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Lecture Plan (1)

* Review of particle equations of motion in 2D
without space-charge

- Courant-Snyder parameters, envelope equation
» Examples of space-charge

» Particle and envelope equations with linear
space-charge

—Space-charge (Laslett) Tune shift

—Image effects
* Envelope oscillations, resonances
Science & Technology

@ Facilities Council 5

Monday, 23 May 2011



Lecture Plan (2)

» General particle equations under space-charge

* Non-linear beams
- rms beam sizes, rms emittance
- rms envelope equations
- evolution of rms emittance

» Examples of 2D distributions

- KV, waterbag, Gaussian

- concept of stationary distributions

 Beam halo
—causes, measurement (kurtosis)
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Lecture Plan (3)

 Longitudinal space-charge
« Self-consistent distributions

- Hofmann-Pederson model
* Microwave instabillity
» Acceleration cycle in a synchrotron
* Bunch compression

* Long and short bunches
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Reading

E.J.N. Wilson: Introduction to Accelerators
S.Y. Lee: Accelerator Physics

M. Reiser: Theory and Design of Charged Particle Beams

* O O* ¥ »

D. Edwards & M. Syphers: An Introduction to the Physics of High
Energy Accelerators

%

M. Conte & W. MacKay: An Introduction to the Physics of Particle
Accelerators

%k R. Dilao & R. Alves-Pires: Nonlinear Dynamics in Particle
Accelerators

Particle
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Velocity of light

Relative velocity

Relativistic gamma

Rest mass

Relativistic mass

Momentum

Energy

Kinetic energy

Notation and Basic Formulae

c = 2.99792458 x 10° m/sec

B=>, v=8c
1 1
")/: p—
\/ e \/1—,82
==
C
mo
m = mo7y

P = mv = myYyv = myy3c

2

E = mc? = mgryc?

T =& —moc® = mo(y —1)c?

2

Note: —
2

p2 4 m%CQ
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Maxwell’s Equations

2 ; N
V.E="
E  Electric field <0
V-B=0
B  Magnetic flux densit OB
p  Charge density 1 OF
. VADB = pugj- 2 57
j  Current density N ¢ y

1o Permeability of free space, 47 x 10~°

€o  Permittivity of free space, 8.854 x 1071°

1
Cofto = 2

James Clerk Maxwell
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Gauss’ Flux Theorem

4 )

N
€0 T AR
L P — - 4 _—
-~ S
Equivalent to Gauss’ Flux Theorem: < /T \ k.

v.E="

€0

= ///VV-EdV://E dS——///pdV—_

The flux of electric field out of a closed region is
proportional to the total electric charge Q enclosed
within the surface.
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Ampere’s Circuital Law

- D
1 OE
V AB = o] - T
N y
V AB = poj

+

For a straight line current:

i
BW:EL
27T
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Review of Simple Particle Dynamics

Equation of motion in electromagnetic fields:

dp Lorentz
dt/q(E TVA B)\ Force
produces acceleration produces bending
Total energy & = mc? and £2 = p?c? + mic?
d& dp
— g_ — 2 ¢ — 2 . E
a P P
d&€ Energy change only from
— g v k Electric fields
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Motion in Constant Magnetic Field

] [
&(mo”yV) =qvADB on /| X
MR
a0 g A
dt  moy i )
| Ny
’U2 q \ \
— — = v, b /\/'
P mo~
— circular motion with radius p = mOz}vL
q
B B
— at an angular frequency w = L 97 _ 47
P mo~y m
g LR h
Constant magnetic field gives Bp = = =
uniform spiral about B with q q
constant energy. Magnetic Rigidity ,
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External Forces

 Maxwell's time-independent equations, no sources:
VAB=0 = J¢ such that B = V¢ Scalar magnetic potential

V-B=0 =— V?p =0, Laplace’s equation

» Simplest solutions, with z = x +iy (i =+ —1) are

{ o= Kz", K constant J

n=1 ¢oxx+1y dipole
n=2 ¢ (x?—y?) + 2y quadrupole
n=3 ¢ox(x?—3y?)+iy(3xz* —y?) sextupole

 Then [ B = nK(l,i, 0)z" 1 (real part understood)

Science & Technology
@ Facilities Council 12

Monday, 23 May 2011



Equations of Motion

4 No bends _ _ o
t q T 1
moa(wﬁ):qﬁ/\B:q gy | AKn| i | 2"
S
design orbit - B B B
Y ] _ -
q | 77 —18
— mo— vy | = Kng S Zn 1
s Ty

X
Write ' = —,y' = y., and note in an accelerator r,y < S
S

S

d d
so that v = (xlaylv 1)57 x’,y’ <1 and & - 8@
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From above,

d
—(~$) ~ 0
P (75)

N

B 372—|—y2—|—32 -
’7— 1 C2

~ (1—52(x’2—|—y’2—|—1))

Paraxial Equations

1
2

= (1 — 52)_% 4+ second order terms

-

Ignoring second and higher velocity terms, equations of motion are
A I . ]
2 2| & — n—1
moyB“c " = Kngpfc 1 | °
— — Field strength
.. | 2" + kx| 0 kb —q % 1610 SUCLE
n =2 (K imag) quadrupole 9 = q
Yy —ky | 0 m()*yﬁc
n =2 (K real) skew quadrupole 2t ky — Y - = Field strength / Bp
| | U y" + kx 0
) ) \ J
,_ e 2"+ k(@2 —-y2) ] [ 0]
n =3 (K imag) sextupole J" — 2y =lo
“ . _ _ " + 2kxy o]
n =3 (K real) skew sextupole k@2 —?) | T | o

\_
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Equations of Motion in Dipoles

Need to take into account the change in direction of the axes
—> $ — $(1 4+ kx) where kK = — is the curvature of the design

P
orbit.

Equations become

- - - ~
2 + Kkx | 2"+ —z | |0
y// — //,0 — 0
Y
N - - Y

Also note solenoids:

P
" +2ky"+ Ky | | O
' —2kx' —K'z | | O
N J
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Mathieu-Hill Equations

Paraxial equation of motion in periodic systems:

2"(s) + ky(s)x = 0
y'(s) +ky(s)y = 0O

where s is distance along beam axis

k.(s), ky,(s) periodic focusing functions, k(s + L) = k(s)
Floquet’s Theorem confirms two independent solutions:
u=w(s)e¥® v=1w(s)e ¥

The Wronskian is W (u,v) = uwv’ — vu’ = —2iw?y’ = C, a constant
dv |
s VT w

Then, substitute v or v into Mathieu-Hill equation:

Choose (' = -2 —
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u = (W 4 iwy)e™ = (w +i/w)e'?,

u!! = (w// o iw’/w2 + iw’¢/ o ¢//w)ei¢ _ (w// o 1/w3)ez’¢

1
W +ku=0 — {w”%—kw()}

w3

Any solution of Matthieu-Hill is a linear combination of u, v,

so set r = Aw(s) cos(¢(s) + ¢).

d A
== Acos(¥+9), 1o (=) = ——gsin( +0)

w2

Or [ Aa? + 24zt + Bz = AQJ
A | S 1 14+ &2
where f=w? da=-wuw' =-20, §=—+uw"= +Aa
w 15 17
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Phase-Space Ellipse; Emittance

[ Y(8)z? + 24(s)za’ + B(s)z"? = A2 ]

Area of ellipse is TA2(54 — &%) = mA?

Area of largest ellipse for all particles in
beam is denoted me

x?+2axz’+ Bz'? < ¢ is beam ellipse in z-z
phase space and ¢ is called the beam emit-
tance

Q, B , v are Courant-Snyder parameters

Beam size (half-width) is a(s) = 1/€8(s)

Phase advance 1 = / ' ds =

ds

Science & Technology
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e c is a constant of the motion, independent of s
o (, BA .7y determine the shape of the ellipse in z-r phase space

e bor a ring a, B,ﬁ are periodic functions, so that the ellipse rotates and
shears with position s, while its area me is conserved (no acceleration)

e Phase advance around a ring gfves the tune (number of oscillations per

revolution) () = % ]{ 8(2;

e Beam envelope given by maximum value of x:

a = Anazw(s) = Vew(s)

Equation for w then gives the envelope equation:
- > N

1
w"—l—kw——S:O S a"—l—ka—e—SzO
w a
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Space-Charge: simple idea

2D point charges g experience repulsive electrostatic force of magnitude

2

«—@0 o—> =1
4 4 2meqr

Particles moving with speed v equivalent to two current wires I = qv.

Coulomb repulsion

Magnetostatic force between two current wires is attractive of magnitude

2

[2 . 2,2 _ _
©—=> «0 F,, = Pof _ o8 ¥ _ U—Fe. Magnetic attraction
27T 27T c?

2
Combined force is a repulsive self-field <1 — v_) F,.

For electrons travelling at or close to ¢, space-charge forces can be negligible.
v
For proton or ion machines, where — = 3 ~ 0.5, effects are important.
C
Note: other factors come in, e.g. intensity. ,
Science & Technology
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Relativistic Transformation of Fields

Consider a single particle, charge ¢, moving with velocity v.
In rest-frame, electrostatic field Eg, and Bg = 0.

In lab-tframe, transtformation equations are

E, = V(EOJ_ —V X BO) E) = Eo,
1
B, =7(Boi + v x Eo) B, = By,

Transverse Lorentz force is

1
F, = q(EJ_—I—VXB):”}/q(EOJ_—I—C—2VX(V><EO))

V-V

WJ(l -2 )EOJ_
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lllustration of Space-Charge; Tune Shift

Consider a 2D axisymmetric beam with charge density p(r) = gqn(r).

Electric field is radial and inside the beam is given by Gauss’ Flux Theorem.

1
{Flux of E through circle of radius r} = — x {charge enclosed}.

€0
1 1 [
— 2rrE.(r) = — [ pdV =— [ 2mrp(r)dr
€0 €0 Jo
gl ["
— E.(r) = ——/ rn(r) dr
€Eo T 0

Magnetic field is angular, from Ampere’s Law [ B - dl = pgx{current flowing
through loop}

— 2rrBy = ,uo/ Bep(r)2mr dr
0
1 r
— B@ — %—/ 7“71(7“) d’l“
Ceo T Jo
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Space charge force on a particle is

F(r)= q(E,r — 6039) = q_21(1 — 53%) /0"“ rn(r) dr

€Eo T

2
r
Consider a Gaussian distribution n(r) = Aexp <_ﬁ>
%

N
where A = 53 and [V is the number of particles per unit length.
O
Ng? 1 r?
Th F(r) = “ 1= _
- () 2menY? T ( exp 202)>

For betatron oscillations at angular frequency w, equation of
particle motion is

d?r 5 F(r) Ng* 1 r?
— +wWr = = — l—exp(——)
dt? moYy  2megmoyS T 202

Science & Technology
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Consider the Gaussian beam transported round a ring of mean
radius R and let ¢ be the azimuthal angle round the ring.

Then Bcdt = R d¢ and the equation of motion becomes

d?r 5 Nq¢°R? 1 r?
; + Q7 = 23,2 . 1—exp(——2)
do 2megmo By ce r 20

2NroR? 1 . ( 1 )
B2~3 b 202/ )

2

where rg = 1 is the classical radius and () is the tune.
47T€0m062
1 1 1 72
N —<1— ——— = —<1—(1- S
v pmee(a)) - {0 )
- r |
- 202
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Equation of motion becomes:

Equivalent to () — () + AQ, where

Space-charge
tune shift

Most pronounced a low energies when [(32~° is small, particularly for

bright, intense beams.

QZ

—

d?r | , NroR?
d¢? - @ _025273 r=0
NroR?
gy = (@ AQ)
~ Q%+ 20QAQ
~ N 2 N
70
AQ = —
Q 2@025273
N y,

Science & Technology
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Equations of Motion with Space-Charge

Consider a paraxial beam with uniform circular cross-section of radius a.

Gauss’ Flux Theorem gives

1 2
2nrE, = — x {charge enclosed} = { ’OWTQ/GO r<a
€0 pra/eg 1T > a
N
ar r<<a
2mena?
Er = 4
N
1 r>a
\ 2TeqQr
Within the beam, space-charge forces are:
T Y Ng
rF.,.=-F. F,=*F — E= ).
r Yoo 2mena? (2, 9)
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Equations of Motion are:

v+ k(s = 4 E,
Sy ke =
ymmetric q
focusing, kx=ky=k "L _ 1D
Y T (S)y mofygﬁzCZ Y
a K )
or: | 2"+ (k(s) — —2):1: = 0 | [ 79 b
a
R K = T, 553 perveance
y// + (k‘(S) — —2)y = 0 . 7 )
\ a Y
I is the beam current I = Nqfc
4 51 moc?
Iy 1s the characteristic current Iy = €M y
q 30 ¢
(17KA for electrons

2

(31(A/Z) MA  for ions
Corresponding envelope equation is:

2
€ K
a' +ka—— ——=0.
a a & Science & Technology
@ Facilities Council >7
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Incoherent Tune Shift

Assume an unbunched beam, uniform density, circular
cross-section in a ring, mean radius R.

" + (k(s) + kse(8))x =0

here I K I 2 1 2Irg 1
wiere sC = —— = — = —
a2 IO 53fy3 a2 qﬁi%fYSC a2

AQ, — ﬁ 74 K, (s)B,(s) ds = ﬁ 7{ o (5)8,(s) ds

1 2™ 2r0I By RI 1
Ale =~ ZosﬁgS)dsz_TOSS o
T Jo  qB°v’c a qb°y°c €x
RI N
AQyy = — ;03 ,  with I = ape
qB°y°cey y 2T R

2776273 €x.y Facilities Council 58
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a AQ 5 ToN )
T 2Byl ey
\ J
e N = total number of particles in the ring
e &y = horizontal (vertical) 100% emittance
Static beam

e Direct space charge effect

e Does not depend on machine size 2nR

e Vanishes for y >>1

e [mportant effect in low energy machines Test particle traject/ory
e Incoherent tune shift

—particle moves within the beam
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Image Effects - Parallel Conducting Plates

y
—Ale;h

4 )
Perfectly conducting collector plates parallel

to beam pipe

Beam —> infinite system of images
@ +\ @ 4h +A at £4nh n=1,2,.
—A at £22n—1)h n=1,2,.
- y
)@ 2h
Plateaty = h Field created by line charge at distance d is
t’ - A1
+A ¢ T Ey — _
2men d
Plate at y = —h
-\ @ —2h A 1 1
From first pair of images F+, = —
V B85 B T 9, (Zh—y 2h—|—y)
‘@ -4 F d pair of By = 2 (1 .
— rom second pair of images — —
“e P 5 Y 2reg dh+vy 4h—vy
)@ —6h |
Science & Technology
@ Facilities Council 30

Monday, 23 May 2011



Images produce an extra electrostatic field given by

| 0 | 1 S !
E! = -
Y 27’(’60 z:: 22n—1)h—-—y 22n—1)h+y| 27T60 nz::l [4nh Ty ~ 4nh - y]
) N— 2 2y _
5 Z 212 2 2 2 ’
TED 1 4(271 — 1) h — Y 4(277/) — Y _ —)\lGh
— By = Tep 4 Z 4n2h? — 42’ e
)@ 2h
Plate at y = h
o0 'n,—l—l \ t Y S
% - v
F()r Sma’ll Y, y 47T€0h2 Z Plate at y = —h
)@ —2h
00 n—|—1 7.‘.2
Z - E +)A @ —4h
n=1
)@ —6h
ATY
p— EZ
Y 48€0h2
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e Vertical image field vanishes at y = 0
e Field linear in y, vertically defocusing

e Field large if vacuum chamber is small

i AT

v 48€0h2 0
- /

There are no image charges between the conducting walls (i.e. in the vacuum chamber), so

| OE. OFE!
divE'=0 = L+ —2 =0
Oy
: AT
— EZ = —
* T T U8eoh2"
, ; gA T i g\ T
—>  image forces F = R 48y, e 48x
Incoherent tune shift for round beam between parallel conducting walls
4 )
1
AQz = _ 2rolR(Bx) - m e Image effects ~ —
: g3y [2(a?)y?  48h? K
. . e (Electrical) image effects nor-
direct lLetlsgle mally focusing in horizontal, de-
focusing in vertical planes.
AQ . 27‘0[R<6y> [ 1 X 7'('2
vy 3 2\ ~2 2 Science & Technolo
_ qeB>y 2<a >7 <&l ) @ Facilities Council g3yz
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Coherent Tune Shift

Kicker
] Vacuum chamber

AO0TTTTRYY

Coherent oscillation

The centre of mass moves, performing betatron
oscillations as a whole. The beam environment
influences the coherent tune = coherent tune shift
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Image Effects - Circular Pipe

x = mean position of beam Single image line charge —\ at inverse
beam radius < p point b where

bx = p*

Beam experiences a field

-\

o i A1 A 1

T Omegb—x  2meg p?/x —x

b R ) ;
 2meg p? — 22
AT
~ for small x
2meq p?

} A I k d d
AQ h = _roftfey) = _10{Bey) N e Only weak dependence on
K x,Y,Co 66537,02 27‘(‘52 ’7,02 ) e Coherent A() never positive

Science & Technology
@ Facilities Council 34

Monday, 23 May 2011



Space-Charge Limit -

Proton/ion machines will be limited in N because AQ will
cross resonances when filling the acceptance.

N can be increased by increasing the injection energy and
hence B%y? without changing AQ.

Linac

add more tanks

e.g. J-PARC 181 MeV 400 MeV

Potential gain (5%~

i |4OOMeV: B2y |181Mev

~ 3

Linac

add a booster ring,
radius R/n

@ @
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Envelope Equation

2
/) € K
a +k(sla————=0
(s)a——5 ——
2> Ka*? — Emattance dominated
2 < Ka? = Space-charge dominated

Science & Technology
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For space-charge dominated beams: a” = — with initial values ay, a

a
Use normalised coordinates A = ﬁ, S =v2K Sl
ao ao
. d? 1 . .
— A= dSél =31 which integrates to A° — A5 =1In A

In some high current applications, need
to transport beam through tube of
diameter D and length L with help of a
focussing lens. Require waist at centre,
equal diameters at ends.

Graphs show a maximum value $=2.16,
hence a maximum current that can be
transported for a given tube diameter.

ao D/2
L =216 = 2.16——
V2K V2K
1 1.08D
— Imaa: = — 1 3
1 0(67) ( T )
Beam size v. distance (normalised units) Science & Technology
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Consider upper curve, which has a{,=0.

Beam radius doubles in (normalised) distance
S~ 212

Then A2 =InA — ldAzZ/ld/l

A
— dSz%zZAd/l

maA2
— 822/ e dA
0
For 1 < A < 2, this can be approximated to ~ 3% by & ~ 2(A — 1)%

2
Then beam radiusis A = 24 _ 1+ i52 =1+ %K <i)
ag ao

a 1 1 <5>2
or — =1+ —
g Io (67)° \ao
Science & Technology
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For an electron beam I ~ 1.7 x 10%

Beam doubles in size when s = 1.31 x 10% x (42 — 1)3/4171/24,

If kinetic energy is equal to rest energy 511keV, and current is 200 A, then
s = 21.0ag, or 52.5cm for a 2.5cm beam.

For a proton beam, Iy ~ 3.13 x 107
so doubling occurs when s = 5.59 x 103 x (y2 — 1)3/4171/2¢,

For T = Trest = 938 MeV, I ~ 45 A. s ~ 200ay.
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For the complete envelope equation (round beam, no focusing),

Multiply by 2a’ and integrate:

2
a'? = —6—2 + 2K In a + constant
a
1
1 1 2
— a’:::{a62—|—52<—2—_2>_|_2[{1n£}
ag @ ag

and

1
! 1 1 2
3:/ {CL()Q—I—GQ (—2— 2) | 2K1ni} da
ao ai  a ag

If K # 0 this has to be evaluated numerically.
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Beam Transport in a Uniform Focusing
Channel

Assume no applied accelerating force and canonical angular momentum py = 0

Paraxial ray equation for axisymmetric beam of radius a is

K
7“”—!—/-6(2)7“—?7“:0

where k3 represents linear external focusing force, K is the perveance.

Corresponding envelope equation is

K ¢

/! 2
a +k2a—— — — =0
0 a a3
4 )
Best known example is the long solenoid channel, where
W B
ko = ~L _ 98| : wy, = Larmor frequency

e 2mgyBe

For microwave sources, using time ¢t as independent variable, ray equation is

) . L . 9 2K6262
P+ wir — Swar = 0, where w, is the plasma frequency, W, = =

- 41
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Matched Beams

For a constant focusing channel, there is a special solution with ¢ =constant.
Beam envelope is a straight line.

K 2
' =0 = k%a———e—S:O
a a
2
2 K
Introduce the wave number k defined by k? = <77T> = ki — —
a

Then ka® = e
In terms of frequencies, w* = wj — %wg

k and w define the wavelength A\ = 27 /k and oscillation frequency due to
the action of both the applied force and the space-charge force.

Note w < wg. w/wy is the tune depression due to space-charge.
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Special Cases

1. Laminar flow, ¢ = 0.
1
K2
Beam radius is ap = ——  Brillowin flow

ko
2. Negligible space-charge, K ~ 0.
1
2

Beam radius is ag = (%) c.t. Twiss B = 1/kg, constant.
0
*

sk ok sk sk Kok ok ok ok Kk
K €
Introduce dimensionless parameter u = into kfa— — — — =0.
2koe a a3
4 2 1
a a 2
Then (—) —2u<—> —1=0 — a:ao[u%—\/l%—uz}
a a

N |

Equivalently a = %CLB |:1 -+ \/]_ + u—2i|

Without space-charge, a beam of zero emittance has radius ay.

As current increases, beam radius expands and diameter of beam pipe
needs to be large enough to accommodate.
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. . . L . . L 2
Suppose maximum beam size is ag = a.,; then acceptance is a = kgaz, .

Maximum beam current that can be transported follows from the maximum

perveance:
€ € \ 2
K = k3a2, — — = koo {1— (—) ]
a? Qo
— I =11,3%3k {1 _ (5)2}
— 5topP Y Ro&x o
Observe:

e transportable current increases rapidly with particle energy
e acceptance a@ must exceed the emittance € of the beam.

e Maximum current when ¢/a — 0 (laminar beam limit).

In this case, K = kia® or wi = %wg (well known result for
nonrelativistic ideal Brillouin flow)
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Tune Depression

Zero space-charge particle equation r’ + kir =0

Space-charge particle equation r" 4+ k*r =0

Frequencies wg = koBc, w = kfc

K K 2
Recall ka2 = e, kOaQ:a,uZQkoe and k%a—;—%:()
K €\ 2 2koeu
_ 1.2 1.2 0 2 _ 1.2 2
— 0=k == —(o5) =k — =g — k> = k§ — 2kkou — k.
.. W k €
Therefore tune depression is — = = — =+v14+u2—u

wo k'() (87

Limit between space-charge and emittance dominated beams is Ka? = €?

K 2 K € W 1

— = — U = — — = —: then ind u = ——
ke « 2koe 2 2wq’ 2v/2
w 1 0.71 For tune shifts below 0.71, beam is
— w_o _ ﬁ B dominated by space-charge; above 0.71,
emittance dominates o

Monday, 23 May 2011



Mismatched Beams

. .. K € o €
Matched beam radius a: kfa — — — — = k<a — — = 0
a a a
Mismatched beam: put ¢ = a + X in envelope equation, | X| < a
K X\ € X\’
Then X”+k§(a+X)—T(1+T> —f—3<1+7> = 0
a a a a
frstoorder) X"+ (k245 435 ) x =
— (to first-order) + | k§ — 36,4 = 0
So envelope oscillations have the form X" + kX =0
K €’
where k2 = ki — | 364

= ki + (kg — k%) + 3k® = 2kg + 2k7

" Single particles oscillate with frequency w while the envelope oscillates )
1 i w 2] %
with frequency w. = [ng - QwQ] * = V2w |14 ( ) ogy
Wo 46
N : - J
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In terms of the plasma frequency w? = —% = Q(wo — w2),
a

2
We = [4w8 —wzﬂ = 2w |1 — i (ﬁ>

Known as in-phase mode for an axisymmetric beam. Solutions for the quadrupole
(elliptical) case give the out-of-phase mode

[ w 2_% 2w K =0
wezﬂwo 1%( ) —

Wo

_ i \/in e=20

For a long solenoid channel and zero intensity (K = 0), particles oscillate
at the Larmor frequency while the envelope of the mismatched beam
oscillates at the cyclotron frequency.

For ideal Brillouin flow (¢ = 0), w = v2wg = w, and envelope oscillates
with the plasma frequency.

Note: valid only for small mismatch | X| < a.
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Beams with Elliptical Cross-section

Space-charge potential for a uniform round beam is (E = —V¢):
B Nq 2 2)
Q5(£U, Y, S) o 47'('6()0,2 (ZIZ‘ + Y :

For a uniform elliptical beam with semi-axes a, b,

N 2 2
plz,y) =< ™ !
0 otherwise
The electric field within the beam, from Poisson’s equation VZ¢ = —p/e, is
g 1V (f) Q) |
wegla+b) \a’ b

corresponding to a potential

2 2
qb(:lz Y S) = — Ng v | J & Science & Technology
T 2T€Q (a —+ b) a b | @ Facilities Council 53
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These give the coupled set of equations for beam particles and beam envelope:

- \
2K
2" + ki (s)x — T o= 0
ba
2Ky
1) k' J —
2 2K
"4k, & — 0
a’ + k. (s)a )
g " 6,3 2K _ 0
R -5 - S
N y

Numerical integration:
Codes (Agile, KVBL) can design and optimise a linear focusing channel or ring by
varying field gradients etc, similar to MADX.

R _ e,

By {a?)

Note: phase advance (tune) is / ds = / — ds — =
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Laslett Coefficients

pole-piece
|

S /N‘C’ﬁ;‘#ﬁr Uniform, elliptical
® Beam . beam in an elliptical
w
J vacuum chamber

y,;ne 7T52’Y 6272 h2 g2
Direct electr. magnetic
image 1mage
Nro(By) ! 263
AQy,coh - 7_(_527 ﬁ + 5 9_2

Similarly for AQ«. In general |AQy|>|AQx]

€100 C1,C, are the Laslett Coefficients ) scicnce & Technology
(LJ Laslett 1963) W@ Facilities Council 55
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Laslett Circular Elliptical Parallel plates
coefficients (a=b,w=h) (e.g. w = 2h) (h/w = 0)
. 1 b-
Go 5
2 a(a + b)
” 1 b
0 2 a+b
T 0 -0.172 -0.206
! (1) 0.172 0.206 (= 72 /48)
¥ 5 0.083 0
1
/ 5 0.9 0.617 (= 72 /16)
5 -0.411 (= —7%/24) -0.411 -0.411
5 0.411 0.411 0.411
5 0 0 0
5 0.617 (= 72/16) 0.617 0.617

Science & Technology

W@ Facilities Council
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Incoherent AQ: Practical Formulae

o

W@ Facilities Council

AQ, = — To f N F,G, By
Y T \A) 8%y By \bla+0b)
— = ~
b(cH— b) 52(1 4+ _) Gny
b €y | 1+
€yQu
4 5 ™\
AQ, . = 7o (¢ N F;,Ggy 1
T,y T A 62/73 Bf ) Q
Y, LT,y
€xy | 1+
€e,y(y,a
- /
\ / \ / 29 \
q/A = charge/mass ratio for F,., = “Form factor” de- Gy = “Form factor. .de-
o, @ q _ E for 1,05+ pending on images etc pendmg _on partlcloe distribu-
A 16 tion (G = 1 for uniform)
N\ AN
AT ,
[Bf - X - ?’ Bunching factor} Science & Technology

57
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Q-Spread during Accumulation

595 | |
//f/ / Tune-spread “necktie”
diagram during beam
e | injection/accumulation
in the SNS. Modelled
using the ORBIT code

/ ‘ with non-linear space-

. IIII ""1.._ III
- 4
1 b
. -
5..6 — I!I,..-‘fu'i' :"".. ]
. J -
. ras s T C a e
C L N i I n
L} L] "1 ..‘ “I-_
i 1 N T
g " . Tha I
.
.l i s ! S
1 1 ! "-.,
| . K T
i S T
1 .
5 5 ol : ] L ] 1 ] 1 hd

| | L | fr
F5.5 555 h6 5HB5 57 575 5B 5HB5 59 5495 5]
Horizontal Tune

5.85 |
5.8

5.75 -

Vertical Tune

5.55 |

Science & Technology
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