LHC

Overview – what is LHC ?

Construction and first commissioning

Beam commissioning

10

Injector chai	า
The present accelerators are getting and they operate far beyond their init	old (PS is 50 years old…) ial design parameters
 Luminosity depends directly upon beam brightness N/ε* 	$L \propto \frac{1}{\beta^*} \frac{N_b}{\varepsilon_{X,Y}} \cdot N_b \cdot k_b$ N_b : number of protons/bunch $\varepsilon_{X,Y}$: normalized transverse emittances k_b : number of bunches per ring
 Brightness is limited by space charge at low energy in the injectors 	$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \cdot \frac{R}{\beta \gamma^2}$ $N_b : \text{number of protons/bunch}$ $\varepsilon_{X,Y} : \text{normalized transverse emittances}$ $R : \text{mean radius of the accelerator}$ $\beta \gamma : \text{classical relativist ic parameters}$
\Rightarrow Need to increase the injection energy in	the injection synchrotrons
6/8/2011	24

	Preventing recurrence										
←	Sector 34 repair Restart										
	Q4 2008	Q1 2009	Q4 2009								
 Electrical measurements everywhere at cold (measuring nΩ) Had to warm up sectors 12 56 67 Superconducting splices limit operation to 5 in the sector of the sector											
	Q4 2008	Q1 2009	Q2 2009	Q3 2009	Q4 2009						
12	Cold	Cold -> Warm	Warm	Warm -> Cold	Cold						
23	< 100K	< 100K	< 100K 🗲 Cold	Cold → 80K → Cold	Cold						
34	Warm	Warm	Warm	Warm -> Cold	Cold						
45	< 100K	< 100K	< 100K 🗲 Warm	Warm -> Cold	Cold						
56	Cold	Cold -> Warm	Warm	Warm -> Cold	Cold						
67	Cold	Cold -> Warm	Warm	Warm -> Cold	Cold						
78	Cold	< 100K	< 100K → 80K	80K → Cold	Cold						
81	Cold	< 100K	< 100K → 80K	80K 🗲 Cold	Cold						

The way	back	,	N
 Train magnets Should be easy to get to 6TeV 6.5 TeV should be in reach 7 TeV will take time Fix stabilizers for 12kA Complete pressure relief system 	7 TeV 6.5 TeV	When 2016 ? 2015	What Training Stabilizers
 Fix connectors Commission nQPS system Commission circuits to 6kA 	3.5 TeV 6 kA	2012 2011 2010	nQPS
450 GeV 6/8/2011	1.18 TeV 2 kA	2009	46

	C	ommission	ing stra	ategy						
•	At what	ever energy								
	– Corre	ect everything we	can with s	afe beams						
	 Then establish references 									
	 Then set up protection devices (injection, collimators, beam dump) 									
	– Then	increase intensit	y incremen	tally						
	• 1	ow bunch currents	, increase k _b							
	• 1	ncrease bunch curr	ent							
	•	Higher bunch currer	nt, low k _b , sa	me total current						
	• •	Higher bunch currer	its, increase	K _b						
	- At ea	ch stage re-qual	ify maching	a protection system	mc					
	Ateu	Somon	umbors	e protection system						
)A/h = t	Somen	unibers	Comment						
	what		•0	Comment						
	Pilot	Single bunch of 5 1	.0 ⁹ protons	Quench limit						
	Safe beam	10 ¹² protons at 450) GeV	Damage limit						
		Energy	Safe beam							
		0.45	1.00E+12							
		1.18	1.94E+11	Scales with 1/E ^{1.7}						
		3.5	3.06E+10							
6/8/2011		7	9.41E+09		47					

			Early bea	m	operation		
2009		2010		2011		2012	
Repair of Sector 34	1.18 TeV	nQPS 6kA	3.5 TeV $I_{safe} < I < 0.2 I_{nom}$ $\beta^* > 2 m$	lons	3.5 TeV < 0.5 I _{nom} β* 1.5 m	lons	3.5 TeV < I _{nom} β* 1.5 m
No Beam	В		Beam		Beam		Beam
		•	2009 - Energy limited to 2010 - Energy limited to - Intensity carefull - β* not too low to - Target luminosity 2011 - Energy limited to - Push the intensit - β* pushed as low - Target luminosity - Target luminosity	 1.18 3.5 T y incr p prov y 10³² 3.5 T x to 5 x as po y 10³³ 1 lumit 	TeV TeV eased to collimation limit vide margins cm ⁻² s ⁻¹ TeV 10% nominal ossible cm ⁻² s ⁻¹ nosity > 1 fb ⁻¹	it	
	40	% effic	ciency for physics \rightarrow	10°s	econds collisions per	mo	inth
			10 ⁶ seconds @ <l></l>	of 1	0^{33} cm ⁻² s ⁻¹ \rightarrow 1 fb ⁻¹		

Date	Bunches/b	eam	Col	liding bunches	Luminosity cm ⁻² s ⁻¹		
15th November	121		113		2.88e25		
9th November	17		16		3.5e24		
4th November		LHC s	witch	ed to heavy ions	(fully stripped lead)		
25th October	368	20	MJ	348	2.07e32		
16th October	312			295	1.35e32		
14th October	248		233		1e32		
8th October	248		233		8.8e31		
4th October	204		186		204 186	186	7e31
29th September	152			140	5e31		
25th September	104			93	3.5e31		
23rd September	56			47	2e31		
22nd September	24			16	4.6e30		
1st - 22nd September	B	Bunch	train	commissioning, 2	L50 ns bunch spacing		
29th August	50			35	1e31		

Comments on 2010	
Machine commissioned with beam under strict conditions	
Machine parameters under control	
 Machine protection paramount and dictated intensity Low bunch currents, increase k_b Increase bunch current Higher bunch current, low k_b, same total current Higher bunch currents increase k 	
 Big surprise that we could 'easily' get to nominal N 	
 Nominal bunch intensities thereafter, 'just' increasing k_b 	
 Intensity related effects starting to show up UFOs 	
 Electron cloud SEUs 	
6/8/2011	72

Date	Bunches/be	eam	Col (/	liding bunches Atlas & CMS)	Luminosity cm ⁻² s ⁻¹
29th May	1092	75	MJ	1042	1.2e33
22nd May	912	1		873	1.1e33
1st May	768			700	8.4e32
27th April	624			598	6.7e32
21st April	480			424	4.67e32
16th April	336			322	3.57e32
14th April	220			214	2.28e32
24-27th March	1.38 Te	V run	(follo	wed by technical	stop and scrubbing)
22nd March	200			194	2.5e32

 After a long and painful birth, LHC came online in 2008 Major incident of September 2008 took a year to fix Lessons learned from this impacted on the commissioning At start-up II (2009/10), fantastic set of tools at our disposal Allowed fast commissioning with beam Machine protection (hardware and beam) paramount Necessarily slowed down the progress Fantastic progress through 2010 S orders of magnitude increase in instantaneous luminosity to 2 10³² So pb⁻¹ delivered at com 7 TeV Similarly impressive progress so far through 2011 At 1.2 10³³ already, and integrated luminosity looking good (> 0.5 fb⁻¹) Expect to deliver 1.3 fb⁻¹ before we switch to ions in November Let's hope that there is something there to find! 	Summary	
6/8/2011 76	 After a long and painful birth, LHC came online in 2008 Major incident of September 2008 took a year to fix Lessons learned from this impacted on the commissioning At start-up II (2009/10), fantastic set of tools at our disposal Allowed fast commissioning with beam Machine protection (hardware and beam) paramount Necessarily slowed down the progress Fantastic progress through 2010 5 orders of magnitude increase in instantaneous luminosity to 2 10³² 50 pb⁻¹ delivered at com 7 TeV Similarly impressive progress so far through 2011 At 1.2 10³³ already, and integrated luminosity looking good (> 0.5 fb⁻¹) Expect to deliver 1-3 fb⁻¹ before we switch to ions in November Let's hope that there is something there to find! 	
	6/8/2011	76

77