

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

An Accelerator Driven System MYRRHA

Dirk Vandeplassche

1

CERN Accelerator School

Bruges, June 20, 2009

- nuclear energy
- CO₂ problems
- "sustainability" of nuclear energy
 - much better use of the energy vector
 - propose a solution for the very long living waste, esp. the actinides
- present generation of power reactors: thermal neutron spectrum
 typ. PWR
- spent fuel is entirely considered as waste
 but still a lot of energy in it: NOT sustainable

- use it → need for fast spectrum reactors
 has been built: Phénix
 > GEN IV: different types: GFR, SFR, LFR, ...
- spent fuel → reprocessing: partitioning
 Fuel
 - fission products
 - ➤ actinides
- these may be

NpAm

Cm

- buried public acceptance ???
- "transmuted"

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- needed for transmutation:
 - fast neutron spectrum
 - Fuel containing actinides how much ??? crucial question!
- 2 possibilities
 - critical fast power reactors: 2 problems
 - small concentrations
 - Iogistics
 - dedicated burners: basically solve the 2nd problem, and possibly also the 1st

- how then does a dedicated burner look like ?
- critical fast reactor ←→ small concentrations of actinides. Why ? Important safety reasons
 > delayed neutron fraction ←→ control by safety rods
 > insufficiently known cross sections
- NOT critical \rightarrow go SUBCRITICAL !
 - need for an external source of neutrons
 - regulation of the reactor by this source

- source ? how to produce neutrons ?
 - 1. use an accelerator (protons)
 - 2. use a spallation reaction \rightarrow several neutrons per proton
 - 3. the core plays the role of a multiplying medium
- what beam current do we need ?
 - thermal power 100 MW / per fission ~ 100 MeV
 - \rightarrow # fissions = 6.10¹⁸ s⁻¹
 - > multiplication factor = $\frac{1}{1-k_s} \approx 20$
 - produce ~ 15 neutrons/proton
 - > # protons ≈ 2.10¹⁶ s⁻¹ ≈ 3 mA

SCK•CFN

- thermal spectrum research reactor BR2
 world class installaton in terms of thermal flux
 end of life is getting close
- needs for research in future:
 - ➤ fusion
 - fast reactors (Gen IV): materials, fuel
 - ADS proof of principle (if belief in need for transmutation + double strata scheme)
- transmutation and ADS at EURATOM level: interest in FP5 (PDS-XADS) and FP6 (IP-EUROTRANS)

SCK•CFN

- SCK·CEN's own ADS studies in parallel and embedded in FP's : MYRRHA
- MYRRHA is intended to be
 - > a replacement for BR2, but better and up-to-date
 - a demo ADS at 80 MW_{th}
 - > a versatile irradiation facility
 - > a production unit, e.g. radioisotopes for medical
- MYRRHA critical is foreseen from the start

MYRRHA system description

TUDIECENTRUM VOOR KERNENERGIE ENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- ADS
 - ➤ reactor
 - accelerator
 - ➤ beam line
 - building(s)
 - Iand

80 MW_{th} 600 MeV, 4 mA

- performance
 - > fast neutron flux: $\Phi_{>0.75 \text{ MeV}} > 10^{15} \text{ n/cm}^2.\text{s}$
- coolant, compatible with high power density
 - liquid metal: LBE
 - temperatures: freezing 125 °C, core in 300 °C, core out 400 °C
- target
 - Pb-Bi circulating in a spallation loop
 - free surface
 - windowless

Shielding lid Cryopump Electric motor LBE conditioning Target feed Hydraulic drive Target Vacuum pumping duct MHD pump Main pump LBE/LBE hex

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- 1. reactor vessel
- 2. guard vessel
- 3. cover
- 4. diaphragm
- 5. primary pumps
- 6. heat exchangers
- 7. fuel storage zone
- 8. windowless target and core
- 9. spallation loop
- 10. fuel manipulators

- R&D program: extensive around use of HLM
 - compatibility with vacuum
 - compatibility with beam (surface heating)
 - Fluid dynamics: free surface generation
 - materials: corrosion and embrittlement
 - instrumentation: visualisation under Pb-Bi
 - remote handling

The accelerator

- performances for Myrrha
 - ➤ see table
 - challenging: CW reliability/availability
 - special requirements on reliability:
 - beam trip > 1s = failure
 - failure frequency < ~1/month</p>
 - or: MTBF ≈ 500 h (typical 20 best 100 h ?)
- principles for increased reliability
 - downrating, ample operational margins
 - redundancy: parallel vs. serial scheme

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

The MYRRHA beam

Proton energy	600 MeV
Beam intensity (CW)	4 mA
Beam entry	vertically from above
Beam stability	energy ±1% intensity ±2%, size ±10%
Footprint on target	"donut"-shaped, r _{in} 25 mm r _{out} 50 mm
Time structure	CW, I=0 holes 200 µs, 1 Hz pulsed mode capable (50 Hz)

Redundancy

serial scheme: IF

Choice of accelerator type

- CW beam →
 - cyclotron: naturally CW (isochronous), but "at the limits"
 - linac: "straightforward" for performances, mostly pulsed
 - 3. (FFAG)
- fundamental differences:
 - > monolithic $\leftarrow \rightarrow$ modular
 - > extraction $\leftarrow \rightarrow$ "not an issue", beam quality
 - \succ ~fixed $\leftarrow \rightarrow$ flexible and expandable

Choice of accelerator type

- in terms of redundancy
 - > monolithic \rightarrow only parallel
 - \succ modular \rightarrow correct topology for serial redundancy, or

fault tolerance

- linac: NC or SC ?
 - clear advantages for SC: shorter, more beam clearance, temperature stability, modularity
- R&D program (FP6, FP7) is focused around fault tolerance, and optimised MTBF and MTTR

Fault tolerance

serial redundancy applicable to (part of) a linac ?

If this is possible \rightarrow

major step in reliability increase to be expected !

Schematics of the SC linac

- The accelerator layout design comes from a collaboration initiated in the EURATOM FP5 project "PDS-XADS", and continued in the EURATOM FP6 "IP-EUROTRANS", with main partners
 - CNRS (France)
 - CEA (France)
 - > INFN (Italy)
 - Univ. Frankfurt (Germany)
- base frequency is 352 MHz

Schematics of the SC linac

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

linac components: HE

elliptical cavity section > 90 MeV INFN Milano

- 2 or 3 geometrical families according to β
- arranged in cryomodules, 2 or 3 cavities / module

linac components: IE

spoke section 17 – 90 MeV CNRS-IPN Orsay

linac components: FE

- \rightarrow 17 MeV: quick variation in β
- not modular anymore → parallel redundancy
 multical conditions Uping Frankfurt
 - multicell cavities: Univ. Frankfurt
 - > RFQ
 - ion source: SILHI at CEA Saclay

linac components: FE

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

linac components: IS

ECR ion source (SILHI)

- operational
- 100 mA proven
- 30 mA during 162 h
- compatible with 200 μs holes

linac components: RFQ

- probably the most delicate component (CW)
- presently the least known component
 - ≻ 352 MHz
 - ≻ 50 keV 3 MeV
 - 4-vane copper cavity

Fault tolerance issues

- the scheme
 - ≻ global
 - ≻ local

← shown to work at SNS
 OK in simulations, with typ. 4
 surrounding cavities

< 1 S

- the scenario
 - fault detection
 - switch off beam
 - detune faulty cavity
 - retune neighbour cavities, < tables</p>
 - reinject beam

Fault tolerance issues

- the tools
 - LLRF, entirely based on fast digital programmable components
 - tests with prototypes are foreseen on cold cavities
- reliability model studies

Beam line and beam delivery

- NTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE
 - conceptual design phase
 - important issues
 - ➤ no dispersion at target position → achromatic 90° bend
 - > 600 MeV p $\rightarrow B\rho = 4.07 \text{ Tm}$
 - ➤ 45° bending magnet ~15 t
 - last magnet, right above the reactor, may be challenging
 - removable, by remote handling
 - high radiation environment
 - scanning magnets, few mrad, 250 Hz, very reliable
 - removable, by remote handling
 - high radiation environment

Conclusion

- if sustainable nuclear energy is chosen by society as one of the pillars for satisfying future energy demands, then transmutation and partitioning are fundamental ingredients
- if a double strata scenario is privileged, then ADS is the technology to apply
- there is presently a relatively cool but worldwide interest in ADS

Conclusion

- at SCK·CEN we consider that research in this domain is useful and necessary, and that a research irradiation facility based on ADS technology is the logical next step, and one giving many new possibilities in its field → Myrrha project
- the accelerator physicist's standpoint: the development of high reliability accelerators is a necessity for all future applications, both in research and in industry

