

Target Design

Design is a complex and iterative process which has to satisfy multiple requirements with usually incomplete data

Frequent sources of problems include:

- · Incomplete or unknown requirements at the start
 - -Performance
 - -Safety
 - -Reliability/Maintainability/Inspectability
- Initial cost and schedule estimates used to get project approval overly optimistic

Range of particles

The range (R) of particles is defined as the mean free distance that a particle travels before it comes to rest:

$$R \equiv \int_{0}^{x_{\text{max}}} dx(\beta) = \int_{0}^{\beta_{\text{initial}}} \left[-\frac{dE}{dx} \right]^{-1} \frac{dE}{d\beta} d\beta$$

Semi-empirical approximation by Carpenter for spallation source materials (Z > 10 and 0.1 \leq E \leq 1 GeV) – incident particle is a proton

$$R = (1/\rho) \cdot 233 \cdot Z^{0.23} (E - 0.032)^{1.4} \text{ [cm]}$$

Coulomb scattering

The differential cross section for a charges particle scattered into the solid angle interval d Ω , Ω +d Ω can be written as

$$\frac{d\sigma}{d\Omega} = \frac{1}{4} \cdot \left(\frac{Z \cdot z \cdot e^2}{\beta \cdot c \cdot p}\right) \cdot \frac{1}{\sin^4(\Theta/2)}$$

In general scattering at different scattering samples \rightarrow stochastic \rightarrow only statistical distribution can be given

$$\Theta_{rms} = \sqrt{\langle \Theta^2 \rangle} = \frac{13.6 \text{ MeV}}{\beta \cdot c \cdot p} \cdot z \sqrt{\frac{x}{X_0}} \cdot \left[1 + 0.038 \cdot \ln(x/X_0)\right]$$

With X₀ the radiation length

$$X_0 = \frac{A}{4 \cdot \alpha \cdot N_A \cdot Z^2 \cdot r_e^2 \cdot \ln(183 \cdot Z^{-1/3})} (g/cm^2)$$

MC Simulation codes

Targetry and MC simulation codes

Targetry issues

To get adequate "parameters" for targets at any accelerator facility it is necessary to produce and collect a (very) large number of particle tracks/histories. For instance, at a spallation neutron source neutronic behavior has to be studied, for neutrino target the production of pions and kaons is necessary, rare isotope accelerators need information about the formation of residual nuclei in targets …

Informations of interest:

- Production of particle of interests and their behavior inside complex geometries.
- ✤ Behavior of "unwanted" particles which could create background → Adequate suppression in beam lines can be tailored.
- Information on the survivability and life time of the target and beam windows. Strongly depends on fatigue, stress limits, radiation damage, erosion....
- ☆ Activation of components → planning of remote handling and exchange procedures, radioactive waste issues ...
- Heat loads, activation and radiation damage in targets and surrounding structures; for instance in superconducting focusing devices at v-beam lines, moderators at spallation neutron sources and so on.
- Shielding issues for radiation protection, "spent" beam handling, ground water activation ...

Targetry and MC simulation codes

Most of these issues can be addressed by Monte-Carlo particle transport codes. Therefore, the predictive power and reliability of these computer codes is of crucial importance. This leads to requirements of the physics implemented in such code systems:

♦Reliable description of cross-sections, particle production modes, particle yields in a large energy regime from (sub-)eV to several GeV even TeV, for hadrons, photons, composite particles and even nuclei.

♦Adequate π⁰ and K⁰ production (v_e) and correct the modeling of electromagnetic showers (π⁰ → γ γ...), photoproduction of hadrons, muons.

Description of energy loss processes, e.g. charged hadrons, neutrons, muons ...(ionization losses, knock-on electrons, and at high energies Bremsstrahlung, Pair production).

♦Correct transport and moderation of neutrons at meV energies.

♦Predictive powers for nuclide inventories, dpa, Helium and Hydrogen production.

 $\$ Accurate transport of all particle species from microns to meters.

Inclusion of effects of magnetic fields, gravity (cold and ultra-cold neutrons).
User interface.

	Code pad	kages		
Monte Carlo Codes	Event Generators	Developed at	Available through	Main developer
FLUKA	PEANUT / DPMJET	INFN (Italy)	http://www.fluka.org/fluka.php	Alfredo Ferrari
GEANT4	QMD	CERN (Switzerland / France)	http://www.geant4.org/geant4/	Collaboration
MARS	CEM /LAQGSM/DPMJ ET	Fermi National Lab (USA)	http://www-ap.fnal.gov/MARS/	Nikolai Mokhov
MCNPX	BERTINI, CEM, FLUKA89, INCL, ISABEL, LAQGSM	Los Alamos National Lab (USA)	https://mcnpx.lanl.gov/ official	MCNP(X) team
PHITS	JAM / QMD	JAERI (Japan)	http://phits.jaea.go.jp/ OECD/NEA or RSICC	Koji Niita
IAEA ber where Re	hchmark for esults as we	different c Il as exper	odes and event gener imental data are prov	rators ided:
http://nc	ds121.iaea.org	g/alberto/med	liawiki-1.6.10/index.php/M	lain_Page

Facility	Status	Tir	ne Struct	ıre		Coolant		Target Material	Power	Notes
		Steady State	Long Pulse	Short Pulse	Water	Mercury	Pb-Bi			
IPNS	De-commissioned			х	х			Depleted U	7kW	short life
IPNS	De-commissioned			Х	Х			Tungsten	7kW	
	On another d			v	V			Depleted II	400 1-14/	a haat life
	Operated			X	X			Depleted U	~100 KW	short life
1 212	Running			X	X			W-Ta clad	~150 kW	nigh decay nea
	Running			~	~			W Ta ciad	- 100 KW	
LANSCE	Running			Х	Х			Bare Tungsten	~100 kW	
KENS	De-commissioned			Х	х			W-Ta clad	3 kW	
SINQ	Operated	x			x			Zircallov rods		
SINQ	Operated	X			X			Pb in SS rods	~800 kW	
SINO	Test run completed	×					x	Pb-Bi	~800 kW	Target removed
SINO	Operated	X			х		~	Pb in Zr rods	0.9 MW	optimized targe
ISIS 2	Running			Х	Х			W-Ta clad	~40 kW	Very optimized
SNS	Running			Х		х		Mercury	1 MW	1.4 MW design
JSNS	Running			х		х		Mercury		1 MW design

Presentation_nam

		Des	ian	stud	ies -	- not	(vet) built		
		000	igii .	Stud	100		()01) Sunt		
Conceptual o	or Preliminary Desig	gn								
Facility	Status	Tir	ne Structi	ure		Coolant		Target Materia	I Power	Notes
		Steady State	Pulse	Pulse	Water	Mercury	Pb-Bi			
CSNS	Preliminary Design			х	x			W-Ta clad	250 kW	
ESS (2003)	Conceptual Design			х		х		Mercury	5 MW	
SNS-STS	Pre Conceptual Design		х			х		Mercury	1-3 MW	
SNS-STS	Pre Conceptual Design		х		х			W-Ta clad	1-3 MW	Rotating Target
IPNS Upgrade	Conceptual Design			х	х			W-Ta clad	1 MW	
Los Alamos - Next Generation	Conceptual Design			x	x			W- with clad	1 MW	
JSNS	Conceptual Design			х	x			W-SS clad	1 MW	
SNS	Conceptual Design			х	x			W- with clad	1 MW	
Eurisol	Conceptual Design	х				x		Mercury	4 MW	
MTS	Conceptual Design		x				X	w	1 MW	Los Alamos Material Test Station

Target material choice for Spallation Sources					
↔High Z → high neutron production rate					
↔High density → high luminosity					
Radiation stability \rightarrow long lifetime, availability					
♦Low neutron absorption \rightarrow high neutron intensities (for pulsed sources not so much of an issue)					
◆Low activity & after-heat → service and decommisioning					

			-				·
	Pb	Bi	LME	LBE	Hg	W	Ta
Composition	elemental	elemental	97.5%Pb+ 2.5% Mg	45% Pb + 55% Bi	elemental	elemental	elemental
Atomic # Z	82	83		~82.5	80	74	73
Density (g/cm ³) solid(20 ⁰ C)	11.35	9.75				19.3	16.65
Density (g/cm ³) liquid	10.7	10.07	10.6	10.5	13.55		
Coeff. of thermal expansion (K ⁻¹)	2.91*10 ⁻⁵	1.75*10 ⁻⁵			6.1*10 ⁻⁵	4.4*10 ⁻⁶	6.6*10 ⁻⁶
Contraction on solidification (%)	3.32	-3.35	~3.6	~0			
Melting Point. (⁰ C)	327.5	271.3	250	125	-38.87	3370	2996
Specific heat capacity (c _n)(J/g/K)	.14	.15	.15	.15	.12	.134	.134
Thermal neutron absorption (barn)	.17	.034	.17	.11	389	18.5	21

	of n production	
Nuclear Process	Neutron Production yield (neutrons/reaction)	Energy deposition (MeV/neutron)
400 keV D on T in Ti-matrix	4•10 ⁻⁵ (neutrons/D)	10 ⁴ MeV/n
35 MeV D on liquid Li (stripping)	3•10 ⁻³ (neutrons/D)	10⁴ MeV/n
100 MeV e ⁻ on ²³⁸ U	5•10 ⁻² (neutrons/e)	2•10 ³ MeV/n
²³⁵ U(n,f) (thermal fission)	3 neutrons/fission	1.9•10 ² MeV/n
1 GeV protons on thick Hg target	~ 30 neutrons/proton	5.5•10 ¹ MeV/n
CTR (controlled thermonuclear reaction) (D,T) fusion by laser beam	1 neutron/fusion	3 MeV/n

ISIS Target moderator and Reflector Assembly

 •Ta-Target used as a replacement for U-ta •Change in HTC as fct. of protons on target ◆Peak temp. of target 320°C in last run p ◆High afterheat →significant release of 	argets et period, peak temp. 180℃ in first Tritium in storage (500 MBq/day)	run period !!
Fungsten Block Fantalum Cladding Target Plates Water manifolds Proton Busm	 ISIS TS1 Tungsten Target 12 Ta cladded W plates (high W in water, APT experience) Surface cooled with D₂O Proton beam power 160 Total heat deposited 95 Peak power deposited 0.2 	kW kW 5 MW/I
Pressure Vessel 20 cm	ooling system	D_2O cooled
	 Inlet pressure Pressure drop Inlet temperature Temperature rise Flow rate Peak plate temperature 	6.2 bar 0.25 bar 35 C 4 C 350 l/min 380 C

Conclusion Spallation Targets
High power targets (solid and liquid) are operated in the 1 MW regime.
 ◆Target lifetime is mostly limited by following effects ◆Radiation damage → Embrittlement, fatigue or more general change of material properties due to irradiation ◆Cavitation Erosion (Pitting) in case of LMT
All laboratories do extensive Post Irradiation Examination (PIE) of spent Targets \rightarrow knowledge data base growing
 At power levels > 1 MW the biggest problems are: Dissipation of energy densities (liquid targets, rotating targets) Shock waves → search for new structural materials, mitigation
Personal opinion: In the regime of 1 MW it is not clear which target concept (Liquid Metal Target or Solid Target) is advantageous.
♦New projects aiming for higher beam powers (2 MW+) need know-how from existing sources → intensive collaborations

NuMi Target (LE option)	
~1 meter long graphite target, water cooled 120 GeV proton beam $N_p=4 \ 10^{13}$ (f=0.53 Hz, pulse length $\sigma_y=1.4 \text{ mm}$) $p+A \rightarrow \pi$ (T=2.6033 $\cdot 10^{-8}$ s) emerge from target \rightarrow decay if Intense v_{μ} neutrino beam (contamination due to $\mu \rightarrow e +$ $\sim \sim $	h 10 μs, gaussian shape σ_x =0.7 mm in long tunnel → π → μ +v _μ (99.987%) v _e + v _μ) Attrive Neutrino Target • Long (2 -3 interaction lengths), thin sturctures → fast escape of mesons (π,K) • Shape governed by magnetic focusing system (horns) → inside horns • Highly focussed beam → large energy densities • Current targets → low Z materials (C, Be) • Future targets → high Z foreseen (Hg, W)

<u>先</u>	Experience with th	ne NuMI Targe	:†
l st Target took bea • water leak s • target motic 2 nd Target is runnin	m for over a year, 820 MWI oon after turn-on; back-pres on drive shaft froze up after ng (no leak)	nr integrated bear soure with Helium year of operation	n power. Two problem n to keep water out – stuck in H.E. focus
	Max. Proton/spill	Max. Beam Power	Integrated Protons on Target
Target Design specification	40e12 p.p.p.	400 kW	370 e18 p.o.t. lifetime
1 st target Before leak	25e12 p.p.p. <i>11-12 day before leak</i>	69 kW	0.7 e18 p.o.t.
1 st target After leak	30e12 p.p.p.	270 kW	158 e18 p.o.t.
2nd target	40e12 p.p.p.	320 kW	201 e18 p.o.t.

CNGS CERN 400 GeV/c protons 2.4·10 ¹³ ppp 512 kW Carbon L=2.2 m Air Cooling NuMi Fermi 120 GeV/c protons 120 GeV/c protons Carbon L = 1 m Water cooling NuMi Fermi 120 GeV/c protons f=0.53 Hz Carbon L = 1 m Water cooling MiniBoone Fermi 8 GeV protons National Beryllium L = Air Cooling National 5·10 ¹² ppp Laboratory F=5 Hz Air Cooling T2K J-Parc J-Parc Image: Second s	CNGS CERN 400 GeV/c protons Carbon L=2.2 m 2.4·10 ¹³ ppp 512 kW Air Cooling NuMi Fermi 120 GeV/c protons Carbon L = 1 m National f=0.53 Hz Water cooling Water cooling MiniBoone Fermi 8 GeV protons Beryllium L = National 5·10 ¹² ppp Air Cooling Air Cooling Laboratory f=5 Hz Figure 4 Air Cooling T2K J-Parc J-Parc Image: Carbon 4 J-Parc	Neutrino argets	Laboratory	Energy/momentum	Target material	
NuMi Fermi 120 GeV/c protons Carbon L = 1 m National f=0.53 Hz Water cooling Water cooling Laboratory 8 GeV protons Beryllium L = National 5 · 10 ¹² ppp Air Cooling Air Cooling Laboratory f=5 Hz Image: Second	NuMi Fermi 120 GeV/c protons Carbon L = 1 m National f=0.53 Hz Water cooling Laboratory SeV protons Beryllium L = MiniBoone Fermi 8 GeV protons Beryllium L = National 5·10 ¹² ppp Air Cooling Air Cooling Laboratory f=5 Hz Image: Second secon	CNGS	CERN	400 GeV/c protons 2.4·10 ¹³ ppp 512 kW	Carbon	L=2.2 m Air Cooling
MiniBoone Fermi 8 GeV protons Beryllium L = National 5·10 ¹² ppp Air Cooling Laboratory f=5 Hz T2K J-Parc	MiniBoone Fermi 8 GeV protons Beryllium L = National 5·10 ¹² ppp Air Cooling Laboratory f=5 Hz T2K J-Parc	NuMi	Fermi National Laboratory	120 GeV/c protons f=0.53 Hz	Carbon	L = 1 m Water cooling
T2K J-Parc	T2K J-Parc	ViniBoone	Fermi National Laboratory	8 GeV protons 5·10 ¹² ppp f=5 Hz	Beryllium	L = Air Cooling
		T2K	J-Parc			

Conclusion Neutrino Targets

•High energy densities and resulting thermal shocks currently set limit for (solid) neutrino targets \rightarrow cyclic stresses \rightarrow fatigue limits

•New target concepts for v-Production targets address following issues:

-Dissipation of energy due to rotating/moving targets

-Liquid metal targets (as e.g. MERIT)

-High Z materials \rightarrow higher neutrino production

-Extensive tests of materials

Beam Dumps Used during beam development and set-up of accelerators Generally not used during normal operation (except for colliders) Parts of accelerators can be optimized → other parts do not see beam Have to absorb and stop primary beam particles → secondary particles in general shielded by a so-called biological shield (concrete, earth ...) Essentially the same requirements as targets (not for particle production) → same assessment Beam often defocussed to reduce peak current densities → reduction of power densities High Z materials favored Other medium Z meterials curb as Stepler Concretered

-Often medium Z materials such as Steel or Copper used

PAUL SCHERLED HISTITUT		Key	parameters	on beam dump
1.section: 2.section: 3.section: 4.section: local shield designed f	size (cm) 30 x 44 35 x 26 35 x 14 30 x 50.5 ding	slices 6 7 7 6	power deposit (kW 220 180 30 - (= shielding) 30-60	//mA) water flux (l/s) 4.2 4.2 4.2 1.2 1.2 1.2
2 mA wit 1.6 mA	th 6 cm C 4 cm	Target	E → 40% beam loss → 30%	s → 1.2 mA on beam dump → 1.12 mA
total max. highest po highest ter energy de proton ran	power dep wer density nperature: posit: 425 ge: 23	osit: 500 y: 350 380 < 40 5 MeV/n cm) kW) W/cm³) ∘C for 2mA, 6 cm (5 ∘C (allowed limit d nA	C-Target E ue to recristallisation of Cu)

