State-of-the-Art Solid State Pulse Modulators

Jürgen Biela S. Blume, D. Gerber, M. Jaritz & C. Carstensen

Focus Application Areas

High Power Laboratory - Facilities

- 3 Reconfigurable Faraday Test Cells
 3 Reconfigurable Fence-Test Cells
- Max. Cell Size: 57m²
- Sources:
 - > 0..400V/800V 250kVA
 - ➢ 0..25kV_{AC} 250kVA
 - ➢ 0..35kV_{pc} 250kW
 - > 0..2kV_{DC} 100kW /1.2kA (Bidirectional)
- 150kW Water Cooling
- 2 x 30kW Air Cooling
- 2t Crane

Pulse Modulator Basic Topologies

Pulsed Power / Pulse Length for typical Applications

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Laboratory for High Power Electronic Systems

Typical Topology of a Solid State Pulse Generator System

Typical topology of a solid state pulse modulator

- AC/DC rectifier unit
- DC/DC converter for charging C-bank / voltage adaption
- Pulse generation unit
- Load e.g. klystron

Typical Topology of a Solid State Pulse Generator System

Typical topology of a solid state pulse modulator

- Isolation with 50Hz transformer or
- Isolated DC-DC converter

Solid State Switches

Modulator with High Voltage Switch

- Simple concept, but high no of switches
- High voltage supply required
- Voltage balancing of switches required
 - ➔ Reduction of switch operating voltage
 - → Additional losses (balancing circuit + high no of switches)
 - ➔ Parasitic oscillations possible
- Isolated gate-drives/supplies required
- Limitation of short circuit current is critical (L required)
- Switch needs to be synchronized
- Variable pulse length possible

Modular: Marx-Type

- Voltage pulse by adding capacitor voltages
- Variable pulse voltage and arbitrary length possible
- Synchronous triggering of switches NOT required
 - Improved robustness
- Isolated gate-drives / gate-supplies

Modular: Marx-Type – Pulse Generation

- Voltage pulse by adding capacitor voltages
- Variable pulse voltage and arbitrary length possible
- Synchronous triggering of switches NOT required
 - Improved robustness
- Isolated gate-drives / gate-supplies
- Problem: Energy in case of short circuit (L required / bipolar Marx)

Modular: Marx-Type – Charging I

- Voltage pulse by adding capacitor voltages
- Variable pulse voltage of arbitrary length possible
- Synchronous triggering of switches NOT required
 - Improved robustness
- Isolated gate-drives / gate-supplies
- Problem: Energy in case of short circuit (L required / bipolar Marx)
- Capacitor charging via resistor/inductor
- Parasitics
 Oscillations possible

Modular: Marx-Type – Charging II

- Voltage pulse by adding capacitor voltages
- Variable pulse voltage of arbitrary length possible
- Synchronous triggering of switches NOT required
 - Improved robustness
- Isolated gate-drives / gate-supplies
- Problem: Energy in case of short circuit (L required / bipolar Marx)
- Capacitor charging via resistor/inductor or switch/diode (
 Long pulses)
- Parasitics
 Oscillations possible

Modular: Marx-Type + PWM Cell

- Voltage pulse by adding capacitor voltages
- Variable pulse voltage of arbitrary length possible
- Synchronous triggering of switches NOT required
 - → Improved robustness
 - Droop compensation / pulse shaping (PWM)
- Isolated gate-drives / gate-supplies
- Problem: Energy in case of short circuit (L required / bipolar Marx)
- Capacitor charging via resistor/inductor or switch/diode (
 Long pulses)
- Parasitics
 Oscillations possible

Pulse Transformer Based

- High pulse voltage is generated by transformer
- Adaption to switch operating voltage possible
- Series and/or parallel operation of switches
 - Series: Voltage balancing
 - Parallel: Current balancing
 - ➔ No of switches reduced
 - ➔ Separate gate drives
- Primary voltage does NOT influence pulse shape
- Pulse length is limited by transformer

Pulse Transformer Based – Matrix Transformer

- Separate windings/transformers per switch
 - → Voltage/current balancing is achieved
- Name: Split Core / Matrix Transformer / Inductive Adder (same basic concept)
 - → Further details: Later

DC-DC Converter Based

- Adding output voltage of isolated DC-DC converters
 - Parallel in / seriel out
 - Compact transformer (HF switching)
- Pulse rise time relative slow
 - → Suitable for long pulses (typ. > 1ms)
- Small C-bank possible (Droop compensation)
- Pulse shaping possible

DC-DC Converter Based – PSM Modulator

- Adding output voltage of non-isolated DC-DC converters
 - → Generate primary voltage for transformer
- Pulse rise time relative slow
 - → Suitable for long pulses (typ. > 1ms)
- Pulse length limited by pulse transformer
- Pulse shaping possible

Topology Comparison

Laboratory for High Power Electronic Systems Short Pulse Modulator (~ µs-range)

127MW/370kV/3µs Solid State Modulator with Ultra High Precision

SwissFEL → Seminar: Swiss FEL – this evening by Dr. Braun

- Free electron laser → X-Rays
- Electron beam energy 5.8GeV
- Repetition rate
- Total electric power
- Wavelength range
- 5MW 1Å to 70Å

100Hz

127 MW Solid-State Modulator

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory for High Power Electronic Systems

Short Pulse Solid State Power Modulator

Matrix Transformer Concept

Matrix Transformer – Basic Concept I

Separate primary windings:
 Inherent current balancing

Matrix Transformer – Basic Concept I

Separate primary windings:
 Inherent current balancing

Matrix Transformer – Basic Concept II

- Separate primary windings:
 - Inherent current balancing
 - 2 windings + 2 cores
 - → Series connection on secondary side
 - Secondary turns $\rightarrow N_s/2$

Matrix Transformer – Leakage Inductance

- Leakage inductance L_σ:
 - Slower rise time
 - Overshoot (Oscillation)
 - ➔ Lower efficiency
- Calculation of L_{σ} :
 - Magnetic field between windings
 - Energy stored in field = Energy in L_{σ}
- L_{σ} depends on:
 - Volume between windings
 - Number of turns

$$L_{\sigma} \sim \mu_0 N^2 \frac{l_W}{l} \left(\frac{h_1}{3} + d + \frac{h_2}{3} \right)$$

Matrix Transformer – Basic Concept II

- Separate primary windings:
 - Inherent current balancing
 - 2 windings + 2 cores
 - → "Virtual series connection"
 - Secondary turns $\rightarrow N_s/2$
- Advantages:
 - $N_s/2 \rightarrow$ Leakage inductance \checkmark
 - No series/parallel connected IGBTs
- Disadvantages:
 - Doubling of core volume

$$L_{\sigma,Matrix} \sim 2Vol\left(\frac{N}{2}\right)^2 \sim \frac{L_{\sigma,Old}}{2}$$

Matrix Transformer – "Cross Conduction"

- Problem: Non synchronous switching (e.g. S_{M,2} delayed)
 - Turn on of $S_{M,1}$: Induces flux $\boldsymbol{\Phi}_1$
 - $\boldsymbol{\Phi}_1$ induces voltage in secondary (V/2)
 - Current I_{sek} flows in secondary
 - Current I_{sek} induces flux Φ_2
 - $\boldsymbol{\Phi}_2$ induces voltage in primary 2
 - Diode D_{f,2} starts to conduct (I_{pri,2})
 - Turn on of switch $S_{M,2}$
 - \rightarrow Hard commutation of diode $D_{f,2}$

Matrix Transformer – "Cross Conduction" – Additional Winding

- Problem: Non synchronous switching (e.g. S_{M,2} delayed)
 - Turn on of $S_{M,1}$: Induces flux $\boldsymbol{\Phi}_1$
 - $\boldsymbol{\Phi}_1$ induces voltage in secondary (V/2)
 - Current I_{sek} flows in secondary
 - Current I_{sek} induces flux Φ_2
 - $\boldsymbol{\Phi}_2$ induces voltage in primary 2
 - Diode D_{f,2} starts to conduct (I_{pri,2})
 - Turn on of switch $S_{M,2}$
 - \rightarrow Hard commutation of diode $D_{f,2}$
- Solutions:
 - Cross windings
 - or better:
 - Synchronized switching

Matrix Transformer – Winding Shape

- Winding shape:
 - Parallel
 - → Large volume between Pri/Sec
 - → Large leakage inductance
 - Cone shape
 - → Large distance @ high voltage
 - → Volume / 2 -> Leakage / 2

$$L_{\sigma} \sim \mu_0 N^2 \frac{l_W}{l} \left(\frac{h_1}{3} + d + \frac{h_2}{3} \right)$$

~ Vol N²

Matrix Transformer – Parallel Secondary Windings

- Parallel secondary winding:
 - Parallel leakage inductance
 - → Leakage / 2
 - Offset voltage possible
 - → Cathode heating @ high potential

Matrix Transformer – 2 IGBTs on 1 Core

- Total power: 127MW
 - → 12 switches
 - \rightarrow 12 cores
 - → Large volume / weight
- 2 separate switches per core
 - "Per core" 20-22MW
 - → 6 cores
 - Current sharing of 2 switches per core
 - → Synchronization
 - → Separate capacitors
 - → Leakage inductance

Matrix Transformer – Switch Synchronisation

- Problem: Non synchronous switching
- Solutions:
 - Synchronized switching
 - Detection of Edges
 Peak current

Simplified Current Waveforms

Matrix Transformer – Switch Synchronisation

- Problem: Non synchronous switching
- Solutions:
 - Synchronized switching
 - Detection of

Edges

Peak current

- ➔ Synchronous turn on
- ➔ Positive temp. coefficient -> Static balancing
- → "Separate" DC capacitors -> Static balancing

Simplified Current Waveforms

Laboratory for High Power Electronic Systems

127MW Matrix Transformer Setup

- Matrix transformer
- 12 IGBTs / 6 cores
- 12 primary windings
- 2 parallel secondary windings
- Current balanced between cores

Short Pulse Solid State Power Modulator

Pulse Transformer Design

Pulse Transformer: Parasitic Capacitances

- Electrical fields Parasitic capacitances
- General equivalent circuit: 6 capacitors

Pulse Transformer: Parasitic Capacitances – Simplification I

- General equivalent circuit: 6 capacitors
- Common ground for primary/secondary
 - Reduction to 3 capacitors

Pulse Transformer: Parasitic Capacitances – Simplification II

- General equivalent circuit: 6 capacitors
- Common ground for primary/secondary
 - Reduction to 3 capacitors
- Calculating energy equivalent capacitor @ output
 - + (Neglecting resonance L_{σ}/C_4)
 - **\rightarrow** Simple L_{σ}/C_{d} circuit
 - $\Rightarrow C_d \approx C_2 + C_4 + C_5 \text{ (large N)}$

Pulse Transformer: Overshoot / Rise Time

Simple equivalent circuit

Overshoot on the rising edge

Verification by measurement

Design conditions

$$T_r = 2 \, \pi \, T_{10\%-90\%} \sqrt{L_\sigma C_d}$$

$$\sigma = \frac{1}{2R_{Load}} \sqrt{\frac{L_{\sigma}}{C_d}}$$

Capacitance Calculation with Mirror Charges

- Geometry interpreted as multi-conductor system
- Mirror charges for
 - Core window
 - Core leg / tank wall
- Fast calculation > 100x faster than FEM

Inductance Calculation with Mirror Line Currents

- Geometry interpreted as multi-conductor system (line current)
- Current mirror method for magnetic surface
- Mirroring:
 - Core window **>** box mirroring
 - Outside core **→** wall mirroring
- Fast calculation > 500x faster than FEM

Considering self inductance μ

$$r'_{i} = r * e^{-\frac{1}{4}}$$

 $L'_{ii} = \frac{\mu_0}{2\pi} \ln(\frac{1}{r'_{i}})$

Mutual inductance

$$L'_{ij} = \frac{\mu_0}{2\pi} \ln(\frac{1}{d_{ij}})$$

0	8 8 8	888	000	0 0	8 8 8 8	8 8 8	000	0 0	8 8 8	888	0 0
0	8	88	000	0 0	88	8	0	0 0	8	88	0 0
0 0	8	80	0	0 0	8 8 8	8 8	0	⊙ ⊙	8	80	0
0	ັ⊗	8 8	0	0	8	ຮັ	0	0 0	ຶ⊗	8	0

Box Mirroring

Transformer Parasitics Modelling

- Analytic equations for transformer optimisation
- Visualisation tool (no toolbox required)
- Pulse shape prediction with non-linear ODE
- Good matching with FEM & measurement

Pulse Transformer: Damping due to Klystron Load

 $L_{\sigma} = 800 \mu H$

 $C_{d} = 350 \text{pF}$

R = 1k Ω

5

Klystron-Model:

400

350

300

250

200

150

100

50

0

Voltage (kV)

$$I = k \cdot V^{1.5}$$

Ohmic Load

3

Time (µs)

4

2

with *k* = Perveance

4.3%

Laboratory for High Power Electronic Systems

Capacitance: Stored Energy between Windings and Tank

Amount of Stored Energy between Windings and Tank

Capacitance: Influence of Cooling Pipes

Cooling pipes close to winding
Capacitance
Capacitance

Pulse Transformer: Winding Arrangement

Parallel Winding

$$\frac{1}{3} \cdot \varepsilon \mu \frac{N_{sek}^2 \cdot l_w^2 \cdot h_w}{h_k}$$

Non-Parallel Winding

$$\frac{1}{4} \cdot \varepsilon \mu \frac{N_{sek}^2 \cdot l_w^2 \cdot h_w}{h_k}$$

Smallest LC-Product

$$T_r = 2\pi T_{10\%-90\%} \sqrt{L_{\sigma} C_d}$$

Foil Winding

 $\frac{k+1}{3} \cdot \varepsilon \mu \frac{N_{sek}^2 \cdot l_w^2 \cdot h_w}{h_k}$

Pulse Transformer: Final Design

- Core material:
 - 2605SA1
- Primary windings:
 - 3 kV input voltage
 - Copper foil, *d* = 1mm
- Secondary windings:
 - 370 kV output voltage
 - 21 Turns **→** 17.6 kV per turn
 - Round conductor, *d* = 3mm

Short Pulse Solid State Power Modulator

Premagnetisation

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory for High Power Electronic Systems

Premagnetisation – Basic Concepts

Bipolar flux swing

$$A_{Core} = \frac{V_{Sec}}{N_{Sec} \Delta B / T_P}$$

→ Core area / 2

➔ Reduction of LC-product

- → Lower turn length
- Additional components required
- Energy recovery possible (active circuit)

DC Premagnetisation

- 3rd winding on core
- DC choke + voltage source
 Current source for bias current

(a) Premagnetisation

Additional copper losses

(c) Demagnetisation

(b) Pulse

DC Premagnetisation

- 3rd winding on core
- DC choke + voltage source
 Current source for bias current
- Additional copper losses

Improved DC Premagnetisation

- Energy recovery possible (magnetization L)
- Pulse-by-pulse premagnetisation
 - Low voltage MOSFETs/Diodes
 - Choke for current source behaviour
 - Low voltage source
 - Negative output voltage during premagnetisation

Improved DC Premagnetisation

- Energy recovery possible (magnetization L)
- Pulse-by-pulse premagnetisation
 - Low voltage MOSFETs/Diodes
 - Choke for current source behaviour
 - Low voltage source
 - Negative output voltage during premagnetisation

Active Premagnetisation

- No premagnetisation-choke required
- Energy recovery possible (via D_F)
- Pulse-by-pulse premagnetisation
- Negative V_{out} during premagnetisation
- Self regulating (no supply required)

Active Premagnetisation

- No premagnetisation-choke required
- Energy recovery possible (via D_F)
- Pulse-by-pulse premagnetisation
- Negative V_{out} during premagnetisation
- Self regulating (no supply required)

Active Premagnetisation

- No premagnetisation-choke required
- Energy recovery possible (via D_F)
- Pulse-by-pulse premagnetisation
- Negative V_{out} during premagnetisation
- Self regulating (no supply required)

Premagnetisation - Comparison

Advanced

Active

	Passive	Advanced	Active		
Complexity	Simple/Robust	high	medium		
Components	Voltage Source low I / low V	MOSFET/Diode high I / Iow V	IGBT high I / high V		
	Inductor low I / high V	Diode D _{F,LV} high I / high V	Capacitor high I / med. V		
3 rd Winding	yes	no	no		
Forward V _{DF}	high (~ 10V)	high (~ 10V)	low (2V)		
Volume	high	high	medium		
Losses	7.25 J	2.38 J	0.85 J		
Numbers for 20MW modulator	1.45 kW	476.4 W	169.4 W		

Short Pulse Solid State Power Modulator

Bouncer

LC-Bouncer – Principle of Operation

- *LC*-oscillation: *C_c* & *L_c*
 - Inductor voltage is added to pulse
 - Synchronisation: Mid of pulse = T/4
- Two winding inductor
 - ➔ Adaption to switch voltage
- Design room is constraint by
 - Max. switch current
 - Max. switch voltage
 - LC-oscillation frequency
 - Allowed droop

LC-Bouncer based on 2-Winding Inductor

Laboratory for High Power Electronic Systems

LC-Bouncer – Design Results

1.5µF

3.3 µH

AMCC-800A

90x130x70 mm

3kV

3

6

1.7kA

- Capacitor:
 - Capacitance
 - Initial voltage
- Inductor:
 - Inductance
 - Inductor core
 - Dimensions
 - No of primary turns
 - No of secondary turns
 - Peak current
- Jitter of bouncer
 - Major impact on repeatability

Short Pulse Solid State Power Modulator

Switching Unit / Gate Drive

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory for High Power Electronic Systems

Gate Drive

Fast turn on of IGBT

➔ Multi-stage turn on

- Fast turn off of IGBT
 - ➔ Multi-stage turn off
 - ➔ Voltage clamping
- Fast over-current / over-di/dt detection
 - ➔ Rogowski coil

Turn on with existing Short Circuit

Collector-Emitter Voltage

Collector Current

Short Circuit during Pulse

Short circuit @ 50nH / 2kV / 500ns...3µs

Collector-Emitter Voltage

Collector Current

Short Circuit during Pulse – Long Pulse

Short circuit @ 50nH / 3kV / 10µs

Collector-Emitter Voltage

Collector Current

Short Pulse Solid State Power Modulator

Ultra Precise Charging

Ultra-Precise Charging Converter

- Triangular current mode (TCM)
- Two interleaved converters
- Input voltage
- Output voltage
- Output power
- Switching freq.
- Repeatability

 $V_{IN} = 1.3kV$ $V_{Out} = 3kV \pm 30mV$

- $P_{Out} = 2 \times 40 \text{kW}$
- $f_s = 70 250 \text{kHZ}$
- 10ppm

Operating Principle – Charging of Inductor

- Interval T₁
 - Inductor current increases

Operating Principle – Resonant Transition

- Interval T₂
 - ZVS turn off of S₁
 - Resonant transition
 - C_{S1} is charged to v_{out}
 - C_{D1} is discharged to 0

Operating Principle – Charging of Output Capacitor

- Interval T₃
 - Inductor current decreases
 - C_{out} is charged through D₁

Operating Principle – Resonant Transition II \rightarrow ZVS Turn on off S_1

- Interval T₄
 - Resonant transition
 - C_{D1} is charged to v_{out}
 - C_{S1} is discharged to 0
 - $-C_{S}=C_{D1}+C_{S1}$
 - \rightarrow Negative i_L
- Range of ZVS operation is limited

Control – Ultra precise charging

- Switching cycles are independent
- Cycle-to-cycle feedback control
- Required peak current / on-time is calculated for the next cycle
- i_{Lp} =0..80A $\rightarrow \Delta v_{out}$ =0..80mV

Control Hardware – Factors influencing Repeatability

- Input voltage measurement SNR
- Output voltage measurement SNR
- Switch current measurement SNR
- ADC resolution
- Quantization related errors
- DAC resolution
- Converter limitations
- Finite resolution in digital domain
- Switching signal jitter

Precision Analysis: Algorithm

Charging Precision Analysis – Aim: ± 0.03V

- ADC 18Bit
- DAC 12Bit
- **Jitter** 5ns
- $\mathsf{SNR}_{\mathsf{Vmeas}}$ 92.5dB **60dB**

260ns

- **SNR**_{Vmeas}
- Signal Delay

Short Pulse Solid State Power Modulator

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory for High Power Electronic Systems

Solid-State Modulator with Pulse Transformer & PFC Supply

System Setup – 127MW / 370kV / 3µs

- 12 Sub-units
- 24 Press-pack IGBTs
 - 12 Main switches
 - 12 Pre-magnetisation switches
 - (1 bouncer switch)
- 6 Transformer cores

→ Final testing mid 2014

Medium Long Pulse Modulator (~ 100µs)

Ultra High Precision Klystron Modulators for Compact Linear Colliders (CLIC)

CLIC System Specifications

- Pulse voltage 180kV
- Pulse power 35MW
- Pulse duration
- Repetition rate
- Rise/fall time
- Max. pulse droop
- Reproducibility
- System efficiency

140µs

Modulator System - Overview

Active Bouncer Topology

- Interleaved buck-boost converter with short circuit switch
- Voltage levels:
 - *V_{main}* = 3kV
 - *V_{B,In}* = 450V
 - $-V_{B,Out} = 0 300V$
 - ➔ 10% drop in main capacitor
- Aim: 10ppm repeatability
 - → < 5 ppm ripple induced by bouncer</p>
 - → 24-fold interleaving (4 x 6)
 - → Effective ripple frequency up to 2.4 MHz
 - ➔ Parallel redundancy

Operation Principle – Before Main Pulse

- Ramp up before main switch is closed:
 - C_{b,out} is shortened
 - Current in L_b increases

Pulse Module

Operation Principle – Output Pulse

Interleaved buck operation during pulse:

$$-f_{switch} = 100$$
kHz
 $-i_m = i_b + i_m$

Pulse Module

Operation Principle – After Main Pulse

Resonant transition C_{b,out} & L_b

Pulse Module

Operation Principle – After Main Pulse

- Interleaved boost operation:
 - -*f_{switch}* = 20kHz
- Final discharge of C_{b,out}
- Pulse pause

Pulse Module

Ideal Interleaving

- Stored energy in inductances is kept constant
 - → L_{equal} = const. → L_{Ph} Υ with # of interleaved stages N $L_{Ph} \sim NL_s$
- Per phase equal *L* values $L_{Ph1} = L_{Ph2}$
- Current ripple:

$$I_{Rip} \sim \frac{1}{N^2}$$

• Ripple frequency: f_{Rip}

$$f_{Rip} \sim N$$

 $V_{Rip} \sim \frac{1}{N^3}$

➔ Output voltage ripple:

0 1 2 3 4 5 6 7 8 9 10

Time (µs)

0.8 0.9

0.4 0.5 0.6 0.7

Duty cycle

0.2 0.3

0 0.1

Interleaving with Tolerances

- Analysis in time-domain for each switching period
- Component tolerances are considered
- Jitter of switches are considered

$$i_{k}(t) = \begin{cases} \frac{V_{b,in} (1-D)}{L_{k}} \cdot t - \frac{V_{b,in} D (1-D)}{2L_{k} f_{s}} & \text{if } 0 < t < \frac{D}{f_{s}} + t_{jit} \\ \frac{V_{b,in} D (1-D)}{2L_{k} f_{s}} - \frac{V_{b,in} D}{L_{k}} \cdot t & \text{if } \frac{D}{f_{s}} + t_{jit} < t < \frac{1}{f_{s}} \end{cases}$$

- Assumption: Inductance values measured at start-up
- Worst case:

 $L_1 = \left(1 + x\%\right)L$

All others:

$$L_1 = (1 - x\%)L$$

Interleaving with Tolerances – System Transfer Function

Active Bouncer Prototype

- Switching frequency 100kHz
- Pulse current per module
- Bouncer efficiency
 System efficiency
- Bouncer volume
- Total losses

700A 91% -0.45 % 10.4 dm³

2307W

Modulator System - Efficiency

- Energy in klystron in case of arc < 10J (without cable)
- Efficiency ≈ 91%
- **Final testing: 2015/2016**

Long Pulse Modulator (> 1ms)

Resonant DC-DC Converters for Long Pulse Klystron Modulators

European Spallation Source (ESS) (Lund)

Solid State Long Pulse Modulator

	Pulse	power	2.88MW	V
--	-------	-------	--------	---

- Average power 133kW
- Efficiency $\eta \ge 9$
- Pulse width
- Pulse voltage
- Pulse repetition rate
- Rise/fall time
- Short circuit energy

 $E_{Arc} \leq 10 J$

Solid State Long Pulse Modulator – Resonant Converter

- Switching frequency > resonance frequency
 Soft switching for all MOSFETs (ZVS)
 - → High efficiency
- Inherent limitation of short circuit current
- Switching frequency ~100kHz
- Module input voltage 400V
- Module output voltage 14.4kV
- Module pulse power 180kW

Global Optimisation

- Pulse power
- Average power
- Efficiency
- Pulse width
- Pulse voltage
- Pulse repetition rate
- Rise/fall time
- Short circuit energy

2.88MW 133kW $\eta \ge 90\%$ $T_{PW} = 3.5ms$ $V_{out} = 115kV$ $P_{RR} = 14Hz$ $T_R / T_F \le 150\mu s$ $E_{Arc} \le 10J$

Thermal Transformer Model

- Thermal equivalent network
- Core/winding: Heat conduction
- Novel models for solid & litz wire

	Measured results				Calculated results		
	$T_1[^{\circ}C]$	$T_2[^{\circ}C]$	$\Delta T[^{\circ}C]$	$\dot{Q}[W]$	$R_{th,Nx}[^{\circ}C/W]$	$R_{th,Nx}[^{\circ}\mathrm{C/W}]$	Error [%]
Round wire	115.1	69.5	45.6	22.1788	2.06	1.539	-25.3
Litz wire	105.7	53.1	52.6	20.98	2.51	2.04	-18.72

R_{th,Nr}

Insulation Design Procedure

- Turns → Line charge
- Modeling of arbitrary configurations
- Maximum E-field estimation

Transformer/Inductor Design Tool (E-/H-Field)

Simulation Results: Single Module

Simulation Results: Complete System

Prototype System

- Specifications
 - *V*_{Out} = 14.4 kV
 - *I_{Out}* = 12.5A
 - *P*_{Out} = 180kW
- Constraints
 - Flux density
 - Core/Wdg. temperature
 - Max. electrical field
 - Leakage inductance

Series Resonant Inductor

Toroidal Air Inductor

- Winding N = 12
- Litz wire 8 x 2000 x 0.05
- Losses 54.06 W
- Dimensions
- $d_a = 152 \text{ mm}$ h = 180 mm

Volume

3.3 liter

Laboratory for High Power Electronic Systems

Results: Rectifier and Parallel Capacitor

- # of diodes
- 156

- Diode type
- # of capacitors
- Capacitor type
- Total losses
- Dimensions
- Volume
- PCB test

624 100nF NPO SMD 2220 123 W

APT40DQ120SG (D3PAK)

- / = 375 mm
- *t* = 100 mm
- *h* = 235 mm
- 8.8 liter
- 20kV_{DC}

Performance DC-DC Converter

Performance of a single module								
Volume	Pulsed power density	Efficiency						
38.771	$4.84\mathrm{kW/l}$	94.9%						
t_{rise}	t_{fall}							
$85\mu{ m s}$	$21\mu{ m s}$							
Overall system								
t_{rise}	t_{fall}	Short circuit energy						
$85\mu{ m s}$	$21\mu{ m s}$	$3.7~\mathrm{J}$						
# of SPRC-modules in parallel and series 2 x 8								

D C

. .

Solid State Bipolar Pulsed Voltage Source for Kicker Magnets

Specifications

Low ripple High reproducibility

Max. Current	5600	Α
Inductance	38	μН
Pulse Duration	600	μs
Rise / Fall Time	100	μs
Charge Duration	100	ms

Max. Current Gradient	56	A / μs
Min. Voltage V_L	2128	V

Inductor Pulse Energy E _L	595	J
Resistor Pulse Losses <i>E_R</i>	15.5	J

Bipolar Pulsed Voltage Source (BiPuVoSo)

- 2 level inverter system
 - → Fine current adjustment
 - → Loss compensation
- Modular marx-type multi-level system
 - ➔ Coarse current adjustment

A BiPuVoSo Module in Detail

- 2 level inverter system → Interleaving: Ripple current reduction
- Modular marx-type multi-level system
 - → H-Bridge: Bipolar output voltage

400 V Charging Port

Principle of Operation

- 2 level inverter system - Small output current ripple
- Ripple reduced by
 - Interleaving of 6 inverters
 - Output capacitor Cout
 - Adaptive pre-control for V_{Loss}
- Modular marx-type multi-level system
 - Generates high inductor voltages
 - Enables fast current transients

-----Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 V_{Peak}

-V_{Peak}

 V_{Loss}

 V_{Peak}

 V_{Loss}

-V_{Peak}

I_{Peak}

Simulation Results

- Simulation of current pulse
 - Flat top current deviation of 2.7A (0.15%)
 - Repetition accuracy of 0.19 A (1.025 · 10⁻⁴)
 - Only controller deviations
 - No jitter effects respected
 - No measurement errors considered

Interleaved buck converter Balanced currents

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Charging Converter

- Novell converter concept
- Galvanic isolation
- AC input
- Multi DC output
- Benefits
 - Compact
 - High efficiency

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Charging Converter

- Novell converter concept
- Galvanic isolation
- AC input
- Multi DC output
- Benefits
 - Compact
 - High efficiency

Current Source for Kicker Magnet

- 3.8kA pulse current
- 400µs pulse
- 38µH inductance

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich