

Narcisse Ngada DESY, MKK 14.05.2014

Outline

- 1) What is simulation ?
- 2) Why simulation ?
- 3) Principles of simulation

4) Types of simulation

- Analog simulation
- Numerical simulation

5) Conclusion

1. What is simulation ?

- 2. Why simulation ?
- 3. Principle of simulation
- 4. Types of simulation
- 5. Conclusion

What is simulation?

Those who can, do. Those who can't, simulate. -- anonymous writer

- Simulation is a procedure to analyse physical systems
- Simulation is an imitation of real-world activities
- Simulation is performed by developing a model
- A model builds a conceptual framing to describe a physical system

What is simulation ?

1. What is simulation ?

- 2. Why simulation ?
- **3.** Principle of simulation

6

- 4. Types of simulation
- 5. Conclusion

Simulations are gross simplifications of the reality and are only as good as their underlying assumptions

Why simulation?

ELMHOLTZ ASSOCIATION

- A study on the real system could be too dangerous, too complicated, too expensive
- The real system doesn't exist yet, isn't understood or is very complex
- The real system is working too fast / too slow or can't be observed directly
- Nowadays the complexity of physical systems in the power converters world makes the use of simulation unavoidable

9

Fields of application

Advantages of simulation

- Saving time and money
- Repeatable and optimizable
- Studying the behavior of a system without building it
- Helps to find un-expected behavior of the physical system

Disadvantages of simulation

- Simulation errors
- Can't provide easy answers to complex problems
- Can't solve problems by itself
- Time consuming and expensive

Principle of simulation

(1) Analog simulation

(2) Numerical simulation

The current and voltage waveforms for a pure inductance circuit

Surface current distribution of the coil and magnetic field strength along a vertical cut plane

Principle of simulation

What is simulation ?
 Why simulation ?
 Principle of simulation
 Types of simulation
 Conclusion

(1) Analog simulation

Principle of simulation

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion16

(2) Numerical simulation

Analog simulation

Some simulation tools

- Pspice
- Psim
- Matlab / Simulink / SimPowerSystems / PLECS
- LTSpice
- CASPOC
- ANSYS Simplorer

Example(1): temperature simulation for European XFEL at DESY

Tunnel design

Example(1): temperature simulation for European XFEL at DESY

- Motivation
 - Overview of temperature profile along the XTL-tunnel
 - Stable temperature profile (max. ΔT of +/- 0.5 K) during operation modes
- Goal
 - Analyze the transient thermal processes in the XTL tunnel
- Input parameters
 - Heat sources / Heat sinks (dependent on a position)
 - Geology of the ground
 - Experience and temperature measurement in HERA

Analog simulation

Example(1): temperature simulation for European XFEL at DESY

1) Analyses with Matlab were limited to steady state calculation

HELMHOLTZ | ASSOCIATION 2) Analyses with ANSYS CFD would have cost too much computing time & capacity

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion22

Example(1): temperature simulation for European XFEL at DESY

ANSYS Simplorer als simulation tool

- Complex multiphysics circuit analysis: electrical, power electronic, electromagnetic, thermal, electromechanical and hydraulic
- AC, DC and TR analysis
- Based on numerical methods of mathematics
- Non linear Multidomain-System simulation
- Very stable simulation algorithm
- Enough user licenses in our department

G

HELMHOLTZ

ASSOCIATION

Analog Simulation: Simplorer

Example(1): temperature simulation for European XFEL at DESY

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion25

Example(1): temperature simulation for European XFEL at DESY

- Tunnel length: 2100 m
- 43 submodels

Outlet: 2150 m

DESY

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion26

Example(1): temperature simulation for European XFEL at DESY

12.03.2013: Temperature in the empty main tunnel

HELMHOLTZ | ASSOCIATION

Analog Simulation: Simplorer

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion27

Example(1): temperature simulation for European XFEL at DESY

Two operating modes of the XFEL

Heat sources in the XTL tunnel	Tunnel section	In operatation	Service day
Pulse cables left	LK	ON	OFF
Pulse cables right	RK	ON	OFF
MV power cables	HT	ON	ON
LV Power cables	LK	ON	ON
DC power cables	LK	ON	OFF
Pulse Transformators	HT	ON	OFF
Impedance matching network	HT	ON	OFF
Magnets	HT	ON	OFF
30℃ water pipe 1 (VL)	RL	ON	ON
40℃ water pipe 1 (RL)	HT	ON	ON
20℃ water pipe 2 (VL)	HT	ON	ON
25℃ water pipe 2 (RL)	HT	ON	ON
20℃ water pipe 3 (VL)	HT	ON	ON
20℃ water pipe 4 (VL)	RKG	ON	ON
20℃ water pipe 5 (VL)	LK	ON	ON
Elektronic racks	HT	ON	ON
Waveguides	HT	ON	OFF
Lighting	HT	OFF	ON

- Inlet temperature: 23°C
- Temperatur after 50m in the tunnel?
- Temperature after 2100m at the end of the tunnel ?
- Temperatur behavior in the XTL tunnel after 10 days of machine operating and a service day(~10 h) ?

Example(1): temperature simulation for European XFEL at DESY

C

C

HELMHOLTZ

ASSOCIATION

Analog Simulation: Simplorer

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion29

Example(1): temperature simulation for European XFEL at DESY

HV Pulse Cable

Pulse Trafo

Klystron

Load

Modulator

Control Racks

Example(2): EMI behavior of XFEL modulators with pulse cables

- 29 HV pulse power supplies (modulators) of 10MW RF station each in a central modulator hall (XHM)
- RF stations(klytrons & pulstransformers) in the accelerator tunnel (XTL)
- Up to 1.5 km long triaxial cables between RF stations and modulators
- Analyses of EMI behavior with pulse cables and modulators

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion31

Example(2): EMI behavior of XFEL modulators with pulse cables

HELMHOLTZ ASSOCIATION

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion32

Example(2): EMI behavior of XFEL modulators with pulse cables

Measurement

Simulation

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion33

Ansys Simplorer vs LTSpice IV

Α	NSYS Simplorer	LTSpice IV
	Limited student version / not free	Free & popular
•	Analog & digital circuits simulation	 Mainly analog circuits simulation
•	Idealized / accurate model of components	 Accurate model of components
	Schematic draw(comfortable)	 Schematic draw(not comfortable)
•	Multiphysics simulation	 Electrical circuit simulation

What is simulation ?
 Why simulation ?
 Principle of simulation
 Types of simulation
 Conclusion 34

Roundup

- Basic understanding of physical system for a good simulation model
- Simulation model as simple as possible
- Simulation model as complex as needed
- Measurement of physical model to optimize the simulation model

Ansoft Simplorer - Thy_Ratwolf_02 File Edit View Project Drav Window Help C C C C C C C C C C C C C C C C C C C	- Thy_Ratwolf_02 - Schem
Project Manager	
Project Components Search X: 4167mil, Y: 5817mil	1 New Page

Numerical simulation

Numerical Simulation splits the problem into smaller pieces, solves those separately with numerical methods, and finally merges the partial results into the solution for the entire problem.

Numerical simulation

What is simulation ?
 Why simulation ?
 Principle of simulation
 Types of simulation
 Conclusion 37

Some numerical methods

- finite difference method
- method of weighted residuals
- moment method
- finite element method
- transmission-line modeling
- Monte Carlo method
- method of lines

Numerical simulation

What is simulation ?
 Why simulation ?
 Principle of simulation
 Types of simulation
 Conclusion 38

Some simulation tools

- ANSYS CFD
- ANSYS HFSS
- CST Microwave studio
- ANSYS Maxwell 2D
- FEKO
- CONCEPT-II
- Quickfield

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion39

Example: grounding of XFEL modulators for RF stations at DESY

Motivation

- EMI during the commissioning of Modulators
- Measurement of high inducted current on PE conductor
- Source of high inducted current not clear (50Hz / up to 50App)

Suspicion

- Insulation fault
- Inducted current from power cables

Goal

- Theoretical analysis and measurement to confirm the suspicions
- Optimization of the grounding system of modulators

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion40

Example: grounding of XFEL modulators for RF stations at DESY

Quickfield as simulation tool

- Easy to learn / Easy to use
- Mainly for EM fields simulation
- Coupled multiphysics
- Various analysis types
 AC, DC and transient electromagnetics, electrostatics, DC, AC and transient electric analysis, steady-state and transient heat transfer, Stress analysis)
- Electrical circuit combined with fields simulation
- Only basic components for electrical circuit analysis

HELMHOLTZ | ASSOCIATION

Numerical simulation: Quickfield

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion4

Example: grounding of XFEL modulators for RF stations at DESY

View of modulators hall

- 29 HV pulse power supplies (Modulators) capable of 10MW RF station each
- Modulators in a central modulator hall (XHM)
- RF stations in the accelerator tunnel

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion42

Example: grounding of XFEL modulators for RF stations at DESY

Technical data of a modulator

Nbr. of modulators	29
Output Voltage	0 – 12kV
Output current	0 – 2 kA
Ave. Output power	max. 380kW
Max. pulse power	16,8 MW
Pulse duration	0,2 – 1,7 ms
Pulse repetition rate	1 – 30 Hz

HELMHOLTZ

Numerical simulation: Quickfield

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion43

Example: grounding of XFEL modulators for RF stations at DESY

View of grounding system in the hall: PE conductor near power cables

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion44

Example: grounding of XFEL modulators for RF stations at DESY

Simulation results of PE conductor near power cables

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion45

DES

Example: grounding of XFEL modulators for RF stations at DESY

Simulation results with PE conductor between power cables

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion46

Example: grounding of XFEL modulators for RF stations at DESY

Simulation results of PE conductor at ~25cm from power cables

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion47

Example: grounding of XFEL modulators for RF stations at DESY

Measurement with PE conductor between power cables

Umod =10kV; Pulse repetition =10Hz; Pulse length =1000us

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion48

Example: grounding of XFEL modulators for RF stations at DESY

Measurement with PE conductor at ~25cm from power cables

Umod =10kV; Pulse repetition =10Hz; Pulse length =1000us

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion49

Roundup

- Simulation to investigate a best solution for modulators grounding system
- Simulation for better understanding of real system
- Simulation to reduce the installation time of physical system

Conclusion

1. What is simulation ?2. Why simulation ?3. Principle of simulation4. Types of simulation5. Conclusion51

Expectations for a good simulation tool

- Comfortable, intuitive input of the circuit model
- Correct error messages
- Robust execution of the simulation
- Output data to be used in other softwares
- Good user support
- Portability of models in software update

Challenges in world of simulation

- More intuitive usage
- Lower simulation time
- Models & results transfer
- Better user support & extended online help
- Various models of components

Checklist to opt for a simulation tool?

- 1) Investment in time and money
- 2) Clearly state the problem to solve
- 3) Determine the general type of simulation tool
- 4) Check the functional requirements
- 5) Select the most appropriate Tool

Important points to perform a good simulation

- 1) Basic understanding of your real system
- 2) Simulation model as simple as possible
- 3) Simulation model as complex as necessary
- 4) Interaction between simulation and physical system

Those who can, do. Those who can't, simulate. -- anonymous writer

Those who can, simulate. Those who can't, don't simulate.

Thank you for attention!

