

Power Semiconductors for Power Electronics Applications

Munaf Rahimo, Corporate Executive Engineer Grid Systems R&D, Power Systems ABB Switzerland Ltd, Semiconductors

CAS-PSI Special course Power Converters, Baden Switzerland, 8th May 2014

Contents

- Power Electronics and Power Semiconductors
- Understanding the Basics
- Technologies and Performance
- Packaging Concepts
- Technology Drivers and Trends
- Wide Band gap Technologies
- Conclusions

Power Electronics and Power Semiconductors

Power Electronics Applications are

.. an established technology that bridges the power industry with its needs for flexible and fast controllers

© ABB Group May 16, 2014 | Slide 4

Power Electronics Application Trends

- <u>Traditional</u>: More Compact and Powerful Systems
- Modern: Better Quality and Reliability
- <u>Efficient:</u> Lower Losses
- <u>Custom</u>: Niche and Special Applications
- <u>Solid State</u>: DC Breakers, Transformers

Economic

© ABB Group May 16, 2014 | Slide 5 Environmental

The Semiconductor Revolution

Today: GW IGBT based HVDC systems

Semiconductors, Towards Higher Speeds & Power

- It took close to two decades after the invention of the solid-state bipolar transistor (1947) for semiconductors to hit mainstream applications
- The beginnings of power semiconductors came at a similar time with the integrated circuit in the fifties
- Both lead to the modern era of advanced DATA and POWER processing
- While the main target for ICs is increasing the speed of data processing, for power devices it was the controlled power handling capability
- Since the 1970s, power semiconductors have benefited from advanced Silicon material and technologies/ processes developed for the much larger and well funded IC applications and markets

Kilby's first IC in 1958

Robert N. Hall (left) at GE demonstrated the first 200V/35A Ge power diode in 1952

The Global Semiconductor Market and Producers

Power Semiconductors; the Principle

Power Semiconductor Device Main Functions

• Main Functions of the power device:

- Support the off-voltage (Thousands of Volts)
- Conduct currents when switch is on (Hundreds of Amps per cm²)

Evolution of Silicon Based Power Devices

Silicon, the main power semiconductor material

- Silicon is the second most common chemical element in the crust of the earth (27.7% vs. 46.6% of Oxygen)
- Stones and sand are mostly consisting of Silicon and Oxygen (SiO₂)
- For Semiconductors, we need an almost perfect Silicon crystal
- Silicon crystals for semiconductor applications are probably the best organized structures on earth
- Before the fabrication of chips, the semiconductor wafer is doped with minute amounts of foreign atoms (p "B, Al" or n "P, As" type doping)

Power Semiconductor Processes

- It takes basically the same technologies to manufacture power semiconductors like modern logic devices like microprocessors
- But the challenges are different in terms of Device Physics and Application

Device	Critical Dimension	Min. doping concentration	Max. Process Temperature [*]
Logic Devices	0.1 - 0.2 μm	10 ¹⁵ cm ⁻³	1050 - 1100°C (minutes)
MOSFET, IGBT	1 - 2 μm	10 ¹³ - 10 ¹⁴ cm ⁻³	1250°C (hours)
Thyristor, GTO, IGCT	10 -20 μm	< 10 ¹³ cm ⁻³	1280-1300°C(days) melts at 1360°C

- Doping and thickness of the silicon must be tightly controlled (both in % range)
- Because silicon is a resistor, device thickness must be kept at absolute minimum
- Virtually no defects or contamination with foreign atoms are permitted

Power Semiconductors Understanding The Basics

... without diving into semiconductor physics ...

Power Semiconductors, S. Linder, EPFL Press ISBN 2-940222-09-6

The PIN Bipolar Power Diode

The low doped drift (base) region is the main differentiator for power devices (normally n-type)

The Power Diode in Reverse Blocking Mode

 $V_{bd} = 5.34 \times 10^{13} N_D^{-3/4}$ Non - Punch Through Breakdown Voltage $V_{pt} = 7.67 \times 10^{-12} N_D W_B$ Punch Through Voltage

• All the constants on the right hand side of the above equations have units which will result in a final unit in (Volts).

Power Diode Reverse Blocking Simulation (1/5)

Power Diode Reverse Blocking Simulation (2/5)

Power Diode Reverse Blocking Simulation (3/5)

Power Diode Reverse Blocking Simulation (4/5)

Power Diode Reverse Blocking Simulation (5/5)

Power Diode in Forward Conduction Mode

 $V_B = \frac{2kT}{q} (\frac{W_B}{2L_a})^2$ Base (Drift) Region Voltage Drop

Power Diode Forward Conduction Simulation (1/5)

Power Diode Reverse Recovery

• Reverse Recovery: Transition from the conducting to the blocking state

Reverse Recovery Simulation (1/5)

Reverse Recovery Simulation (2/5)

Reverse Recovery Simulation (3/5)

© ABB Group May 16, 2014 | Slide 34

Reverse Recovery Simulation (4/5)

Reverse Recovery Simulation (5/5)

Lifetime Engineering of Power Diodes

- Recombination Lifetime: Average value of time (ns us) after which free carriers recombine (= disappear).
- Lifetime Control: Controlled introduction of lattice defects → enhanced carrier recombination → shaping of the carrier distribution

Power Diode Operational Modes

- Reverse Blocking State
 - Stable reverse blocking
 - Low leakage current
- Forward Conducting State
 - Low on-state losses
 - Positive temperature coefficient
- Turn-On (forward recovery)
 - Low turn-on losses
 - Short turn-on time
 - Good controllability
- Turn-Off (reverse recovery)
 - Low turn-off losses
 - Short turn-off time
 - Soft characteristics
 - Dynamic ruggedness

Forward Recovery

Reverse Recovery

Power Semiconductors Technologies and Performance

Silicon Power Semiconductor Device Concepts

Silicon Power Semiconductor Switches

Technology	Device Character	Control Type
<u>Bipolar (Thyristor)</u>	Low on-state losses	Current Controlled
Thyristor, GTO, GCT	High Turn-off losses	("High" control power)
<u>Bipolar (Transistor)</u>	Medium on-state losses	Current Controlled
BJT, Darlington	Medium Turn-off losses	("High" control power)
<u>BiMOS (Transistor)</u>	Medium on-state losses	Voltage Controlled
IGBT	Medium Turn-off losses	(Low control power)
<u>Unipolar (Transistor)</u>	High on-state losses	Voltage Controlled
MOSFET, JFET	Low Turn-off losses	(Low control power)

The main High Power MW Devices: LOW LOSSES

- PCTs & IGCTs: optimum carrier distribution for lowest losses
- IGBTs: continue to improve the carrier distribution for low losses

The High Power Devices Developments

Power Semiconductor Power Ratings

© ABB Group May 16, 2014 | Slide 44 Total IGBT Losses : P_{tot} = P_{cond} + P_{turn-off} + P_{turn-on}

Performance Requirements for Power Devices

- Power Density Handling Capability:
 - Low on-state and switching losses
 - High operating temperatures
 - Low thermal resistance
- Controllable and Soft Switching:
 - Good turn-on controllability
 - Soft and controllable turn-off and low EMI
- Ruggedness and Reliability:
 - High turn-off current capability
 - Robust short circuit mode for IGBTs
 - Good surge current capability
 - Good current / voltage sharing for paralleled / series devices
 - Stable blocking behaviour and low leakage current
 - Low "Failure In Time" FIT rates
 - Compact, powerful and reliable packaging

Power Semiconductor Voltage Ratings

© ABB Group May 16, 2014 | Slide 46

Cosmic Ray Failures and Testing

- Interaction of primary cosmics with magnetic field of earth "Cosmics are more focused to the magnetic poles"
- Interaction with earth atmosphere:
 - Cascade of secondary, tertiary ... particles in the upper atmosphere
 - Increase of particle density
 - Cosmic flux dependence of altitude
- Terrestrial cosmic particle species:
 - muons, neutrons, protons, electrons, pions
- Typical terrestrial cosmic flux at sea level: 20 neutrons per cm² and h

Proton beam at Paul Scherrer Institute, Switzerland

- Failures due to cosmic under blocking condition without precursor
- Statistical process and Sudden single event burnout

Power Semiconductor Junction Termination

The Insulated Gate Bipolar Transistor (IGBT)

How an IGBT Conducts (1/5)

Switch "OFF": No mobile carriers (electrons or holes) in substrate. No current flow.

How an IGBT Conducts (2/5)

How an IGBT Conducts (3/5)

How an IGBT Conducts (4/5)

How an IGBT Conducts (5/5)

3.3kV IGBT Switching Performance: Test Circuit

Plasma extraction during turn-off (1/5)

Plasma extraction during turn-off (2/5)

Plasma extraction during turn-off (3/5)

Plasma extraction during turn-off (4/5)

Plasma extraction during turn-off (5/5)

3.3kV IGBT Turn-on and Short Circuit Waveforms

Power Semiconductors Packaging Concepts

Power Semiconductor Device Packaging

What is Packaging ?

- A package is an enclosure for a single element, an integrated circuit or a hybrid circuit. It provides hermetic or non-hermetic protection, determines the form factor, and serves as the <u>first</u> <u>level interconnection externally</u> for the device by means of package terminals. [Electronic Materials Handbook]
- Package functions in PE
 - Power and Signal distribution
 - Heat dissipation
 - HV insulation
 - Protection

metalization

copper

terminal

gel

plastic housing

epoxy

bond wires

Power Semiconductor Device Packaging Concepts

	"Insulated" Devices	Press-Pack Devices
Mounting	heat sink galvanically insulated from power terminals	heat sinks under high voltage
	 all devices of a system can be mounted on same heat sink 	 every device needs its own heat sink
Failure Mode	open circuit after failure	fails into low impedance state
Markets	Industry Transportation T&D	Industry Transportation T&D
Power range	typically 100 kW - low MW	MW

transportation components have higher reliability demands

Insulated Package for 10s to 100s of KW

Insulated Modules

- Used for industrial and transportation applications (typ. 100 kW 3 MW)
- Insulated packages are suited for Multi Chip packaging IGBTs

Power Semiconductors Technology Drivers and Trends

Power Semiconductor Device Technology Platforms

Power Semiconductor Package Technology Platforms

Typical temperature cycling curve

smaller size, lower complexity

Electrical distribution

- Interconnections
- Power / Signal terminals
- Low electrical parasitics

Encapsulation/ protection Hermetic / non-hermetic Coating / filling materials

Powerful, Reliable, Compact, Application specific

© ABB Group May 16, 2014 | Slide 70

Insulated

Press Pack

Topology, Frequency, Control, Cooling

Technology Drivers for Higher Power (the boundaries)

The Bimode Insulated Gate Transistor (BIGT)

integrates an IGBT & RC-IGBT in one structure to eliminate snap-back effect

3300V/1500A BIGT HiPak 1 (1800V, 1500A, 150nH, Rg=1.5ohm, 125°C)

Wide Bandgap Technologies

Wind Bandgap Semiconductors: Long Term Potentials

Parameter		Silicon	4H-SiC	GaN	Diamond	
Band-gap E _g	eV	(1.12)	3.26	3.39	5.47	1
Critical Field E _{crit}	MV/cm	(0.23)	(2.2)	3.3	5.6	
Permitivity ε _r	_	11.8	9.7	9.0	5.7	
Electron Mobility µn	cm²/V⋅s	1400	950	800/1700*	1800	
BFoM: ε _r ·μ _n ·E _{crit} ³	rel. to Si	1	500	1300/2700*	9000	1
Intrinsic Conc. ni	cm⁻³	$1.4 \cdot 10^{10}$	8.2·10 ⁻⁹	1.9·10 ⁻¹⁰	1·10 ⁻²²]
Thermal Cond. λ	W/cm⋅K	(1.5)	3.8	1.3/3**	20	
* significant difference between bulk and 2DEG Thick Si Device Thick Si						ied FE
Higher Blocking Lower Losses Lower Leakage But higher built-in v	 H W V oltage H 	igher Powe /ider Frequ ery High Ve igher Temi	er iency Rang oltages oerature	ge s action of the section of the se	100 Braskdows Voltage (V)	GaN Limit

4H-SIC L

© ABB Group May 16, 2014 | Slide 77

SiC Switch/Diode Classification and Issues

SiC Unipolar Diodes vs. Si Bipolar Diode

1700V Fast IGBTs with SiC Diodes during turn-on

Turn-On Fast IGBT + Si & SiC Diodes, 900V/100A, 175°C, Ls=400nH Rg=100hm

Conclusions

- Si Based Power semiconductors are a key enabler for modern and future power electronics systems including grid systems
- High power semiconductors devices and new system topologies are continuously improving for achieving higher power, improved efficiency and reliability and better controllability
- The Diode, PCT, IGCT, IGBT and MOSFET continue to evolve for achieving future system targets with the potential for improved power/performance through further losses reductions, higher operating temperatures and integration solutions
- Wide Band Gap Based Power Devices offer many performance advantages with strong potential for very high voltage applications

Power and productivity for a better world[™]

