generating multipole fields from a current distribution

Choosing the reference field and radius (31) as we did above:

Bref =
µ0Im

2πr0
, and Rref = r0,

we find that the multipole coefficients for the field generated

by the cosine current distribution (33) are:

bm + iam = πe−imθm. (35)

For θm = 0 or θm = π, we have a normal 2m-pole field.

For θm = ±π/2, we have a skew 2m-pole field.
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Generating multipole fields from a current distribution
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A superconducting quadrupole for a (linear) collider final focus

Second layer of a six-layer superconducting quadrupole devel-
oped by Brookhaven National Laboratory for a linear collider.
The design goal is a gradient of 140T/m.
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Generating multipole fields in an iron-cored magnet

To generate magnetic fields of the strengths often required in

accelerators using only a current distribution, the size of the

current needs to be large. Usually, this means using

superconductors to carry the current.

Magnetic fields of reasonable strength can also be generated

using resistive conductors to drive magnetic flux in

high-permeability materials.

We shall finish this lecture with a discussion of the required

geometry for an iron-cored magnet to generate a pure 2m-pole

field, and the relationship between current and field strength.

To keep things simple, we assume that the magnet is infinitely

long in the z direction, and that the core has infinite

permeability.
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Generating multipole fields in an iron-cored magnet

First of all, we note that the magnetic flux lines in free space

must meet a material with infinite permeability normal to the

surface. This we shall now show.

Consider a thin rectangular loop spanning

the surface of the material. If we integrate

Maxwell’s equation:

∇× ~H = ~J +
∂ ~D

∂t
(36)

across the surface bounded by the loop, and

apply Stokes’ theorem, we obtain:∫
S
∇× ~H ·d~S =

∮
C

~H ·d~̀ =
∫
S

~J ·d~S+
∫
S

∂ ~D

∂t
·d~S.

(37)
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Generating multipole fields in an iron-cored magnet

Now, if we take the limit where the width of the loop tends to

zero, then assuming there is no surface current, and that the

time derivative of the electric displacement remain finite, we

obtain:

H0t −H1t = 0, (38)

where H0t is the tangential component of the magnetic field

just outside the boundary to the material, and H1t is the

tangential component of the magnetic field just inside the

boundary.

We see that the tangential component of the magnetic field H

is continuous across the boundary. Writing B = µH:

B0t

µ0
=

B1t

µ1
. (39)
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Generating multipole fields in an iron-cored magnet

For a material with infinite permeability, assuming that the

magnetic field B remains finite within the material, we see that:

B0t = 0. (40)

Thus, the tangential component of the field at the surface of

the material vanishes; in other words, the magnetic field at the

surface must be normal to the surface.

If we can shape a material (with infinite permeability) such that

its surface is everywhere normal to a given 2m-pole field, then

the only field that can exist around the material will be the

2m-pole field.
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Generating multipole fields in an iron-cored magnet

To derive an explicit expression for the shape of the magnetic

material in a pure 2m-pole magnetic field, it is helpful to

introduce the magnetic scalar potential, Φ. This is defined so

that:

~B = −∇Φ. (41)

For static fields in free space, Maxwell’s equation:

∇× ~B = 0 (42)

is satisfied for any scalar field Φ; and the other Maxwell

equation:

∇ · ~B = 0 (43)

gives, in terms of the potential, Laplace’s equation:

∇2Φ = 0. (44)
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Generating multipole fields in an iron-cored magnet

Since the vector ∇Φ is always normal to a surface of constant

Φ, the surface of the magnetic material of infinite permeability

is always a surface of constant magnetic scalar potential.

To find the geometry for the magnetic material in a pure

2m-pole field, we simply have to determine the appropriate

magnetic scalar potential Φ, and then the equation

Φ = constant

determines the geometry.
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Generating multipole fields in an iron-cored magnet

Let us hazard a guess at the potential:

Φ = −|Cm|
rm

m
sin(mθ − ϕm). (45)

Taking the gradient in cylindrical polar coordinates:

−∇Φ = r̂
∂Φ

∂r
+

θ̂

r

∂Φ

∂θ

= r̂ |Cm|rm−1 sin(mθ − ϕm)− θ̂ |Cm|rm−1 cos(mθ − ϕm).

(46)

Using:

r̂ = x̂ cos θ + ŷ sin θ, and θ̂ = −x̂ sin θ + ŷ cos θ, (47)

we find:

−∇Φ = x̂ |Cm|rm−1 sin[(m− 1)θ − ϕm]+ŷ |Cm|rm−1 cos[(m− 1)θ − ϕm] .

(48)
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Generating multipole fields in an iron-cored magnet

For a pure 2m-pole field:

By + iBx = Cmrm−1ei(m−1)θ, (49)

so:

Bx = |Cm|rm−1 sin[(m− 1)θ − ϕm] , (50)

By = |Cm|rm−1 cos[(m− 1)θ − ϕm] . (51)

Comparing with equation (48), we conclude that the scalar

potential (45):

Φ = −|Cm|
rm

m
sin(mθ − ϕm) (52)

generates the pure 2m-pole field:

By + iBx = −∇Φ = Cm(x + iy)m−1. (53)
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Generating multipole fields in an iron-cored magnet

Since the surface of the magnetic material must be surface of

constant potential (assuming infinite permeability), we see that

the surface of the material in a pure 2m-pole field must be

given by:

rm sin(mθ − ϕm) = constant, (54)

or:

r = m

√
constant

sin(mθ − ϕm)
. (55)

ϕm is the phase angle of C∗
m. If ϕm = 0, then Cm is real, and

we generate a normal 2m-pole field. If ϕm = π/2, then Cm is

imaginary, and we generate a skew 2m-pole field.
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Multipole fields in an iron-cored magnet
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Generating multipole fields in an iron-cored magnet

Our final task is to calculate the field strength in an iron-cored

magnet for a given number of ampere-turns around each pole.

To do this, we can consider just a normal 2m-pole, since skew

2m-poles are simply rotations of normal 2m-poles.

We assume that the magnetic field is generated by wires

carrying currents between the poles, with the wires parallel to

the z axis, and positioned a large distance from the axis. Since

the distance from the centre of the magnet to the currents is

large, we can neglect the field arising “directly” from the

current, and consider only the field arising from magnetisation

of the iron.

Furthermore, we maintain symmetry by placing equal currents

between each pair of poles, alternating in direction from one

set of wires to the next.
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Generating multipole fields in an iron-cored magnet

We again use Maxwell’s equation:

∇× ~H = ~J +
∂ ~D

∂t
. (56)

Now we integrate across a surface

in the x-y plane, bounded by the

contour C defined by the lines:

θ = 0, and θ =
π

2m
, (57)

and closed at r →∞.

Again applying Stokes’ theorem, we obtain:∮
C

~H · d~̀ = NI, (58)

where there are 2N wires carrying current I between each pair
of poles.

Note that conventionally, the current is supplied by a coil of N
turns around each pole; thus the total number of wires between
each adjacent pair of poles is 2N .
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Generating multipole fields in an iron-cored magnet

We can break the path integral into two segments: C0 in

vacuum with permeability µ0, and C1 inside the magnetic

material with permeability µ:∫
C0

~B

µ0
· d~̀+

∫
C1

~B

µ
· d~̀ = NI. (59)

In the limit µ →∞, the segment of the integral inside the

magnetic material vanishes. Furthermore along the segment

θ = 0, the field is perpendicular to the path, so makes no

contribution to the path integral.

We are left with: ∫ r0

0
Br dr = µ0NI, (60)

where r0 is the radius of the largest circle that can be inscribed

within the pole tips of the magnet.
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Generating multipole fields in an iron-cored magnet

The radial field component along θ = π/2m is given by:

Br = Brefbm

(
r

Rref

)m−1

. (61)

Let us choose Rref = r0, and Bref = Br(r0, π/2m) = B0. Then,

bm = 1:

Br = B0

(
r

r0

)m−1

, (62)

and we obtain: ∫ r0

0
Br dr =

B0r0
m

= µ0NI. (63)
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Generating multipole fields in an iron-cored magnet

Therefore, the field is given by:

By + iBx =
mµ0NI

r0

(
x + iy

r0

)m−1

. (64)

The multipole gradient is given by:

∂m−1By

∂xm−1
=

m!µ0NI

rm
0

. (65)

For example, for a quadrupole magnet (m = 2), the gradient is

given by:

∂By

∂x
=

2µ0NI

r20
. (66)
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Final comments

We have shown that:

• multipole fields satisfy Maxwell’s equations in free space;

• a pure 2m-pole field can be generated by a cos(mθ) current

distribution on the surface of a cylinder;

• a pure 2m-pole field can be generated by an iron-cored

magnet, whose pole tips follow surfaces of constant

magnetic scalar potential.

Of course, the expressions we have derived here are only

exactly correct with ideal (and rather impractical) conditions on

the geometry and material properties.

In the next lecture, we shall consider three dimensional fields,

and the effects of imperfections in the magnet construction.
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