

HELMHOLTZ ELMEINGGMAT	<u>Outline</u>	DESY
 Needs for High Power What is the goal of the Instruments: & Beam Current/Shape Beam Position Beam Profile 	 Machine Diagnostic: instrumentation and diagnostic <u>Diagnostic methods:</u> Emittance Energy Mismatch 	Saturday
Beam Loss Concentrate in the instrument, not on the readout (electronics)	 Machine Protection Systems Transversal and Longitudinal I E-clouds 	Today Halo

HELIMHOLTZ GEMEINSCHAFT	Y
By RE.Shafer: BIW 2002 Sensitivity Type of output (current or pulse) Ease of calibration (online) System end-to-end online tests Uniformity of calibration (unit to unit) Calibration drift due to aging, radiation damage, outgassing, etc. Radiation hardness (material) Reliability, Availability, Maintainability, Inspect ability, Robustness Cost (incl. Electronics) Shieldability from unwanted radiation (Synchrotron Radiation) Physical size Spatial uniformity of coverage (e.g. in long tunnel, directionality) Dynamic range (rads/sec and rads) Bandwidth (temporal resolution) Response to low duty cycle (pulsed) radiation Instantaneous dynamic range (vs. switched gain dynamic range) Response to excessively high radiation levels (graceful degradation) Signal source Positioning	Especially for <u>high</u> <u>intensity beams</u> a common aspect is the required <u>large dynamic</u> <u>range</u> , but also theirs radiation resistance, saturation characteristics and others.
Systems, like differential beam current measurements, have a very rough measurements (or activation) have a very long time constant and are not a session	position resolution. Dose t he subject of this

			DESY
	LHC	TEVATRON/RHIC/SNS	
	T = 0.3 μs	T = 10 => 3 μs	r n
	(t _{fall} 200µs)	(t _{fall} 560 => 72 μs)	
	1.5 ltr N ₂ at 1.1 bar	0.11 Itr Ar at 1 bar	
	V = 800 – 1800 V	500 - 3500 V	
	Dynamic range >10 ⁸ (>10 ⁻¹² - <10 ⁻³ A)	Dynamic range >10 ⁶ 300 pA – 500 μA	
	Leak current <1 pA	Leak current 10 pA => <100 fA	
TER	S: 156 pA/(rad/h) (Cs ¹³⁷) (560 nC/rad)	19.6 pA/(rad/h) (Cs ¹³⁷) (70 nC/rad)	
	Collection effeciency:	Collection effeciency: 77% -> 92 %	R
	Courtesy B. Dehning, M Stockner; CEI	RN C	

BL/	N Summary	DESY
ıt (tube-) ampli	ification:	
energy to create one electron [eV/e]	number of [e / (cm MIP)] (depends on dE/dx, resp. density)	Sensitivity S (for MIPs) [nC/rad]
250 - 2500	10 ³ - 10 ⁴	≈17·10³ (· PMT _{gain}) (1 ltr.)
50 - 250	10 ⁴ - 10 ⁵	≈ 100·10³(• PMT_{gain}) (1 ltr.)
22 - 95	≈100 (Ar,1 atm., 20ºC)	≈ 500 (• Elec_{gain}) (1ltr)
3.6	106	≈ 50 (• Elec_{gain}) (1 cm² PIN-Diode)
2-5%/MIP (surface only)	0.02-0.05 e/MIP	≈ $2 \cdot 10^{-3}$ (· PMT _{gain}) (8cm ²)
10 ⁵ - 10 ⁶	≈10 (H ₂ O) -200 (fused silica)	≈ 270 (· PMT_{gain}) (1 ltr.)
	BL/ energy to create one electron [eV/e] 250 - 2500 50 - 250 22 - 95 3.6 2-5%/MIP (surface only) 10 ⁵ - 10 ⁶	BLM Summary amplification: energy to create one electron [eV/e] number of [e / (cm MIP)] (depends on dE/dx, resp. density) 250 - 2500 $10^3 - 10^4$ 50 - 250 $10^4 - 10^5$ 22 - 95 ≈ 100 (Ar,1 atm., 20°C) 3.6 10^6 2-5%/MIP (surface only) $0.02-0.05$ e/MIP $10^5 - 10^6$ ≈ 10 (H ₂ O) -200 (fused silica)

Tonization chambers		
LEDA	160 ccm N ₂ Ion chamber	
ISIS	Long Ar ionisation tubes (3-4m)	
SNS Ring	113 ccm Ar Ion chambers	
SNS Linac	113 ccm Ar Ion chambers	
PSI	Air Ionization chambers	
PEFP		
J-PARC,RCS, MR, LINAC	$Ar+CO_2$ proportional ccounters (80 cm) and coaxial cable ion chambers air filled (4-5 m)	
PSR	ion chambers filled with 160 cm ³ of N_2 gas	
LANSCE	180 ccm N2 ion chamber	
CSNS	110 cm3 Ar ion chamber	
AGS	Ar filled long coaxial ion chambers	
NuMI	Ar filled Ion glass tubes	
SPS, CNGS	Air filled ion chambers (1 ltr)	
APT	like LEDA	
MI, Booster, Tevatron	Ar filled Ion glass tubes, 190 ccm	
CERN LHC	N ₂ filled ion chambers 1.5 ltr.	
Rhic	Ar filled Ion glass tubes	

Scintillator		
LEDA	CsI Scintillator PMT-Based	
ISIS	Plastic Scintillator (BC408)	
J-PARC RCS, MR, LINAC	GSO Scintillator	
SNS Ring	Scintillator-PMTs	
SNS Linac	PMTs with a neutron converter	
PSR	Liquid scintillator with PMT (old)	
CSNS	Scintillator-PMTs	
SEM chambers		
LHC	SEM chambers	
PIN Diodes		
HERA	PIN Diodes in counting mode	
Tevatron	PIN Diodes in counting mode	
Rhic	PIN Diodes in counting mode	

Machine	Туре	Signal	Dynamic range	Status
LEDA (LANL) (6.7MeV p)	Scanner+ Scraper	SEM	10 ⁵ -10 ⁶	Working in control- system
AGS slow extraction line (2GeV p)	Scanning Target	Counting mode + SEM	10 ⁴ -10 ⁵ 10 ² -10 ³	De-commissioned
PSR extraction line (LANL) (800MeV p)	Wire Scanner with thin wire	SEM Log amp	106	In regular operation
SNS LINAC (2.5MeV to 1GeV H)	Laserwire scanner	Photo- neutralization, electron detection	10 ³ -10 ⁴	In operation
DESY HERA (40 – 920GeV p)	Wire Scanner with thin wire	Counting mode	10 ⁷ -10 ⁸	In operation, Readout prototype
Yerevan (20 MeV e ⁻) DESY PETRA (40GeV p)	Wire Scanner with thin wire	Vibrating wire; natural frequency	10 ⁶ -10 ⁷	Preliminary tests; More tests planed
KEK PS (12GeV p)	Wire Scanner with thin wire	Scintillators	~10 ³	In operation
RHIC (polarized p, ions)	IPM	Current	10 ² -10 ³	In operation
TABLE 1. Presented instrum	ents for beam prot	üle measurements, the	ir dynamic rang	e and operational status

Beam in Gap

Note that in principle any other fast process, e.g. Beam Induced Gas Scintillation, Secondary Electron Emission or beam loss monitor signals (e.g. at halo scrapers or at wire scanners) can serve as a signal source, which are not limited to very high beam energy. A fast and gate-able detector which is synchronized by the revolution frequency is most useful to avoid saturation due to the signal of the main bunches.

HELMHOLTZ

<u>Measurement at J-PARC with fast Kickers +</u> <u>Scintillator-BLM</u>: "We first found that (supposed to be) empty bucket

"We first found that (supposed to be) empty bucket contains 10⁻⁵ level of the main pulse. ... Any existing beam monitor could not detect this level of the beam. Surprisingly, it is accelerated both in the RCS and the MR without any monitor signal as a invisible beam."

Measurements of Proton Beam Extinction at J-PARC K. Yoshimura, et al, IPAC'10

