

🖉 Traditio et Innovatio

HOM

Hans-Walter Glock

Universität Rostock - Institut für Allgemeine Elektrotechnik

27.5.2011 Cern Accelerator School: High Power Hadron Machines 24.5.-2.6.2011

27.5.2011

Traditio et Innovatio

HOM

= Higher Order Modes

≅ Suitable Representation of Beam Excited Fields

= Wake Fields

27.5.2011

🕺 Traditio et Innovatio

Overview (~50 years of research in 1 hour)

- Let's get acquainted: Showtime with beam.
- Tribute to Maxwell and linearity: From beam to fields to modes.
- Walking through the zoo: Modes in variations.
- Beat the beasts: Suppressing, canceling or ignoring.
- What I have not told you.

Freitag, 27. Mai 2011

Showtime with beam.

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Phenomenologically I:

electric self-field directed radially outward, amplitude reflects Gaussian charge density in the bunch

27.05.2011

Phenomenologically I:

H-field forms circles around the beam

Freitag, 27. Mai 2011

27.05.2011

How to illustrate this? (some in-between theory)

Lorentz-transformation of em-fields from co-moving to laboratory frame (movement with $v \cdot e_z$):

$$\beta = v / c, \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$E_{z} = \overline{E}_{z}$$
$$\mathbf{E}_{\perp} = \gamma (\overline{\mathbf{E}} - \mathbf{v} \times \overline{\mathbf{B}})_{\perp}$$
$$B_{z} = \overline{B}_{z}$$
$$\mathbf{B}_{\perp} = \gamma (\overline{\mathbf{B}} + \frac{1}{c^{2}}\mathbf{v} \times \overline{\mathbf{E}})_{\perp}$$

i.e.:

- fields tangential to the movement's direction remain unaffected
- but transversal E and B mix up ...
- ... and experience amplification by the factor $\boldsymbol{\gamma}$

Freitag, 27. Mai 2011

How to illustrate this? (some in-between theory)

Lorentz-transformation of em-fields from co-moving to laboratory frame (movement with $v \cdot e_z$):

How to illustrate this? (some in-between theory)

Lorentz-transformation of em-fields from co-moving to laboratory frame (movement with $v \cdot e_z$):

$$\beta = v / c, \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Now apply this to the pure space-charge field of a charge q, resting in the co-moving frame. Then:

$$B_{z} = 0; \quad \mathbf{B}_{\perp} = \gamma \frac{q}{4\pi\varepsilon_{0}} \frac{1}{r^{3}} \frac{\beta}{c} \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix};$$

$$E_{z} = -\frac{q}{4\pi\varepsilon_{0}}\frac{z}{r^{3}}; \quad \mathbf{E}_{\perp} = -\gamma\frac{q}{4\pi\varepsilon_{0}}\frac{1}{r^{3}}\begin{pmatrix}x\\y\\0\end{pmatrix}$$

here
$$\gamma$$
=2
i.e. p+ @ 1 GeV

Hans-Walter Glock

9

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

27.05.2011

Phenomenologically II:

Relativistic bunch charge field propagate unperturbed in homogeneous beam pipe, ...

... until the cross section is changed. Then scattered fields are needed to fulfill boundary condition.

27.05.2011

Phenomenologically III:

The original field shape is re-established some distance behind the obstacle:

27.05.2011

Phenomenologically III:

The original field shape is re-established some distance behind the obstacle:

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Phenomenologically III:

The original field shape is re-established some distance behind the obstacle:

Freitag, 27. Mai 2011

Phenomenologically IV:

But there remains field at the obstacle,... (field scaling changed)

... continuously ringing after the bunch passage.

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Freitag, 27. Mai 2011

27.05.2011

Substract the unperturbed self-field of the bunch in a co-moving manner, i.e.:

Substract the unperturbed self-field of the bunch in a co-moving manner, i.e.:

27.05.2011

Substract the unperturbed self-field of the bunch in a co-moving manner, i.e.:

Wakefields are exited as compensation of the bunch self-field wherever the boundary surface has a radial component, i.e. at every change of the cross section.

27.05.2011

Field energy of wakes first is taken from the co-moving field ...

(thus re-establishing the radial self-field).

27.05.2011

Where happens the "catch-up"?

... which may be rather far away (assuming the bunch propagates on a straight line).

Let's briefly talk about frequencies:

=> bunch passes obstacle in $\Delta t = 2\sigma/(\beta c) \approx 4 \cdot 10^{-10} s$

=> Bunch/field contain Gaussian spectrum (centered @ 0 Hz) with characteristic bandwidth $1/\Delta t = (\beta c)/(2\sigma) = 2.6 \text{ GHz}$

=> The shorter the bunch, the broader the spectrum!

Freitag, 27. Mai 2011

27.05.2011

Let's briefly talk about frequencies II:

Compare to similar beams with same bunch shape, but different repetition rate:

=> The higher the repetition rate, the fewer lines in the spectrum!

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Fields and modes

Analysis of Maxwell's equations shows*:

- ... that they are linear. Superposition of any two solutions again will be a solution.
- that imposing boundary conditions (i.e.: cavity/waveguide walls) lead to an infinite set of individual solutions, so-called *modes*.
- that different modes (both cavity/waveguides) have distinct field patterns and resonance frequencies (cavities) / cut-off-frequencies <=> propagating constants (waveguides).
- ... that one has to pay attention in case of charges present inside the boundaries: There exist two sets of field patterns:
 - i) the "classical" modes being divergence-free;
 - ii) the rotation-free solutions of the scalar Helmholtz-equations

*: You may e.g. refer to one of the most complete and rigorous explanation of the topic, which is: T. Weiland, R. Wanzenberg: Wakefields and Impedances, published as DESY-M-Report 91-6

Traditio et Innovatio

Does this apply? - A first impression:

Introducing a second iris (and reducing their inner diameter) builds up a cavity-like structure:

Fields ring inside the "cavity" in a regular manner.

27.05.2011

21

21

A new concept:

We might ask, which integrated force experiences a charge ...

$$W_{long.}(x,y;s) = \frac{1}{q_{bunch}} \int_{all z} dz E_z(x,y;z,t) = \frac{s+z}{\beta c}$$

W_{long.} is the so called longitudinal wake-potential

22

Longitudinal wake potential for our cavity:

This shows: following charges in 10 m (extrapolate 20 m, 30 m ...) distance experience acceleration/deceleration: *Long range* wake

27.05.2011

Next step: Perform a Fourier transform on Wlong. ...

... which is commonly denoted as wake impedance.

27.05.2011

24

The frequencies of the impedance maxima ...

Wake impedance Z Am 8000 Am 720 MHz 7000 6000 2349 MHz 5000 1858 MHz Z / Ohm 4000 1102 MHz 3000 2000 1674 MHz 1000 0 0.5 1.5 2.5 0 1 2 Frequency / GHz

... can be identified by an eigenmode computation of the cavity:

27.05.2011

25

Eigenmodes, relevant for an on-axis-beam:

... can be identified by an eigenmode computation of the cavity:

The other way round: which force experience a charge in a certain mode?

Take a given mode with a longitudinal field profile $E_z(z)$ along the beam axis, oscillating with frequency f (and some phase ϕ).

Then a particle with charge q and velocity βc exchanges the energy ΔU with the field:

$$\Delta U = q \int_{cavity} E_z(z) \cos\left(2\pi f \frac{z}{\beta c} + \varphi\right) dz$$

Therefore:

- Strong interaction not necessarily happens, if E_z takes high values.
- Either rather short areas of field interacts strongly (no oscillatory cos-weighting) ...
- ... or fields show (spatial) synchronism with cos-term (e.g. accelerating mode)
- Energy exchange is velocity-dependent!

Freitag, 27. Mai 2011

Walking through the mode-zoo

- Circular cross sections: Be aware of azimuthal dependencies
- Chains of identical elements: understand passbands
- Chains of almost identical elements: traps for modes
- A real-world example

What are Monopole-, Dipole-, Quadrupol-Modes?

Consider structures of axial circular symmetry. Then *all* fields belong to classes with certain azimuthal dependencies:

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Hans-Walter Glock

All (but monopols) exist in two polarizations

... which have to be considered as individual modes with identical resonance frequencies

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Hans-Walter Glock

Deviations from round shape define actual orientation

... which may be e.g. cavity deformations or attached couplers

Freitag, 27. Mai 2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Passband fields - a 5-cell example

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Hans-Walter Glock

Passband fields and frequencies

Hans-Walter Glock

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Freitag, 27. Mai 2011

27.05.2011

Passband fields and frequencies

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Hans-Walter Glock

So, what are passbands?

Cavities build up as chains of *identical cells* show resonances in certain frequency intervalls, called passbands, *determined only by the shape of the elementary cell*.

The distribution of resonances in the band depends on the number of cells in the chain:

27.05.2011

But there is an infinite number of passbands (here computed as single cell with periodic boundaries, some phases missing)

Freitag, 27. Mai 2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Numerical trapped mode analysis

Search for strongly confined field distributions by simulating same structure with different waveguide terminations at beam pipe ends. Compare spectra! Small frequency shifts indicate weak coupling.

Freitag, 27. Mai 2011

A real-world example

JLAB-5-cell 1.5 GHz resonator with waveguide couplers

(cavity shape and model courtesy F. Marhauser, Jefferson Lab.)

27.05.2011

Direct beam-excited field computation

CST ParticleStudio©-simulation with 35mm-Gauss-Bunch (~ 0 ... 5 GHz, s = 0 ... 1440 m):

a) on axis => Monopol; b) off-axis (z= -10 mm) => dipole

=> port-signalse(t), ...

Traditio et Innovatio

... and additionally E-field-probes ...

Probe Type Position	E-field (0 275 10 Efield 0,	1) 275, 1	Probes Image: Control of the system Reneral Image: Control of the system Field: Coordinate system E-field Image: Control of the system Orientation Position Image: Control of the system Image: Control of the system	y 🛻
5-cell_cavit	y_8po* 5-cell_cavity	/_8po*	С Ү Ү. 275	
Name cut extrudewg fend	Value 278.9428-134.62 108.425 3 12	Description cut hom waveguides to k	C Z Z: 10 • All (X, Y, Z, Abs)	
rot_axis_Y	10	mm		

... in all cells and both coupler sections = try to identify localized fields

27.05.2011

40

42

27.05.2011

45

27.05.2011

So look for eigenmodes close to the ambiguous frequency:

fields localized due to inhomogeneity in the fundamental power waveguide, $f_{res} = 1.653 \text{ GHz}$ (expected @ 1.649 GHz)

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

48

... which shows some longitudinal E-field at the beam axis:

27.05.2011

50

Three beam-relevant dipole modes I:f_{res} = 2.148 GHz

Type E-Field (peak)
Maximum-2D 1_56094e+007 U/m at 5_11048e-014 / 35_2609 / -44_2607
Frequency 2.14771
Phase Ø degrees

hybrid mode type: 1st, 3rd, 5th cell of TM₁₁ character, 2nd and 4th cell TE₁₁-like

7 Traditio et Innovatio

Three beam-relevant dipole modes II: f_{res} = 2.102 GHz

hybrid mode type: inner cell of pure TE₁₁ character, end cells TM₁₁-like

52

Three beam-relevant dipole modes III: f_{res} = 2.186 GHz

close to TM₁₁-0-mode, but strong unflatness because of coupler sections

27.05.2011

Suppressing, canceling or ignoring

- Ignoring: May work, if your beam is stiff enough and your cooling power sufficient.
- Canceling: A complete field of research. Basic idea: de-cohere modes of individual cavities, making (or leaving) them slightly different.
- Suppressing take HOM energy out of the cavity, using
 - internal absorbers
 - waveguide coupler
 - "coaxial" coupler

Q-value as a figure of merit

Starting from the common definition, putting resonance frequency f, stored field energy in the cavity W and dissipated power (averaged by a period) P in correlation:

$$Q := \frac{2\pi f W}{P}$$

one easily finds from the preservation of energy

$$P = \frac{dW}{dt}$$

an exponential decay of W(t) following $W(t) = W(t = 0) e^{-\frac{2\pi f}{Q}t}$

i.e.: The lower the quality factor Q, the faster decays a field inside the cavity.

=> If beam stability or cooling power is an issue, try to extract HOMs from the cavity

As a typical* example: SPL-5-cell cavity

*typical: elliptical multicell, one fundamental power coupler, to HOM coupler ports at the beam pipes; different azimuthal orientation of HOM couplers

27.05.2011

Consider such a coupler - keep it successfully simple?

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Q-value of lowest modes for 0 mm antenna depth:

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

So we need a filter:

59

Traditio et Innovatio

... which works like this: E-field geometry @ 704 MHz

strong capacitive coupling between "hook" and outer conductor

Pure hook not tuneable for 704 MHz => Enlarge hook end capacity

Design inspired by LEP, TESLA-Saclay, LHC - couplers

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

Waveguide(TM₀)–Coax–Transmission blocked @ fundamental mode frequency => Tuning ok

Traditio et Innovatio

Remarks about fundamental mode notch filter:

 1.) Tuning rather sensitive both against capacity surface AND rotation angle (~5 MHz/Degree ⇔ 30 dB/Degree)

2.) => notch filter understood as combination of resonance AND "directional coupler"-effect: certain E-Hcorrelation causes cancelation

3.) This demands for external re-tuning capability after mounting (e.g. rotation)

Current design for SPL HOM-coupler with increased hook

Q-analysis based on scattering properties of individual coupler section, concatenated afterwards with cavity and second coupler section.

27.05.2011

Seen "through" the pipe

minimal radius 53 mm (=> a = 70 mm)

Current Design for SPL HOM-Coupler

66

Influence of fixture shape on the RF properties

27.05.2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

67

Tuning dependency on penetration depth

27.05.2011

Freitag, 27. Mai 2011

© 2011 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK

What I have not told you:

- A LOT of formulas, e.g.:
- ... that there is also a transversal wake potential, which is directly correlated with the logitudinal one ("Panofsky-Wenzel-Theorem").
- the Fundamental Theorem of Beam Loading (c.f. e.g. P. Wilson et.al.)
- ... that you may integrate wake potentials in an indirect manner under certain conditions (c.f. e.g. Napoly, Zotter, Chin, Zagorodnov, Gjonaj, Weiland et.al.), exploiting certain mathematical properties of wake potentials.
- ... that wakefields also are caused by surface impedance, surface roughness, dielectric coating, ferrites etc.
- ... that there are dozens of programs for one or another aspect of HOM/wakefield computations.
- ... that HOMs may be used both for deflecting (c.f. Crab cavities) and diagnostics,
- ... etc. etc. maybe enough for an Accelerator School

Hope you nevertheless found something interesting.

Thank you for your attention

Freitag, 27. Mai 2011

Spare Slides

27.05.2011

71

Mechanical properties -Eigenmodes based on fixture

Freitag, 27. Mai 2011

SPL-5-cell cavity - split

"right" side HOM coupler port opposed to power c., D= 36mm

D_{ri} = 140mm power coupler port D=100mm

Try to separate different functional sections

- => Save computational effort
- => especially in design optimization tasks

Concatenation procedure based on scattering properties: Coupled S-Parameter Computation = CSC

- Split structure in sections
- Compute scattering (S-) parameters of all sections individually with appropriate solvers
- Compute overall S-parameters as function of f with special algorithm*, applicable to any structure topology and mode number
- *: e.g.: H.-W. Glock, K. Rothemund, U. van Rienen: "CSC A System for Coupled S-Parameter Calculations", TESLA-Report 2001-25 or K. Rothemund, H.-W. Glock, U. van Rienen: "Eigenmode Calculation of Complex RF-Structures using S-Parameters", IEEE Transactions on Magnetics, Vol. 36, (2000): 1501-1503 and references therein

Concatenation procedure based on scattering properties: Coupled S-Parameter Computation = CSC

- Split structure in sections
- Compute scattering (S-) parameters of all sections individually with appropriate solvers
- Compute overall S-parameters as function of f with special algorithm*, applicable to any structure topology and mode number
- Derive loaded Q-values from S-parameter spectra