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Acceleration by an RF Field

A proton linac typically consists of a series of RF cavities with
gaps designed to efficiently accelerate the particles.

S Electric field lines

Accelerating gap

For the longitudinal dynamics only the on-axis component of
the field is considered.

Energy gain in an RF gap

For a generic RF gap of frequency ® and length L with an axial
electric field
E (r,z,1)

the field experienced by an on axis particle is given by
E.(r=0,z,1) = E(0,z) cos[at(z) + @]

where 1H(z)= =

Taking the origin to be the centre of the gap when t =0 and RF
phase = ¢ then the energy gain is

AW = qu/zz E(0,z)cos[ax(z)+@ldz




Average Field

Using a trigonometric identity the energy gain can be written
L2 . .
AW = qI_L/Z E(0, z)[cos ax cos ¢ —sin ax sin Pldz
Which is expressed in the conventional form as
AW = gE,TLcos ¢
1 pL/2
where E, = 7 I_L/z E(0,2)dz

is the average on-axis electric field and
L/2 L2 .
[ EODcosax(ydz [ E©,2)sinar(z)dz

T =Y 7 —tan¢@ L2 7
[, EQ©.2)dz [, EQ.2)d

is the Transit Time Factor.

Transit Time Factor

If E(0,z) is symmetric about z=0 then

L2 )
[, EQ.2)sinax(z)dz =0

[ B©.2)cos ar(a)ds
and T = L2

" E(0,2)d
I_L/z (0,2)dz

Further, if the change in particle velocity across the gap is small

2T
pc pA
[ B0, 2)cos 2/ By
giving T=

“ B0, 2)d
I_L/z (0,z)dz




Synchronous Phase

AW =gE TLcos ¢

The value of ¢ at which the cavity is designed to operate is
called the synchronous phase. A particle arriving at the cavity
with the synchronous energy and synchronous phase will also
arrive at all subsequent cavities at the synchronous energies and
phases. Acceleration only occurs when cos(¢,) is positive:
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Phase Stability

Phase stability occurs when the accelerating field is rising in
time

-7<¢.<0
A particle that arrives earlier than the synchronous phase
receive less acceleration than the synchronous particle. A later
particle receives more acceleration. The effect is longitudinal
focusing which drives the particles towards the synchronous

phase. 4 ¢ Late
0 particle
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Acceleration by a series of gaps

Longitudinal motion is studied by treating the linac as a series
of thin gaps separated by field free drifts
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Relative Particle Phase

If the synchronous velocity is given by f;  then

N
Ln = E (IBS,n—l + ﬁs,n )ﬂ“

and A(¢— b, )n =27Np, - (é - :Bs,ln—1 ]
If P=P= mc* By <!
then LA _M
VA
%% . —W< —1
and Alg=9.), ==22N 5=

2
mc ﬂx,n—l s,n—1




Relative Particle Energy

The difference in the particle energy is simply the difference in
the effective voltage

AW -W,), = gE,TL, (cos ¢, —cos @, )

leading to a pair of coupled difference equations in relative
energy and phase.

A(¢—¢ ) — _27Z_N Wn—l _Ws,n—l
o mczﬁsz,n—l s,n—1

Equations of Motion

To study the particle motion analytically the difference
equations can be converted to differential equations noting that

s=nNpB.A
and letting Alp-¢,)= d (¢d_ 9,
n
and AW -W )= @
n
eivine dp=0)__,, W-W,
ds mczﬁ?ﬁﬂ/
dw-w)

o= qEOT(cos @—cos g, )




Hamiltonian

Combining the coupled equations gives a second order
differential equation

d*(@—9) _  2mET

(cos@—cosg,)

ds’ mc’ By A
Which leads to the Hamiltonian for the longitudinal motion
2
Aw +B(sing—gcosg,)=H,
A= 2 _9qET _w-w
By mc® mc®

kinetic energy + potential energy = constant

Potential Well

The potential energy term
V, = B(sing—g¢cosgp,)

indicates a potential well for —7 < ¢, <0
E
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Separatrix

The potential well defines the region of stable phase motion
which covers

¢2 < ¢ < _¢s
At the upper limit
a9 _ -Aw=0
ds

which defines the constant as
H, = B(sin(-¢,)— (—¢, cos ¢,))
leading to the equation for the separatrix

Aw?

+ B(sing—@gcos @, )= B(sin g, — @, cos @,)

Separatrix

The separatrix separates
longitudinal phase space into
stable and unstable regions.

The boundary can be plotted
if A, B & ¢, are known.

The lower limit is given by

Sin@, — ¢, cos g, = ¢, cos g, —sing,




Phase Width

The total phase width of the separatrix is

v =9, +|¢2| =—0,— ¢,

Leading to

tan @, = smy =y

1—-cosy

Energy Width

The maximum energy extent of the separatrix occurs at

¢=9.

Solving the separatrix equation gives

W= W) _ \/ 24E TS YA (4, cos @, —sing,)
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Small Amplitude Oscillations

For a phase difference which is small compared to the
synchronous phase, trigonometric approximations allow the
equation of phase motion to be written

L PN A
ds2+kl{(¢ 2) 2tan(—¢s)}
, (27 2mETsin(-¢,)
Wh k2 = - .
(ﬁsﬂzJ me By A

is the square of the longitudinal wave number.

The quadratic term reduces the focusing at large excursions.

Ellipse Representation

Similar approximations on the condition that

|09,

<<1

lead to
AW’ + Bsin(=¢,)(¢—¢,)* = 2(H,+ ¢, cosg, —sing,)

For ¢, < 0 this is the equation of an upright ellipse with centre
atw=0and 9= ¢,

It ¢ = ¢|W:0 Ag, =0, — 9,
then W—z+—(¢_¢;)2 =1
Wo Ag,

where Wy = W|¢:¢_Y -

\/ gE, TS 7} AAG: sin(—¢,)

27mnc?
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Ellipse Representation

Phase Damping

If the rate of acceleration is small Liouville’s Theorem applies
and the area of the ellipse in phase space is an adiabatic

invariant. T
area = TA@,AW, = 7A@ \/ gt lme ,5; . Asin(—¢,)
V4
If the accelerating field and synchronous phase are fixed
__constant

Ag, AW, = constantX (/3. 7, )%

By

During acceleration the amplitude of the phase oscillations
decrease while the amplitude of energy oscillations increases.
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Thin Gap Transformation

Treating the accelerating cavity as a thin gap the energy and
phase transform as
W, =W, +qETLcosg,

¢f =9,
where i and frefer to the coordinates before and after the

transformation.
It can be shown that this doesn’t satisfy Liouville’s Theorem as

the phase space area increases.

Liouvillian Thin Gap

By introducing a phase jump into the transformation the thin
gap comes closer to satisfying Liouville.

W, =W, +qE,TLcos9,
qE,L
¢f ¢l chﬁZyB
1)2 .
dT J-_L i zE(z)sin(kz)dz
= E =

kT’ sin ¢,

’
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