Beam Dynamics in Linacs II

CERN Accelerator School High Power Hadron Machines Bilbao 26th May 2011

Alan Letchford ISIS, Rutherford Appleton Laboratory

Transit Time Factor

If
$$E(0,z)$$
 is symmetric about $z=0$ then

$$\int_{-L/2}^{L/2} E(0,z) \sin \omega r(z) dz = 0$$
and
$$T = \frac{\int_{-L/2}^{L/2} E(0,z) \cos \omega r(z) dz}{\int_{-L/2}^{L/2} E(0,z) dz}$$
Further, if the change in particle velocity across the gap is small
 $\omega t \approx \frac{\omega z}{\beta c} = \frac{2\pi z}{\beta \lambda}$
giving
$$T \approx \frac{\int_{-L/2}^{L/2} E(0,z) \cos(2\pi z/\beta \lambda) dz}{\int_{-L/2}^{L/2} E(0,z) dz}$$

3

Synchronous Phase

 $\Delta W = q E_0 T L \cos \phi$

The value of ϕ at which the cavity is designed to operate is called the synchronous phase. A particle arriving at the cavity with the synchronous energy and synchronous phase will also arrive at all subsequent cavities at the synchronous energies and phases. Acceleration only occurs when $\cos(\phi_s)$ is positive:

$$-\frac{\pi}{2} < \phi_s < \frac{\pi}{2}$$

Relative Particle Energy

The difference in the particle energy is simply the difference in the effective voltage

$$\Delta (W - W_s)_n = q E_0 T L_n (\cos \phi_n - \cos \phi_{s,n})$$

leading to a pair of coupled difference equations in relative energy and phase.

$$\Delta(\phi - \phi_s)_n = -2\pi N \frac{W_{n-1} - W_{s,n-1}}{mc^2 \beta_{s,n-1}^2 \gamma_{s,n-1}^3}$$

Hamiltonian

Combining the coupled equations gives a second order differential equation

$$\frac{d^2(\phi-\phi_s)}{ds^2} = -\frac{2\pi q E_0 T}{mc^2 \beta_2^3 \gamma_s^3 \lambda} (\cos\phi - \cos\phi_s)$$

Which leads to the Hamiltonian for the longitudinal motion

$$\frac{Aw^2}{2} + B(\sin\phi - \phi\cos\phi_s) = H_{\phi}$$
$$A = \frac{2\pi}{\beta_s^3 \gamma_s^3 \lambda} \quad B = \frac{qE_0T}{mc^2} \quad w = \frac{W - W_s}{mc^2}$$

kinetic energy + potential energy = constant

Separatrix

The potential well defines the region of stable phase motion which covers

 $\phi_2 < \phi < -\phi_s$

At the upper limit

$$\frac{d\phi}{ds} = -Aw = 0$$

which defines the constant as

$$H_{\phi} = B\left(\sin(-\phi_s) - (-\phi_s \cos\phi_s)\right)$$

leading to the equation for the separatrix

$$\frac{Aw^2}{2} + B(\sin\phi - \phi\cos\phi_s) = B(\sin\phi_s - \phi_s\cos\phi_s)$$

Phase Width

The total phase width of the separatrix is

$$\boldsymbol{\psi} = \left| \boldsymbol{\phi}_{s} \right| + \left| \boldsymbol{\phi}_{2} \right| = -\boldsymbol{\phi}_{s} - \boldsymbol{\phi}_{2}$$

Leading to

$$\tan\phi_s = \frac{\sin\psi - \psi}{1 - \cos\psi}$$

Small Amplitude Oscillations

For a phase difference which is small compared to the synchronous phase, trigonometric approximations allow the equation of phase motion to be written

$$\frac{d^2\phi}{ds^2} + k_{l0}^2 \left[(\phi - \phi_s) - \frac{(\phi - \phi_s)^2}{2\tan(-\phi_s)} \right] = 0$$
$$k_{l0}^2 = \left(\frac{2\pi}{\beta_s \lambda_{l0}}\right)^2 = \frac{2\pi q E_0 T \sin(-\phi_s)}{mc^2 \beta_s^3 \gamma_s^3 \lambda}$$

Where

is the square of the longitudinal wave number.

The quadratic term reduces the focusing at large excursions.

Phase DampingIf the rate of acceleration is small Liouville's Theorem applies
and the area of the ellipse in phase space is an adiabatic
invariant. $area = \pi\Delta\phi_0\Delta W_0 = \pi\Delta\phi_0^2\sqrt{\frac{qE_0Tmc^2\beta_s^3\gamma_s^3\lambda\sin(-\phi_2)}{2\pi}}$ If the accelerating field and synchronous phase are fixed $\Delta\phi_0 = \frac{constant}{(\beta_s\gamma_s)^{3/4}}$ $\Delta W_0 = constant \times (\beta_s\gamma_s)^{3/4}$ During acceleration the amplitude of the phase oscillations
decrease while the amplitude of energy oscillations increases.

