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Acceleration by an RF Field

A proton linac typically consists of a series of RF cavities with 

gaps designed to efficiently accelerate the particles.

For the longitudinal dynamics only the on-axis component of 

the field is considered.

Accelerating gap

Electric field lines

Energy gain in an RF gap

For a generic RF gap of frequency ω and length L with an axial 

electric field

the field experienced by an on axis particle is given by

where

Taking the origin to be the centre of the gap when t = 0 and RF 

phase = φ then the energy gain is
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Average Field

Using a trigonometric identity the energy gain can be written

Which is expressed in the conventional form as

where

is the average on-axis electric field and

is the Transit Time Factor.
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Transit Time Factor

If E(0,z) is symmetric about z=0 then

and

Further, if the change in particle velocity across the gap is small

giving
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Synchronous Phase

The value of φ at which the cavity is designed to operate is 

called the synchronous phase. A particle arriving at the cavity 

with the synchronous energy and synchronous phase will also 

arrive at all subsequent cavities at the synchronous energies and 

phases. Acceleration only occurs when cos(φs) is positive:
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Phase Stability

Phase stability occurs when the accelerating field is rising in 

time

A particle that arrives earlier than the synchronous phase 

receive less acceleration than the synchronous particle. A later 

particle receives more acceleration. The effect is longitudinal 

focusing which drives the particles towards the synchronous 

phase.

For stability and acceleration
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Acceleration by a series of gaps

Longitudinal motion is studied by treating the linac as a series 

of thin gaps separated by field free drifts
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Relative Particle Phase

If the synchronous velocity is given by βs,n then

and

If 

then

and
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Relative Particle Energy

The difference in the particle energy is simply the difference in 

the effective voltage

leading to a pair of coupled difference equations in relative 

energy and phase.
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Equations of Motion

To study the particle motion analytically the difference 

equations can be converted to differential equations noting that

and letting

and

giving
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Hamiltonian

Combining the coupled equations gives a second order 

differential equation

Which leads to the Hamiltonian for the longitudinal motion

kinetic energy + potential energy = constant

)cos(cos
2)(

332

0

2

2

2

s
s

smc

TqE

ds

d
φφ

λγβ

πφφ
−−=

−

22

0

33

2

        
2

)cos(sin
2

mc

WW
w

mc

TqE
BA

HB
Aw

s

ss

s

−
===

=−+

λγβ

π

φφφ φ

Potential Well

The potential energy term

indicates a potential well for 
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Separatrix

The potential well defines the region of stable phase motion 

which covers

At the upper limit

which defines the constant as

leading to the equation for the separatrix
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The separatrix separates 

longitudinal phase space into 

stable and unstable regions.

The boundary can be plotted 

if A, B & φs are known.

The lower limit is given by
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Phase Width

The total phase width of the separatrix is

Leading to
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The maximum energy extent of the separatrix occurs at 

φ=φs.

Solving the separatrix equation gives
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Small Amplitude Oscillations

For a phase difference which is small compared to the 

synchronous phase, trigonometric approximations allow the 

equation of phase motion to be written

Where

is the square of the longitudinal wave number.

The quadratic term reduces the focusing at large excursions.
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Ellipse Representation

Similar approximations on the condition that

lead to

For φs < 0 this is the equation of an upright ellipse with centre 

at w=0 and φ = φs.
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then

where

1<<− sφφ

)sincos(2))(sin( 22

sssss HBAw φφφφφφ φ −+=−−+

2

2

0

33

0
0

2

0

2

2

0

2

0000

2

)sin(

1
)(

    

mc

TqE
ww

w

w

sss

s

sw

s π

φφλγβ

φ

φφ

φφφφφ

φφ

−∆
==

=
∆

−
+

−=∆=

=

=



11

Ellipse Representation
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Phase Damping

If the rate of acceleration is small Liouville’s Theorem applies 

and the area of the ellipse in phase space is an adiabatic 

invariant.

If the accelerating field and synchronous phase are fixed

During acceleration the amplitude of the phase oscillations 

decrease while the amplitude of energy oscillations increases.

4
3

0
4

30

2

332

02

000

)(constant     
)(

constant

2

)sin(
area

ss

ss

ss

W

TmcqE
W

γβ
γβ

φ

π

φλγβ
φπφπ

×=∆=∆

−
∆=∆∆=



12

Thin Gap Transformation

Treating the accelerating cavity as a thin gap the energy and 

phase transform as

where i and f refer to the coordinates before and after the 

transformation.

It can be shown that this doesn’t satisfy Liouville’s Theorem as 

the phase space area increases.
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Liouvillian Thin Gap

By introducing a phase jump into the transformation the thin 

gap comes closer to satisfying Liouville.
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