Coils & wires to Measure Magnets

Cern Accelerator School on Magnets

Brugge

16 – 25 June 2009

L. Walckiers - Cern

L. Walckiers - CAS, June 2009 - Coils & Wires to measure magnets - p. 1

Measure $B_v(x)$ with coils **Flip coils for strength Coils displaced along horizontal plane Static coils in pulsed fields** example : system to measure CNAO dipoles **B** Train generation in PS reference magnet Single Stretched Wire [SSW] **Dipole strength & field direction** Quadrupole axis **Quadrupole strength : sag & wire magnetisation** Vibrating wire for axis search

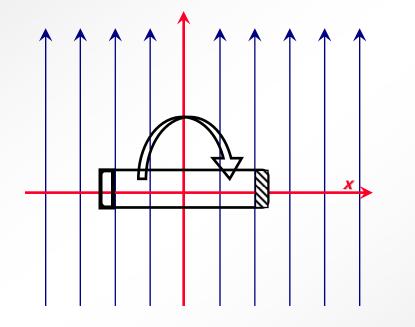
Flip coils to measure magnet strength

Advantage : measure the whole particle trajectory in one signal. Particles (most often) see integrated fields

Most important

Dipole : $\int Bdl(I)$ or Transfer Function = $\int Bdl / I$ [T·m/kA] Quadr : $\int Gdl(I)$ or Transfer Function = $\int Gdl / I$ [T/kA]

 $\Psi(\pi) - \Psi(0) = 2 \cdot \int_0^L B_y(x) \cdot dl$ Integrators measure Flux differences



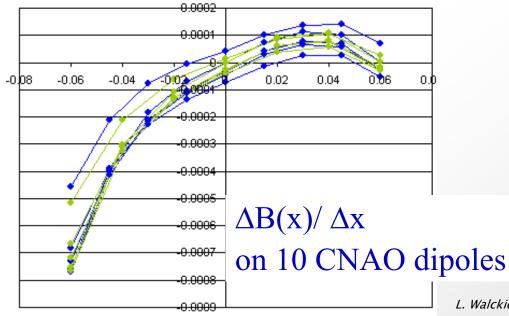
Coil must be longer than the magnet
➢ Rule of thumb : should extend outside by 2.5 * aperture
➢ perform B(z) scanning with Hall plate
➢ full 3D calculation

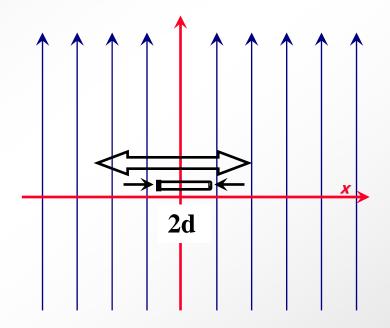
Measure Field Quality by lateral displacement

Coil with

▶ 1 turn (or very small winding section)
▶ small width 2d << ∆B(x)/ ∆x
▶ (2D case i.e. per unit length)

$$\frac{\Delta B_{y}(x)}{\Delta x} = \frac{\Psi(x+\delta) - \Psi(x)}{2d}$$





Limitation for this simple coil : no sensitivity

The coil picks-up a large surface

Coil with 1 turn (or very small winding section)

$$B_{y}(x) = B_{1} + B_{2} \cdot x + B_{3} \cdot x^{2} + \dots$$

Coil going from $[x - d]$ to $[x + d]$
$$\Psi(x) = B_{1} \cdot 2d + B_{2} \cdot 2dx + B_{3} \cdot (6x^{2}d + 2d^{3})$$

The sextupole enters for flip of half turn
$$\Psi(\pi, x = 0) - \Psi(0, x = 0) = 2 \cdot (2d \cdot B_{1} + 2d^{3} \cdot B_{3})$$

Displacement : harmonics enter with different & varying sensitivity $\Psi(x+\delta) - \Psi(x) = 2d\delta \cdot B_2 + 6d \cdot (2x\delta + \delta^2) \cdot B_3 + \dots$

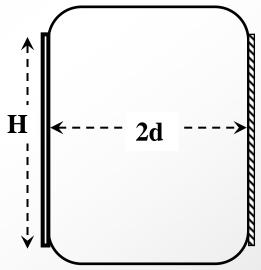
What is measured is not **B**₁ at coil center

Square Coil with more turns

One layer coil with width of coil = height of winding 2d = H

$$B_{y}(x) = B_{1} + B_{2} \cdot x + B_{3} \cdot x^{2} + \dots$$

$$\Psi(x) = B_{1} \cdot 2d \cdot N_{turns} + 0 \cdot B_{2} + 0 \cdot B_{3} + \dots$$



Unsensitive to perturbations from both quadrupole and sextupole harmonics Still sensitive to the average B₁ on the coil.

Why not use the Harmonic method ?

> Dipole magnets are bent : how a bent rotating coil ?

Dipole for small accelerators have wide apertures compared to gap height

➢ Harmonic method does not measure (easily) pulsed fields (i.e. when ∆B/∆t cannot be neglected over one coil revolution period)

The case for most "accelerator magnets" vs. storage ring magnets

Static Coils in Pulsed Fields

$$\Psi(t) = B_1(t) \cdot 2d \cdot N_{turns}$$

- $B_1(t)$ depends on
 - $\succ K_{tf} I(t)$
 - saturation effect

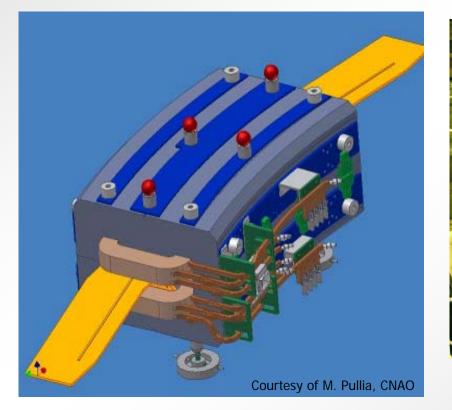


measured continously with (recent) integrators
cf. oversampling in P. Arpaia lecture
eddy current effects
measure at different dI/dt
remanent field (3 ways to compensate)
have bipolar power supply
demagnetise first your magnet
measure at I=0 with Hall plate or flipped coil

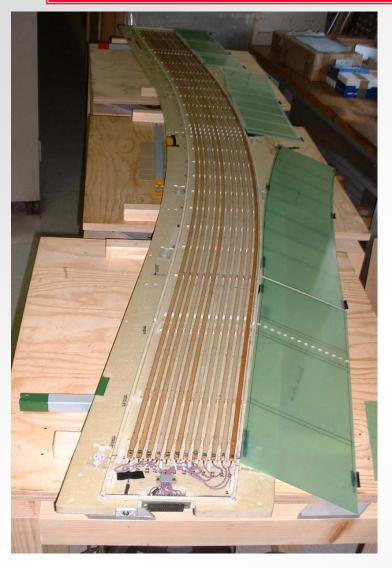
CNAO dipoles : curved and pulsed

Field Rise time ≈ 2 s => no coil movement Curved 11-coil fluxmeter & reference coil for cross calibration

 $B_{max} = 1.5 \text{ T}$ Gap height = 72 mm Useful aperture $\approx 130 \text{ mm}$ Bending radius = 4.231 m Bending angle = 22.5° Magnetic length $\sim 1.67 \text{ m}$



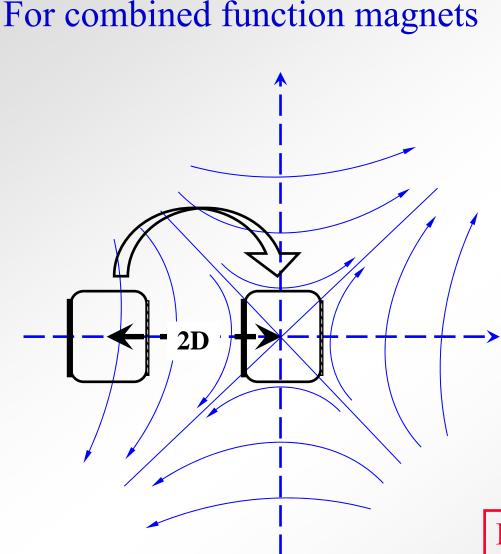
CNAO : 11 coil Fluxmeter



Reference coil to cross calibrate the 11 measuring coils (@ 10^{-4})

L. Walckiers - CAS, June 2009 - Coils & Wires to measure magnets - p. 10

Measure quadrupole strength & field quality



Each coil unsensitive to local B2 & B3 ! but sensitive to B4, B5, ...! Coils in opposition => unsensitive to dipole

Flip by half turn gives $B_1(x+D) - B_1(x-D) \approx G(x)$

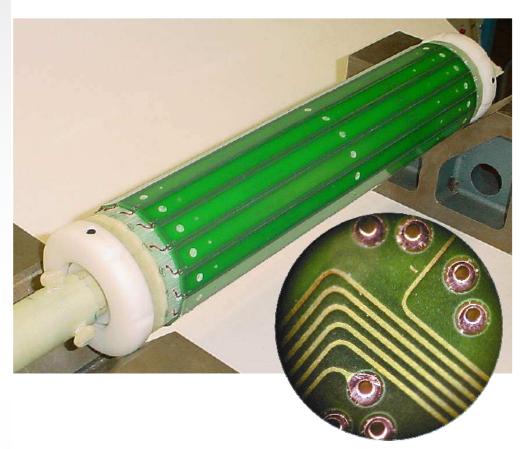
Can also be done by 1/4 turn

Can be applied with pulsed magnets & static coils

Harmonic coils more accurate

Dedicated static coils for pulsed magnets

Morgan coils (60's) : coils on cylinder sensitive to harmonic n BNL Harmonic Coil Array [and n·(2m+1)]



16 Printed Circuit coils, 10 layers 6 turns/layer 300 mm long 0.1 mm lines with 0.1 mm gaps Matching coils selected from a production batch Radius = 35.7 mm (BioMed) 26.8 mm (GSI)

BTrain generation in PS reference magnet

PS main magnets are combined function



Integrator connected to a reference coil sent pulses with constant ΔΨ(t) of 0.5 G at closed orbit position
➤ Used only for synchronisation of the field
⇒ calibrated by the beam

Need a "marker" at $B_0 = 49$ G (Peaking strip) (NMR cannot be used because combined function)

Measure $B_v(x)$ with coils **Flip coils for strength Coils displaced along horizontal plane Static coils in pulsed fields** example : system to measure CNAO dipoles **B** Train generation in PS reference magnet Single Stretched Wire [SSW] **Dipole strength & field direction** Quadrupole axis **Quadrupole strength : sag & wire magnetisation** Vibrating wire for axis search

Measure Dipole Strength with a Stretched Wire

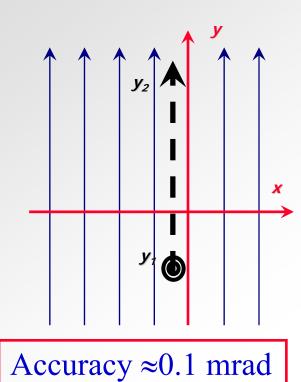
Directly dipole strength $B \cdot dl$

Directly dipole strength $\int B \cdot dl$ Absolute accuracy given by > Integrator : 10⁻⁴ to 10⁻⁵ > Distance : 1µ/10mm = 10⁻⁴ Return wire must not move, if possible in field free region

 χ -check with NMR+Hall @5.10⁻⁵, SLAC \approx 1978 Dipole : $B_y = Cst$, $B_x = 0$ Flux seen by wire going from x_1 to x_2 $\Psi(x_1, x_2) = \int_{x_1}^{x_2} \int_0^L B_y(x, l) \cdot dx \cdot dl = d \cdot \int B \cdot dl$

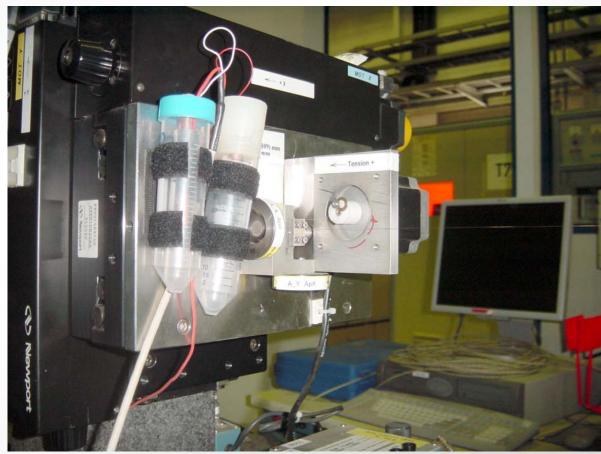
with $d = x_2 - x_1$

SSW & Dipole Field Direction

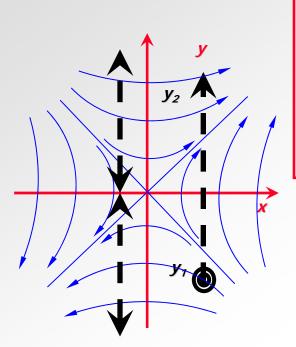


System developped by FNAL, J. Dimarco

Dipole : $B_y = Cst$, $B_x = 0$ Flux from y_1 to $y_2 = 0$ if Field (& stages) perfectly vertical



SSW in Quadrupole



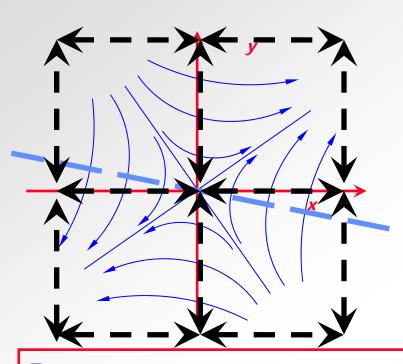
Quadrupole : $B_y = G \cdot x$, $B_x = G \cdot y$ Flux from y_1 to y_2

$$\Psi(y_1, y_2) = L_{eff} \int_{y_1}^{y_2} G \cdot y \cdot dy = L_{eff} \cdot \frac{G}{2} \cdot (y_2^2 - y_1^2)$$

Wire deflects due to gravity : Measure at different tensions & extrapolate to ∞ tension

Where is $y_c=0$? 2 intervals meas., move y_c until $\Psi(y_c, y_c+d) = \Psi(y_c, y_c-d)$ $(y_c+d)^2 - y_c^2 = (y_c-d)^2 - y_c^2$

SSW in Quadrupole : align 1st your system



Tilt between Quadrupole and SSW Find $y_c = 0$ for different x

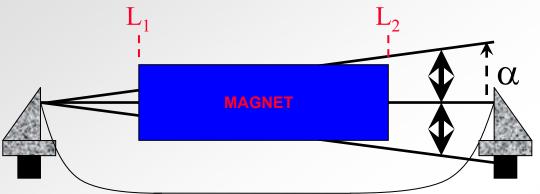
& Center in 2 directions

Iterate :

- Measure 8 (12) intervals
- Calculate new reference frame of stages
- ! stages x & y axis must be parallel !

Stretched Wire non aligned with Quad Axis

Hyp : L_{eff} & Longitudinal position of magnet known



Iterate 2 measurements : move α_{c} until $\Psi(\alpha_{c}, \alpha_{c} + \alpha) = \Psi(\alpha_{c}, \alpha_{c} - \alpha)$

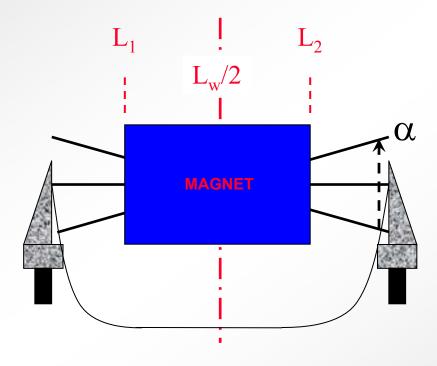
$$\Psi(\alpha_1, \alpha_2) = \int_{\alpha_1}^{\alpha_2} d\alpha \cdot \int_{L_1}^{L_2} G \cdot x(\alpha, l) \cdot dl$$
$$x = l \cdot \alpha$$
$$\Psi(\alpha_1, \alpha_2) = G \cdot \frac{(\alpha_2^2 - \alpha_1^2)}{2} \cdot \frac{(L_2^2 - L_1^2)}{2}$$

Combine Co-parallel (cf. previous slide) Counter-parallel to align axis & wire Iterate until fully aligned

Find magnet longitudinal location

If Magnet fully centred, and axis // to wire reference position, then we can measure longitudinal position d = distance from middle of wire length [i.e. $L_w/2$]

$$\Psi(\alpha_1,\alpha_2) = \int_{\alpha_1}^{\alpha_2} d\alpha \cdot \int_{L_1}^{L_2} G \cdot x(\alpha,l) \cdot dl$$



with

$$x = \left(l - \frac{L_w}{2}\right) \cdot \alpha$$

$$L_1 = \frac{L_w}{2} - \frac{L_{eff}}{2} + d$$

$$L_2 = \frac{L_w}{2} + \frac{L_{eff}}{2} + d$$

 $\Psi(\alpha_1,\alpha_2) = G \cdot (\alpha_2^2 - \alpha_1^2) \cdot d \cdot L_w$

L. Walckiers - CAS, June 2009 - Coils & Wires to measure magnets - p. 20

Accuracy for axis and position finding

TABLE I

ERRORS IN AXIS DETERMINATION FOR 11 AND 16 m WIRE LENGTHS

	X-axis (m)		Y-axis (m)	
	11m	16m	11m	16m
Magnet End a	-0.000011	0.000100	0.000119	0.000092
Magnet End b	-0.000059	-0.000111	-0.000156	-0.000142
Center	-0.000033	0.000000	-0.000019	-0.000025

Field Alignment of Quadrupole Magnets for the LHC Interaction Regions

J. DiMarco, H. Glass, M.J. Lamm, P. Schlabach, C. Sylvester, J.C. Tompkins Fermilab, Batavia, IL, USA

> J. Krzywinski Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.

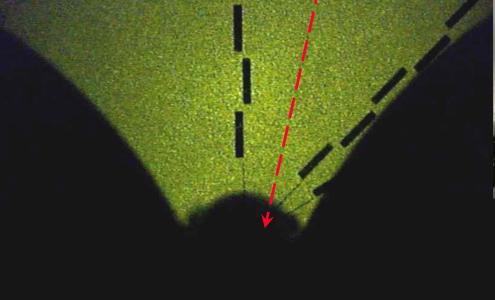
presented at Magnet Technology Conference, Philadelphia, 2007

Longitudinal position within 5 mm

Wire location for axis search

Contour picture of wire 0.1 mm squeezed inside ceramic balls

Accuracy $\approx 0.01 \text{ mm}$



Wire position referred to laser tracker fiducial

Valckiers – CAS, June 2009 – Coils & Wires to measure magnets – p. 22

Measure the Strength of a quadrupole Gdl

Needed : Dipole : JBdl(I) or Transfer Function = JBdl / I [T·m/kA] Quadr : JGdl(I) or Transfer Function = JGdl / I [T/kA] Requires current stability & accurate current measurement

>Verify that high order multipoles do not matter.

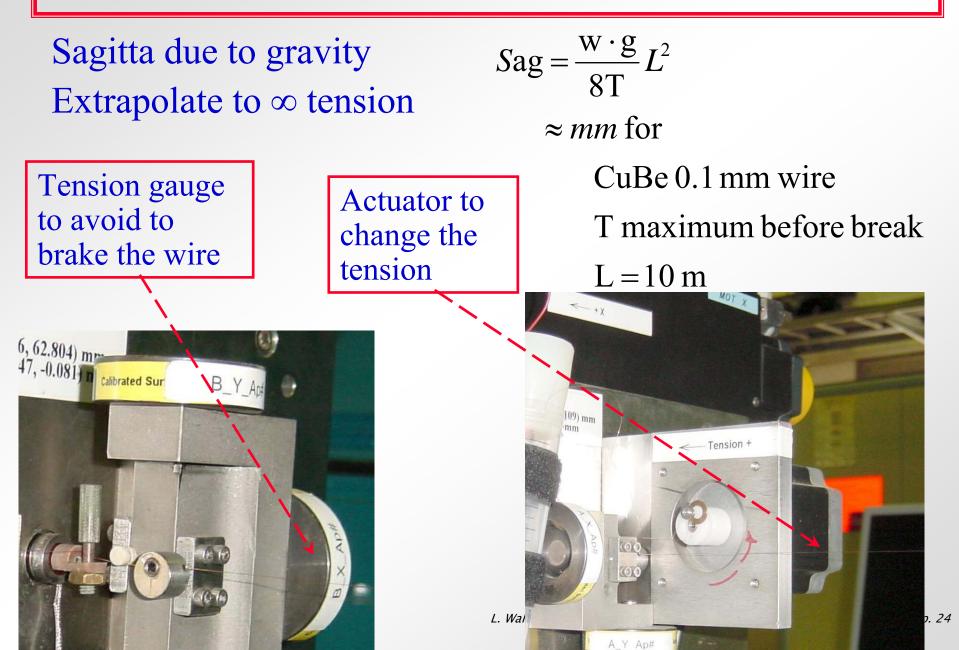
$$\Psi(x_1, x_2) = \int_{x_1}^{x_2} \int_0^L B_y(x, l) \cdot dx \cdot dl$$

$$B_y(x, l) = B_1 + B_3 \cdot x^3 \text{ in dipole}$$

$$B_y(x, l) = G \cdot x + B_6 \cdot x^5 + (B_4 \cdot x^3) \text{ in quadr.}$$

Sag of the wire due to gravity and local field gradient main issue for ∫Gdl measurement

Measure and compensate wire sag



Extrapolate wire sag to ∞ **tension**

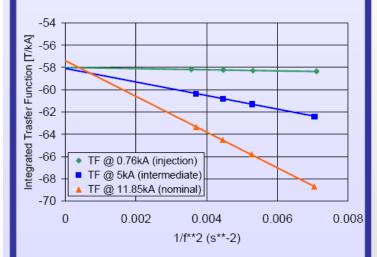
Measure the tension give kick by moving both stages measure vibration frequency of wire oscillating in field T

 $f = \frac{1}{2l_{wire}} \sqrt{\frac{T}{w}}$

Observations : ➤ sag depends on tension and square of gradient ➤ value measured by vertical movement is always higher than by horizontal movement CuBe is para-magnetic (no norm for the material you purchase.)

Magnetic Property of the Wire

Typical dependence of transfer function versus 1/f²



Slope of Gdl for different types of wire:

Wire	0.76kA	5kA	11.85kA	χ
#1	30.4	2000	9480	>0
#2	6.1	500	4977	>0
#3	2.3	50	474	<0
#4	-	-	380	<0

L. Walckiers -

Measure JGdl with Horizontal movement

Magnetic force opens the flux (if CuBe wire is paramagnetic)

With Horizontal displacement

 $F^{x}_{mag} \propto G^2 \times (x_{step})^2$

The Gdl obtained from a horizontal movement can be calculated from the linear fit of different wire tensions. With vertical displacement : $F_{mag}^{y} \propto G^{2} \times (y_{step} + Sag)^{2}$ so that dependance with T no more linear

The Gdl obtained from a vertical movement must be calculated with a parabolic fit of different wire tensions.

could be unstable

L. Walckiers - CAS, June 2009 - Coils & Wires to measure magnets - p. 26

Measure $B_v(x)$ with coils **Flip coils for strength Coils displaced along horizontal plane Static coils in pulsed fields** example : system to measure CNAO dipoles **B** Train generation in PS reference magnet Single Stretched Wire [SSW] **Dipole strength & field direction** Quadrupole axis **Quadrupole strength : sag & wire magnetisation** Vibrating wire for axis search

Vibrating wire to find Quad axis

Equation for the string motion driven by AC current:

$$w \frac{\partial^2 x}{\partial t^2} = T \frac{\partial^2 x}{\partial z^2} - \gamma \frac{\partial x}{\partial t} + I(t)B(z) \qquad \text{boundary} \quad x(0,t) = x(l,t) = 0$$

w = linear wire density, $T = \text{tension}, \quad \gamma = \text{damping}$
 $I(t) = I_0 \exp(i\omega t)$ [driving AC current], $B(z) = \text{transverse magnetic field}$

Solution – sum of standing waves

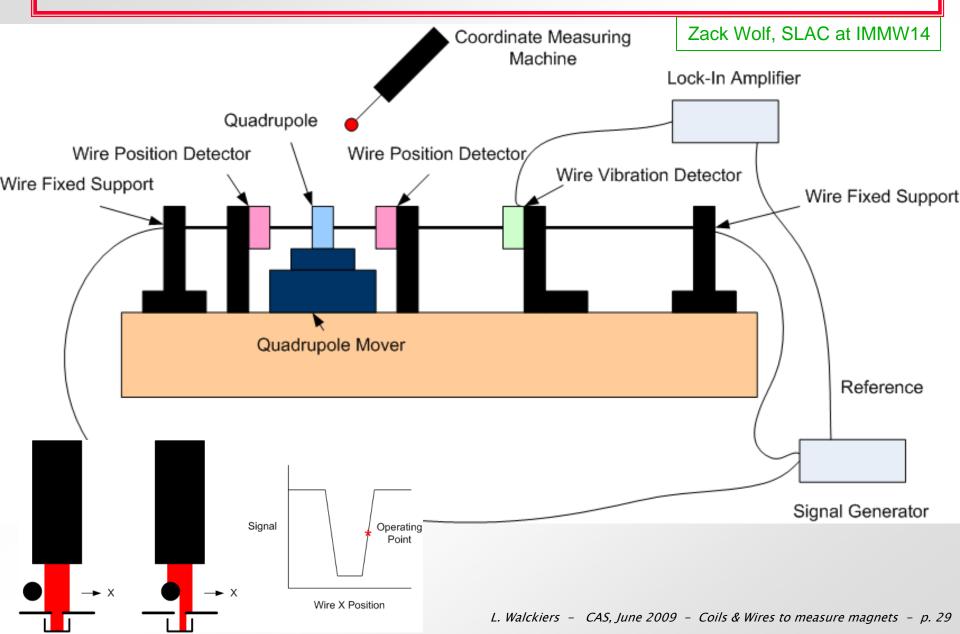
$$x(z,t) = \sum_{n} x_{n} \sin\left(\frac{\pi n}{l}z\right) \exp(i\omega t); \text{ where } x_{n} = \text{standing waves amplitudes}$$
$$x_{n} = \frac{I_{0}}{w} \frac{1}{\omega^{2} - \omega_{n}^{2} - i\gamma\omega} B_{n}; \omega_{n} = \frac{\pi n}{l} \sqrt{\frac{T}{w}}$$

A. Temnykh, Vibrating wire field-measuring technique, Nuc. Inst., A 399 (1997) 185-194

 B_n are coefficients of a sinus waves expansion $B(z) = \sum_n B_n \sin\left(\frac{\pi n}{l}z\right)$

Measuring x_n one can find B_n and reconstruct B(z) !!!

Vibrating wire system overview

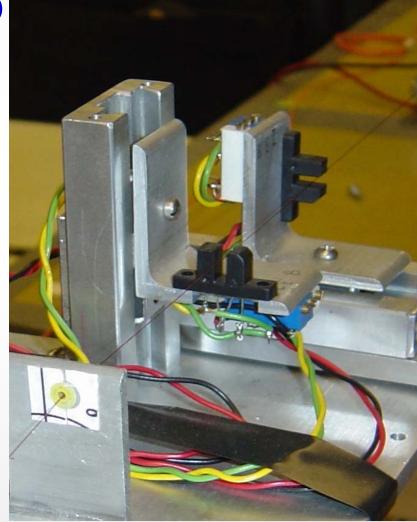


Measure the wire motion

The wire motion in vertical (horizontal) plane is caused by the Lorentz forces between wire current and horizontal (vertical) magnetic field.

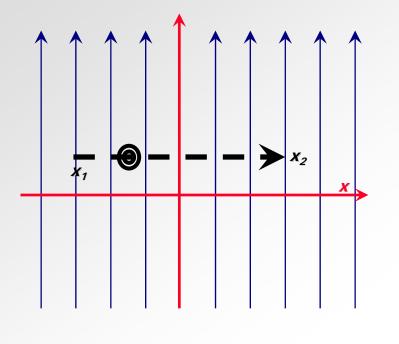
 \Rightarrow need to measure wire motion in vertical and horizontal planes.

Assembly of optical sensors used shows ~10% coupling between vertical and horizontal wire motion Need ~1% or less. => Calibration needed



Super-conducting magnets survey

SSW to measure undulators & wigglers



Verify JBdl = 0, i.e. no perturbation for the beam SSW in displacement is ideal

➤ Measure amplitude of B_y(z) by pulsed SSW
 [ESRF, Grenoble]

Coils wound on frames do not have constant width
➢ not to use with wigglers
➢ could also give problems with normal magnets

Coils & Wires : conclusions

Simple coil measure $B_v(x)$ or $G_v(x)$ with

- static field and flip or displaced coils
- pulsed field & static coil

Single Stretched Wire is the reference for :

- Dipole & quadrupole strength
- Dipole & Quad. axis &field direction

Vibrating SSW : axis search (small aperture) magnet strength (limited accuracy)

For full 2D measurements :harmonic coils $B_y + i \cdot B_x = \Sigma \ C_n \cdot z^{n-1}$