Dimensional Metrology And Positioning Operations

(Alain LESTRADE, Synchrotron SOLEIL)

- To take the opportunity to introduce the basis an extended approach of DM & Alignment
- In addition of what already exists on the topic
- To present a case study: from the rotating coil to the beam orbit definition
- Examples & case study are oriented "Synchrotron facility"

Frame of the lecture

- Theoretical tools for designers in the field of the measure:
 - To reach the necessary accuracy
 - with a good reliability
 - Common forgetting about reliability:
- Micrometers or nanometers from sensors are nothing without reliability, redundancy is necessary but sometimes difficult (costly).

• Dimensional Metrology: measuring the "shape" of an object:

- Dimensions (length)
- Relative coordinates of 2 points (W.R. to a referential)
- Displacements
- Shapes (roundness, straightness)
- Angles

Gear measured by CMM

• Positioning Operations: alignment of objects together:

- Magnets of an accelerator
- Any mechanical unit

• Sensors & Instruments: deliver a measurement:

- Distances : Caliper, Electronic Distancementer (total station, laser tracker), etc.
- Angles : Theodolite, inclinometer, autocollimator, etc.
- Displacement: Interferometer \rightarrow Distance & Angle measurements
- (Magnetism : Rotating coils)

• Mechanics: delivers a "position":

- Links & contacts:
 - Shaft-bore
 - Sphere-cone
 - Kinematic mount (line-dot-plane), etc.

• Time dependence of electronics & mechanical units:

- Any structure is subject to tiny shape modification, stress or displacement (ex: thermal dependence) due to influence quantities and varying with time
- Metrology depends on time
- Spatial layout (design):
 - spatial analysis of any measurement system
 - Metrology depends on space

Martin. ESRF

CAS 2009, Bruges, 15-26 June 2009: Metrology

The four components of Design in Dimensional Metrology units: ۲

• The four components of Design in Dimensional Metrology units:

CAS 2009, Bruges, 15-26 June 2009: Metrology

The sensor: We just consider it as an output value affected by a noise (σ) and a bias (or offset). The linearity error is supposed to be treated (calibration)

- Normal distribution of random errors: standard deviation
- σ is used as the definition of the accuracy (precision) of a measurement
- Law of random errors combination (n independent random variables) :

$$\sigma_{tot} = \sqrt{\sum_{i=1}^{n} \sigma_i^2}$$

- It leads to an error budget
- Not exhaustive but the main statistical terms (Ki² test, LLSC ,etc...)

• The bias errors do not depend on time and their magnitude can be important

• Also called "influence quantities"

- Vibrations
- Slow drifts of mechanical units
- Or of the ground

• The main influence quantity is the thermal parameter:

- Electronic components
- Mechanical unit

• Difference of readings versus temperature

Thermal cover

• The four components of Design in Dimensional Metrology units:

Mechanics: positioning & measurements

- Mechanics is a full component of the DM as a positioning system:
 - As centring systems:

• Mechanics can deliver a dimensional quantity: gage block "Johnson"

Random errors in Mechanics

- Accuracy of machining is equivalent to random errors in the field of measurements
- Clearance $\sigma = 10 \mu m$ (do not confuse with the tolerance)
- $\sigma_{\alpha} = \sigma/l$
- the X uncertainty at the point A is: $\sigma_X = L.\sigma_a$
- The H accuracy depends on the rotation one

Clearance of a unit shaft-bore

Dependence from lever arm

Offsets in Mechanics

• Mechanical unit measured after having being machined; the difference with respect to the nominal dimension is called "offset", and is similar to a bias error.

- 1) The least squares principle ($\sum v_i^2$ minimum), in the field of measures corresponds to a minimum of energy of a mechanical system at equilibrium.
- 2) Strengthening a geodetic network with additional measurements:

Sensitive to errors

The network is more rigid

• The four components of Design in Dimensional Metrology units:

- The stability of the set "Instrument-Object" should be better than the instrument precision
- STC is the acceptable duration δt during which we do not want less than a parasitic displacement quantity δd :

- whatever the origin of the disturbance of the system: mechanical, electronic, etc.
- It's common to consider δd as a random error

- Stability analysis is mandatory to fit to the required accuracy
- For both, <u>instrument</u> and <u>object</u> to be measured

(Synchrotron Soleil)

• differential DOF * has to be considered: R_z

(Synchrotron Soleil)

* DOF: Degrees OF Freedom

- Theodolite
 - <u>3.10⁻⁴deg</u> accuracy
 - $\delta t=30mn$ measurement duration

Leica TDA5005, TM5100A

ø70mm

• One solution is: re-measuring periodically the angle between the 2 mirrors $\Leftrightarrow STC_{\theta Z} = (3.10^{-4} deg; 2mn)$

(Synchrotron Soleil)

* DOF: Degrees OF Freedom

The four components of Design in Dimensional Metrology units: ۲

- The physical space is mathematically modelled by an Affine Space with 3 dimensions:
 - The Length: "quantity with a dimension and with a unit", the meter
- The angles are define by a ratio of two lengths:
 - The Angle, "quantity **without** dimension and with a unit", the radian

- 3 quantities are enough to define a triangle
- Case of 3 angles known: we can only define its shape and not its dimension

- The small angles are often assimilated to a length:
 - duality "angle-length"
- Alignment on linear structure: Angle or length approach

The Angles: Affine & Vector Spaces

- Affine Space:
 - Theodolite

- Vector Space:
- Autocollimator (theodolite) on a plane mirror
- Inclinometre

CAS 2009, Bruges, 15-26 June 2009: Metrology

Stability Time Constant & Effective length

- **Inclinometer: Instrument for small angle measurement around** the horizontal (tiny slopes); Accuracy \approx few μ rad
- The effective length (EL) is the one of the detection part ٠

Effective Length

Measure

Mechanics

Time

Space

Stability Time Constant & Effective Length

- Structure to be motorized with the μ rad level for a long time (∞)
- Any sub-part of the inclinometer should match to STC = (μ rad, ∞)
- Especially the detection part which shows the Effective Length (EL)

EL = 10mm => 10nm for 1 μ rad (in addition to electronic noise \rightarrow STC_{elec})

Measure

Mechanics

Time

Space

Capacitive inclinometers:

EL \approx less than 1mm

• Hydrostatic Leveling System (HLS): 10nm, 10m => 1nrad

Measure Time Mechanics Space

Effective Length

• Machining Dipole laminations:

- Shape or size tolerance is typically $\pm 0.02mm$
- A usual confusion is to believe that the accuracy of the mechanical tilt (rotation around the beam) of the magnet is 0.02/Y=0.025mrad, where Y=786mm, the width of yokes
- The Effective Length for the electron beam is actually the width of the pole p=128.6mm $\rightarrow 0.02/p=0.156mrad$

- The drawings have to be checked (tolerance stack_up)

Metrology loop

- Any system dedicated to positioning or requiring a positioning operation, consists of a succession of mechanical parts and/or of sensors
- It is the support of the positioning information transmission (Lahousse)
- Ex: Coordinate Measuring Machine (CMM)

⁽Hennebelle, ENSAM)

• Serial layout sensitive to errors (instrumental & instabilities) due to a cumulative effect

• Parallel layout: robust to errors, average influence

(Lahousse, ENSAM)

- **Translation stage with coaxial micrometer:**
 - Micrometer (screw) with backlash
 - The backlash is « seen » by the measure
 - Not transmitted to the displacement

• Measuring & mechanical loops are not independent

- Decoupling the actuator & measuring loops is mandatory for high accuracy units
- Ex: Coordinate Measuring Machine (CMM):

• Optical measurements:

- Interferometry is affected by errors due to refractive index of the air on its path: Vacuum condition required for high accuracy or
- "cale à gradins" for CMM

• Bench for Magnetic Measurements:

_

_

Introduction

The four components of Design in Dimensional Metrology units: ۲

• "Carrying out a good measure needs the measurement standard being placed in the same line as the dimension to be checked"

CAS 2009, Bruges, 15-26 June 2009: Metrology

l=1mm, d=100mm => e=5μm

CAS 2009, Bruges, 15-26 June 2009: Metrology

Abbe error & lever arms

• **Qpole Fiducialization lever arms:**

The complete description of lever arms stays the matrix of rotation:
 2D or 3D

• Reversal method for centring systems:

- The arrow represents the orientation of the Object or of the Measurement

Multi-Step Layout

• Autocollimation on mirror:

- Inclinometer:
 - Measurement:

$$m = \frac{l_1 - l_2}{2}$$

– Inclinometer error:

$$e = \frac{l_1 + l_2}{2}$$

- Multi-reversal method: roundness error of a circular piece:
- The object is entirely measured n times by a Coordinate Measuring Machine (CMM) in the *n* positions of the object after each rotation of 360°/n around its axis of symmetry. At each step of rotation of the object corresponds a full rotation of the CMM head for measuring the object.

CAS 2009, Bruges, 15-26 June 2009: Metrology

Multi-Step Layout

- Multi-Step Layout (MSL):
 - Each point of the Object "sees" successively the defects of the Measurement system (+rePositioning)
 - Each position of measurement of the CMM "sees" successively the defects of the Object (+rePositioning)
 - After calculation, Object, Measurement & rePositioning errors are known
 - MSL (O,M,P): \rightarrow Least Square Calculation: LLSC or NLLSC
 - Literature:
 - Multi-probe error separation
 - Donaldson Reversal
 - Etc.

Multi-Step Layout

- The general case:
 - Any kind of measurement can be involved: radial, tangential, etc.
 - Any kind of layout: circular, linear, etc.
 - Any kind of sensor, even a rotating coil for magnetic measurements or a theodolite

• The theodolite case:

- tangential as graduation errors of a theodolite circle
- Iterating the measurements with a 360°/N step, eliminates the Fourier coefficients of the error function until order n-1

- N should be as great as possible: $N \rightarrow \infty$
 - Continuous measurements, dynamic encoder

Dynamic angular encoder of Wild T2000

• Precise rotating tables with two encoders in juxtaposition to each other: 0.01"

CAS 2009, Bruges, 15-26 June 2009: Metrology

Multi-Step Layout

- Geodetic network measurement:
 - Presents a Multi-Step layout: MSL(O,(M),(P))

Multi-Step Layout

• The most important with the concept of MSL:

- It is first of all, a qualitative approach, just to feel:
 - A wider approach of the "simple" reversal method
 - to keep in mind that all the errors can be detected (O,M,P) in any kind of such situation
 - A capability to quantify the redundancy
 - A capability to quantify the number of unknowns of a set "Measurements-Object"

- Very common in Metrology
- Direct measurement: applying an extremity to a point and by reading the graduation in correspondence of the other

• Differential method: the rule is shifted and two readings on the rule are carried out in front of the two points. The length is the difference of the readings.

$$L_{1} \qquad L_{2}$$

$$(L_{2}+e) - (L_{1}+e) = L_{2}-L_{1}.$$

CAS 2009, Bruges, 15-26 June 2009: Metrology

• Wire Ecartometre: zero error, offset wire / fiducial:

Differential measurements

• Hydrostatic Leveling System (HLS):

(Fogale Nanotech)

• HLS network: use of calibration tool to compare all the zero errors

Differential measurements

Superposition:

ou cercle vertical

- Two opposite areas of a graduated circle are superimposed _
- Even for a bubble
- MSL situation

^{94° 12′ 44} AS 2009, Bruges, 15-26 June 2009: Metrology

Differential measurements

- Interferometry:
 - Physical system of differential measurement
 - At the level of the wave length, idea of superimposition
 - A wide range of applications: from astronomy to microscopy (VLTI, LiDar, etc.)
 - In Dimensional Metrology: distance measurement by counting the fringes

- The beam orbit of Storage Ring is fully defined by the location of its quadrupole magnets:
 - The magnetic axis detection of the Qpoles
 - Fiducialization
 - Mechanical alignment on girder
 - Global alignment
 - Fine Alignment

Ζ

X

Fiducials

CAS 2009, Bruges, 15-26 June 2009: Metrology

4 Z Shims

 Hypothesis: the true axis of rotation is fixed and confused with the geometrical axis of the coil. There is no radial runout due to bearings
 CAS 2009, Bruges, 15-26 June 2009: Metrology

- The bench for magnetic measurements, calibration tool:
 - Link the coil axis to the bench to avoid STC = $(10\mu m, \infty)$
 - A permanent Qpole tool with 8 faces
 - The tool is accurately measured
 - Multi-Step Layout

• The magnetic axis detection:

- Calibration magnetic tool

Nr	Component	Action	σ(μm)	Bias	STC=(µm,t)	STC=Easy/Diff
1	Bench					
		Mech			(∞)	E
2	Tool Stand					
		Contact		MSL	(,mn)	E
3	Tool Ext Face					
		Mech			(,∞), (,mn)=MSL	D,E
4	Tool Mag Axis					
		Meas	5			
5	Coil Mag Axis					
		Mech			(∞)	E
6	Coil Rotat Axis					
		Rotat	5		(∞)	E
7	Ball bearings					
		Contact			(∞)	E
8	Coil Stand					
		Mech			(∞)	E
1	Bench					

• Zero detection:

- Each Qpole is measured by the bench: differential measurements
- A set of shims are chosen for having the zero on the axis of the coil
- The shims are in contact with bench references: X pin & Z surface
- STC = $(10\mu m, \infty)$ for the whole metrology loop
- The weak point is the **pin** STC = $(10\mu m, \infty)$: 200 times in contact with 300-500kg!

• Zero detection:

Nr	Component	Action	σ(μm)	Bias	STC=(µm,t)	STC=Easy/Diff
9	Qpole Mag Axis					
		Meas	5			
5	Coil Mag Axis					
		Rotat	5		(∞)]	E
7	Ball bearings					
		Contact			(∞)	E
8	Coil Stand				,Tooli	0
		Mech			(∞)	E
1	Bench					
		Mech	5		(w)	D
10	Bench Pin (surface)					
		Contact			(∞)	E
11	Qpole Shim(s)					
		Mech	5		(,∞)	E
12	Qpole Yokes					
		Mech			(,∞)	E
9	Qpole Mag Axis					

• Fiducialization:

- When zero detection is OK: store the axis
- Qpole Comparator: 4 electronic dial gages + 1 inclinometer
- Contact on the coil support in rotation
- Multi-Step Layout: reversal for X direction & tilt, not for Z!
- STC = $(10\mu m, 30mn)$ in X thanks to the MSL, STC = $(10\mu m, \infty)$ in Z
- A dedicated bench is necessary for Z
- Dial gage zero: for practical reason on Z, not necessary on X (reversal)
- The metrology loop does not include the bench!

CAS 2009, Bruges, 15-26 June 2009: Metrology

• Fiducialization :

Nr	Component	Action	σ(μm)	Bias	STC=(µm,t)	STC=Easy/Diff
9	Qpole Mag Axis					
		Meas	5		(,30mn)	E
5	Coil Mag Axis					
		Rotat	5	MSL		
13	Dial gage					
		Tool2(14)	5		(,30mn)	E
15	QC structure					
		X: Mech			(,30mn)	E
		Z: Tool3			(,days)	E
16	Trunc. spheres					
		Contact	5		(,30mn)	E
17	Qpole Fiducials					
		Mech			(∞)	E
12	Qpole Yoke					
		Mech			(∞)	E
9	Qpole Mag Axis					

Tool2: Wedge Tool3:Zbench

Laser ecartometry of Qpoles on a girder :

- Qpoles are mechanically aligned by the contact of their shims with the girder references: X pin & Z surface
- checking of the previous steps, results (X,Z) at SOLEIL : $15\mu m$
- MSL: reversal of the laser position WR to the girder
- Beam stability is easy: $STC = (5\mu m, 2mn)$

Laser ecartometry of Qpoles on a girder :

Nr	Сотронент	Action	σ (μm)	Bias	STC=(µm,t)	STC=Easy/Diff
18	Laser beam	\$	0	\$	(,2mn)* ⇔	\$
		Meas	5	MSL		
19	Retroreflector					
		Contact			(∞)	E
17	Opole Fiducials					
		Fiduc	10		(∞)	E
9	<u> Opole Mag</u> Axis					
		Bench	10		(∞)	E
11	<u> Qpole</u> shim					
		Contact	5		(∞)	E
20	Girder pin (surface)					
		Mech	5		(,∞)	Ē
21	Girder	\$	\$	\$	(∞)⇔	\$

⇔ Fiduc : Common to all magnets on a girder

: Fiducialization => offsets

Bench : Detection of the <u>Opole</u> axis => Shim

CAS 2009, Bruges, 15-26 June 2009: Metrology

CAS 2009, Bruges, 15-26 June 2009: Metrology

- Planimetric Alignment with precise tacheometer (orbit definition) :
 - The general shape has to be controlled
 - Theodolite equipped with an Electronic DistanceMeter (EDM)
 - Leica TDA5005: to measured the network of points defined by all the Qpole fiducials: $STC_{\theta z}$ (3.10⁻⁴deg, 10mn) difficult to reach
 - bundle adjustment based on least square calculation: similar to MSL
 - STC= (50µm,SA) for slab & mechanics: SA is the period between to realignment campaigns.

CAS 2009, Bruges, 15-26 June 2009: Metrology

• Planimetric Alignment with precise tacheometer (orbit definition)

Nr	Сотронент	Action	σ (μm)	Bias	STC=(µm,t)	STC=Easy/Diff
12	Qpole yoke _{TDA}					
		Mech				
17	Qpole Fiducials _{TDA}					
		Contact	5		(,10mn)	E
26	TDA centering					
		Mech				
27	Zero (Dist & Angles)				(,10mn)	D_{θ}^{**}
28	Air(Dist & Angles)	Meas	0.12mm & 3.10 ⁻ ⁴ deg			
19	Retroreflector					
		Contact	5		(,10mn)	E
17	Qpole Fiducials _{refl}					
		Mech				
12	Qpole yoke _{refl}					
		Mech *			(50,SA)	D
22	Slab				(50,SA)	D
		Mech *			(50,SA)	D
12	Qpole yoke _{TDA}					

* : Including girders and stands

** : Difficult for Angle zero

SA : Period between two Survey & Alignment operations

- Planimetric Alignment with wire ecartometry (orbit definition):
 - Final step for accurate alignment
 - A Kevlar wire is stretched to include the Qpoles of 2 adjacent girders
 - Differential measurements to eliminate offsets
 - The final least square calculation includes also STR500 & TDA5005
 - STC= $(10\mu m, 10mn)$: measurements
 - STC= (50µm,SA) for slab & mechanics: SA is the period between to realignment campaigns.

• Planimetric Alignment with wire ecartometry (orbit definition):

Nr	Component	Action	σ (μm)	Bias	STC=(µm,t)	STC=Easy/Diff
	Wire	\$	Ð	ŧ	(,10mn) ⇔	\$
		Meas	10			
22	Ecartometre centering					
		Contact	5		(,10mn)	E
17	Qpole Fiducials					
		Fiduc	10		(,∞)	E
9	Qpole Mag Axis					
		Bench	10		(,∞)	E
11	Qpole shim					
		Contact	5		(,∞)	E
19	Girder pin					
		Contact	5		(,∞)	E
21	Girder					
		Mech			(50,SA)	D
22	Concrete slab	\$	ŧ	ŧ	(50,SA)	D

SA : Period between two Survey & Alignment operations

- Altimetric Alignment with HLS (orbit definition):
 - Free surface of water available all along the Storage Ring
 - Linking the Qpole Magnetic axis to that surface is very sensitive
 - Altimetric measurements from fiducials to HLS vessels
 - Linking all the zero sensors together: a stainless steel tool for calibration
 - STC = (5 μ m, 1 year), differential measurement to eliminate the common part of sensor offsets

CAS 2009, Bruges, 15-26 June 2009: Metrology

• Altimetric Alignment with HLS (orbit definition):

Nr	Component	Action	σ (μm)	Bias	STC=(µm,t)	STC=Easy/Diff
22	Water	\$	\$	ŧ	\$	Ð
		Meas	5		(∞)	E
24	HLS Zero sensor		10		(10,a year)*	E
		Contact			(∞)	E
25	HLS vessel					
		Laser	10		(∞)	E
17	Qpole Fiducials					
		Bench	10		(∞)	E
11	Qpole shims					
		Contact	5		(∞)	E
22	Girder surface					
		Mech	5		(∞)	E
20	Girder					
		Mech			(50,SA)	D
22	Concrete slab	\$	\$	\$	(50,SA)	D

* : With the calibration tool

Laser — : Laser ecartometre measurements between HLS vessels and fiducials (not described here).

SA : Period between two Survey & Alignment operations

• The limit of Differential Measurement:

- Each Qpole is measured by the bench: differential measurements
 - It can be applied at the girder scale because any other component requires biggest accuracy of alignment → bench & Magnet comparator
 - Take care of components on straight sections (outside girders) with the magnet comparator: it has to be known in an "absolute way".

CAS 2009, Bruges, 15-26 June 2009: Metrology

- The achieved results (must not be considered as the ultimate accuracy):
- However, they are excellent according to the machine physics results (BPM readings):
- => 0.015mm on girder (1σ)
 0.050mm/girders (1σ)

• The limit of the error elimination:

- The real physical phenomena are essentially complex & non-linear
- True for the existing errors, especially for random errors
- Try to limit the size of errors with the layout design because it allows:
 - Small displacement torsors (commutativity of 3D rotations)
 - Linearization of Least Square calculation (matrix)

• The limit of the error elimination:

- The real physical phenomena are essentially complex & non-linear
- True for the existing errors, especially for random errors
- Try to limit the size of errors with the layout design because it allows:
 - Small displacement torsors (commutativity of 3D rotations)
 - Linearization of Least Square calculation (matrix)
- Repeating a set of measurement decreases random errors but does not affect bias errors
- MSL will eliminate bias errors and decreases random errors

Thank you for your attention!

CAS 2009, Bruges, 15-26 June 2009: Metrology