Accelerators

- There are some 30 000 accelerators around the world
- Nearly all are for industrial (20 000) or clinical use (10 000)
 - Scientific research community (~ 100)
 - Synchrotron light sources
 - Ion beam analysis
 - Photon or electron therapy
 - Hadron therapy
 - Radioisotope production
 - Ion implantation
 - Neutrons for industry or security
 - Radiation processing
 - Electron cutting and welding
 - Non-destructive testing

Linacs Cyclotrons FFAGs Synchrotrons Colliders

e-, e+ p, pbar, ions μ-, μ+, ν

Sources

Simplest electrostatic accelerator

Energy gain

1 eV is the energy that an elementary charge gains when it is accelerated through a potential difference of 1 Volt

1 eV = 1.6 10⁻¹⁹ J

= 1 000 eV
= 1 000 000 eV
= 10 ⁹ eV
= 10 ¹² eV

Energy and wavelength

Increasing the energy will decrease the wavelength, allowing to probe deeper into the structure

Visible light $\lambda = 700$ to 400 nm

X rays (100eV to 100keV)

 λ = 10 to 0.01 nm

Particle Accelerators

Energy	λ (m)
1 MeV	10 ⁻¹² = 1 pm
1 GeV	10 ⁻¹⁵ = 1 fm
1 TeV	10 ⁻¹⁸ = 1 am

Energy and mass

Einste

nstein's formula:
$$E = mc^2$$
, which for a mass at rest is: $E_0 = m_0 c^2$
The ratio between the total
energy and the rest energy $\gamma = \frac{E}{E_0}$
The ratio between the velocity
and the velocity of light $\beta = \frac{v}{c}$
These two relativistic
parameters are related $\mathcal{G} = \frac{1}{\sqrt{1-b^2}}$ $\beta = \sqrt{1-\frac{1}{\gamma^2}}$
We can write: $\beta = \frac{mvc}{mc^2}$
Momentum is: $p = mv$ $\beta = \frac{pc}{E}$ or $p = \frac{E\beta}{c}$

Units

 $E = mc^2$

Through this can express mass in units of eV/c²

$m(eV/c^2)$	$= m(kg)c^2/1.6.10^{-19}$
-------------	---------------------------

Proton rest mass 1.6726E-27 kg 938.27 MeV/c²

Electron rest mass 9.1095E-31 kg 0.511 MeV/c²

NB In both cases the units are often simply given as eV

A Practical Example at the CERN PS

- Kinetic energy at injection E_{kinetic} = 1.4 GeV
- Proton rest energy $E_0 = 938.27 \text{ MeV/c}^2$
- The total energy is then: E = E_{kinetic} + E₀ = <u>2.34 GeV</u>

• We know that
$$\gamma = \frac{E}{E_0}$$
, which gives $\gamma = 2.4921$

• Using
$$\beta = \sqrt{1 - \frac{1}{\gamma^2}}$$
, we get **\beta = 0.91597**

• Using
$$p = \frac{E\beta}{c}$$
 we get $p = \frac{2.14 \text{ GeV/c}}{2}$

Energy ≠ Momentum

Simplest electrostatic device

Slightly more realistic schematic

Pushing this simple idea – high voltages

Tandem Van de Graaff

These early electrostatic accelerators continue to provide a useful source of low energy particles but ultimately are limited to voltages of around 10 MV by problems of voltage breakdown.

Solution number 1

• Repetitive acceleration in a straight line

In practice there are cylindrical electrodes (drift tubes) separated by gaps and powered by an oscillator, providing an alternating electric field

Condition for synchronicity; $L \sim \beta \lambda$ where $\beta = v/c$

As β increases we need to either increase *L* or decrease λ (higher frequency)

Relativistic effects

- The velocity and the energy of the particles are increasing
- Things are very different for electrons and protons
- Once (ultra) relativistic, linacs become much simpler

Solution number 2

- Repeatedly traverse an accelerating structure
- Implies a circular machine which means a Bending field

Cyclotrons

- Compact and simple
- Efficient
- Energy limited to ~ 1 GeV
- Injection / extraction critical

Synchrotrons

- Separated function
- Flexibility
- Scalability

In an ideal world

Need an RF oscillator Need a bending field Need a vacuum system Need an injection system Need an extraction system

Linear versus circular accelerators (protons)

he CERN Accelerator

Linear accelerator:

Particles accelerated by a sequence of gaps (all at the same RF phase).

Distance between gaps increases proportionally to the particle velocity, to keep synchronicity.

Used in the range where $\boldsymbol{\beta}$ increases. "Newton" machine

Circular accelerator:

Particles accelerated by one (or more) gaps at given positions in the ring.

Distance between gaps is fixed. Synchronicity only for β^{const} , or varying (in a limited range!) the RF frequency.

Used in the range where $\boldsymbol{\beta}$ is nearly constant. "Einstein" machine

Lorentz force

- Implicit in relativistic formulation of Maxwell's equations
- Describes the force on a charged particle moving in an em field

Synchrotrons

In an ideal machine, an ideal particle would happily circulate on axis for ever

Is this true?

Gravity will cause a vertical displacement of 2cm in 64 ms

In any case, things are never ideal

There are many particles in the machine They will not all have the same parameters

> Machine alignment is not perfect Magnets are not perfect Power supplies are not perfect Ground motion

We need to focus the particles

Quadrupoles

Н

Alternate Gradient Focusing

It turns out that a section composed of alternate focusing and defocusing elements has a net focusing effect, providing that the quadrupoles are correctly spaced.

Horizontally focusing magnets are designated F and defocusing magnets designated D The drift spaces (or dipoles) in between are designated O A minimum sequence is therefore known as a FODO cell One complete oscillation in made in 4 cells (phase advance per cell 90⁰) Number of oscillations made in one full revolution of the machine is the tune, Q

The FODO cell in the LHC

MSCB: sextupole (skew sextupole) + orbit corrector

- 23 regular FODO cells in each arc
- 106.9m long, made from two 53.45m long half-cells
- Half cell
 - 3 15m cryodipole magnets, each with spool-piece correctors
 - 1 Short Straight Section (~6m long)
 - Quadrupole and lattice corrector magnets

Off-momentum particles ($\Delta p/p \neq 0$)

In the dipoles	In the quadrupoles
For $\Delta p/p > 0$ particles are bent less	For $\Delta p/p > 0$ less focusing, lower Q
For $\Delta p/p < 0$ particles are bent more	For $\Delta p/p < 0$, more focusing, higher Q
Equilibrium effect in the quadroles	

Dispersion D(s)	Chromaticity Q'
$\Delta x = D(s). \Delta p/p$	ΔQ = Q'. Δp/p
Has to fit in the vacuum chamber	Corrected with sextupole magnets

Chromaticity correction with sextupoles

Magnets

High energy machines

- Synchrotrons are flexible and scalable
- So we use a synchrotron to get to very high energies
- We can learn a lot from just the **Bending magnets**

 $B \Gamma = p / e = m_0 v g / e$

Magnetic rigidity

$$B \Gamma = p / e = m_0 v g / e$$

$$B\Gamma[Tm] = 3.335641 \ E[GeV]$$

Known	Reason	Example	Free to choose	
В	Normal conducting magnets	SPS	Ε, ρ	
E	Want to run on the Z ⁰ mass	LEP	Β, ρ	
ρ	Tunnel already there	LHC	Е, В	

Known	Reason	Example	Free to choose
В	Normal conducting magnets	SPS	Ε, ρ
E	Want to run on the Z ⁰ mass	LEP	Β, ρ
ρ	Tunnel already there	LHC	Е, В

Br[Tm] = 3.335641 E[GeV]

 $eU_0 = Ag^4 / \Gamma$

- We need to use e⁺ and e⁻ (for precision measurements)
 - Synchrotron radiation will be an issue
 - Build a big tunnel
 - Use cheap conventional magnets
 - Bending radius in the dipoles
 - Bending field needed for 45GeV
 - LEP2 went up to 100 GeV

- U₀

3 GeV

3096 m

0.048 T

• Big expensive SCRF system

Known	Reason	Example	Free to choose	
В	Normal conducting magnets	SPS	Ε, ρ	
E	Want to run on the Z ⁰ mass	LEP	Β, ρ	
ρ	Tunnel already there	LHC	Е, В	

Br[Tm] = 3.335641 E[GeV]

 $eU_0 = Ag^4 / r$

- We want to take protons to highest possible energy
 - Getting the magnetic field is the issue
 - Need superconducting magnets
 - Bending radius in the dipoles
 2803 m
 - Bending field needed for 7 TeV
 8.33 T
 - Synchrotron radiation not (much of) an issue

• Small RF system

Why do we collide beams in an accelerator?

Collider

- Consider two beams, same particle mass m
 - Beam 1 energy and momentum $E_1 p_1$
 - Beam 2 energy and momentum $E_2 p_2$
 - What counts is the energy in centre of mass $E_{\scriptscriptstyle CM}$
- In general, available energy is

$$E_{CM} = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2}$$

- With an accelerator reach of 7 TeV (LHC)
 - Fixed target case, $p_2 = 0$ $E_{CM} = \sqrt{2E_1m + 2m^2} \approx 115GeV$
 - Collider case, $p_1 = -p_2$ $E_{CM} = E_1 + E_2 = 14TeV$

LHC

- We started with a 27km tunnel
- We know that we need 8.33T dipole magnets for 7TeV
 NB for LHC, 2πρ = 17.6km, which is about 66% of 27km
- We know if we collide we make the most of this energy
- What else do we need to know ?
 - Magnets designed for 7TeV do not work at very low field
 - We cannot just build a small linac to provide protons to LHC
 - We need an injection scheme to provide protons > 400 GeV
 - We need high intensities in LHC
 - Injection scheme has to provide this

 $L = \frac{N^2 k_b f}{4\rho S_x S_v} F = \frac{N^2 k_b f g}{4\rho e_n b^*} F$

Accelerators are linked together

4/30

LER Low Energy Ion Ring LINAC LINear Accelerator O-TOF Neutrons Time Of Flight

Linac2 schematic

Source for linac 2

* Creation of LHC bunches is a complicated process, this is an example for 50ns LHC bunches

RFQ

The Radio Frequency Quadrupole is a linear accelerator that focuses, bunches and accelerates with high efficiency

The Linac2 RFQ takes protons from the source at 90 KeV and delivers them bunched to the DTL at 750 keV

Originally 750 kV Cockcroft-Walton

Drift tubes and spacing become larger as the energy increases Focusing quads inside drift tubes

R. Bailey, CAS

The Synchrotrons

Machine	Injection energy	Extraction energy
Booster	50 MeV	1.6 GeV
PS	1.6 GeV	26 GeV
SPS	26 GeV	450 GeV
LHC	450 GeV	7 TeV

All these machine are conceptually similar (barring a few historical developments)

In practice, LHC is rather different to the others due to

Size (1720 power converters, steady state 63 MW, Peak power 86 MW) Segmentation of the machine into 8 (Tracking between sectors) Superconducting (High current Low voltage) Collider (in a 10h run protons travel 10¹⁰km = 72AU ~ diameter of solar system)

Single-turn injection – same plane

- Septum deflects the beam onto the closed orbit at the centre of the kicker
- Kicker compensates for the remaining angle
- Septum and kicker either side of D quad to minimise kicker strength

Fast single turn extraction

Whole beam kicked into septum gap and extracted.

- Kicker deflects the entire beam into the septum in a single turn
- Septum deflects the beam entire into the transfer line
- Most efficient (lowest deflection angles required) for $\pi/2$ phase advance between kicker and septum

Non-resonant multi-turn extraction

- Fast bumper deflects the whole beam onto the septum
- Beam extracted in a few turns, with the machine tune rotating the beam
- Intrinsically a high-loss process thin septum essential

Huge range of parameters just at CERN

Septum Location	Beam momentum (GeV/c)	Gap Height (mm)	Max. Current (kA)	Magnetic Flux Density (T)	Deflection (mrad)
LEIR/AD/CTF (13 systems)	Various	25 to 55	1 DC to 40 pulsed	0.5 to 1.6	up to 130
PS Booster (6 systems)	1.4	25 to 50	28 pulsed	0.1 to 0.6	up to 80
PS complex (8 systems)	26	20 to 40	2.5 DC to 33 pulsed	0.2 to 1.2	up to 55
SPS Ext.	450	20	24	1.5	2.25

Kicker Location	Beam momentum (GeV/c)	# Magnets	Gap Height [V _{ap}] (mm)	Current (kA)	Impedance (Ω)	Rise Time (ns)	Total Deflection (mrad)
CTF3	0.2	4	40	0.056	50	~4	1.2
PS Inj.	2.14	4	53	1.52	26.3	42	4.2
SPS Inj.	13/26	16	54 to 61	1.47/1.96	16.67/12.5	115/200	3.92
SPS Ext. (MKE4)	450	5	32 to 35	2.56	10	1100	0.48
LHC Inj.	450	4	54	5.12	5	900	0.82
LHC Abort	450 to 7000	15	73	1.3 to 18.5	1.5 (not T-line)	2700	0.275

Beam instrumentation

An accelerator can never be better than the instruments measuring its performance

Instrument	Physical Effect	Measured Quantity	Effect on beam
Faraday Cup	Charge collection	Intensity	Destructive
Current Transformer	Magnetic field	Intensity	Non destructive
Wall current monitor	Image Current	Intensity Longitudinal beam shape	Non destructive
Pick-up	Electric/magnetic field	Position, Tune	Non destructive
Secondary emission monitor	Secondary electron emission	Transverse size/shape, emittance	Disturbing, can be destructive at low energies
Wire Scanner	Secondary particle creation	Transverse size/shape	Slightly disturbing
Scintillator screen	Atomic excitation with light emission	Transverse size/shape (position)	Destructive
Residual Gas monitor	Ionization	Transverse size/shape	Non destructive

Beam instrumentation

An accelerator can never be better than the instruments measuring its performance

Summary of accelerator systems

Systems acting on the beam	Auxiliary systems
Magnet systems	Ventilation systems
RF systems	Cooling systems
Sources	Cryogenic systems
Linacs	Vacuum systems
Injection synchrotrons	Access systems
Injection systems	Radiation Protection
Extraction systems	Alignment
Collimation systems	Machine protection systems
Beam Instrumentation	Control systems
Feedback systems	Experiments

All of these need Electrical Distribution Systems and Power Converters

We need a lot of magnets (this is just LHC)

Magnet Type	Order	Description	Number of Magnets	Magnet Type	Order	Description	Number of Magnets
MB	1	Main Dipole Coldmass	1232	MO	4	Octupole Lattice Corrector in Arc	336
MBAW	1	Alice Spectrometer (Muon Dipole)	1			Short Straight Section	
MBLW	1	LHC-b Spectrometer	1	MQ	2	Lattice Quadrupole in the Arc	392
MBRB	1	Twin Aperture Separation Dipole (194 mm) D4	2	MQM	2	Insertion Region Quadrupole 3.4 m	38
MBRC	1	Twin Aperture Separation Dipole (188 mm) D2	8	MQMC	2	Insertion Region Quadrupole 2.4m	12
MBRS	1	Single Aperture Separation Dipole D3	4	MQML	2	Insertion Region Quadrupole 4.8 m	36
MBW	1	Twin Aperture Warm Dipole Module D3 and D4 in IR3 and IR7	20	MQS	2	Skew Quadrupole Lattice Corrector in Arc Short Straight Section	64
MBWMD	1	Single Aperture Warm Dipole Module Compensating	1	MQSX	2	Skew Quadrupole Q3	8
		Alice Spectrometer		MQT	2	Tuning Quadrupole Corrector in Arc Short Straight Section	320
MBX	1	Single Aperture Separation Dipole D1	4	MQTLH	2	(MQTL Half Shell Type)	48
MBXW	1	Single Aperture Warm Dipole Module D1 in IR1 and IR5	24	MQTLI	2	(MQTL Inertia Tube Type)	72
MBXWH	1	Single Aperture Warm Horizontal Dipole Module Compensating	1	MQWA	2	Twin Aperture Warm Quadrupole Module in IR3 and IR7.	40
		LHC-b Spectrometer				Asymmetrical FD or DF	
MBXWS	1	Single Aperture Warm Horizontal Dipole Short Module	2	MQWB	2	Twin Aperture Warm Quadrupole Module in IR3 and IR7.	8
MBXWT	1	Single aperture warm compensator for ALICE	2			Symmetrical FF or DD	
MCBCH	1	Orbit Corrector in MCBCA(B,C,D)	78	MQXA	2	Single Aperture Triplet Quadrupole (Q1, Q3)	16
MCBCV	1	Orbit Corrector in MCBCA(B,C,D)	78	MQXB	2	Single Aperture Triplet Quadrupole (Q2)	16
MCBH	1	Arc Orbit Corrector in MSCBA(B,C,D), Horizontal	376	MQY	2	Insertion Region Wide Aperture Quadrupole 3.4 m.	24
MCBV	1	Arc Orbit Corrector in MSCBA(B,C,D), Vertical	376	MS	3	Arc Sextupole Lattice Corrector Associated to MCBH or MCBV in	688
MCBWH	1	Single Aperture Warm Orbit Horizontal Corrector	8			MSCBA, MSCBB, MSCBC and MSCBD	
MCBWV	1	Single Aperture Warm Orbit Verticall Corrector	8	MSDA	1	Ejection dump septum, Module A	10
MCBXH	1	Horizontal Orbit Corrector in MCBX(A)	24	MSDB	1	Ejection dump septum, Module B	10
MCBXV	1	Vertical Orbit Corrector in MCBX(A)	24	MSDC	1	Ejection dump septum, Module C	10
MCBYH	1	Orbit Corrector in MCBYA(B)	44	MSIA	1	Injection septum, Module A	4
MCBYV	1	Orbit Corrector in MCBYA(B)	44	MSIB	1	Injection septum, Module B	6
MCD	5	Decapole Corrector in MCDO, (Spool Piece Corrector)	1232	MSS	2	Arc skew Sextupole Corrector Associated to MCBH	64
MCO	4	Octupole Corrector in MCDO, (Spool Piece Corrector)	1232			in MSCBC and MSCBD	
MCOSX	3	Skew Octupole Spool-Piece Associated to MQSX in MQSXA	8	-			
MCOX	4	Octupole Spool-Piece Associated to MQSXA	8				
MCS	3	Sextupole Corrector, (Spool Piece Corrector)	2464				
MCSSX	3	Skew Sextupole Spool-Piece Associated to MQSX in MQSXA	8				
MCSX	3	Sextupole Spool-Piece Associated to MCBXA	8		Co	varal thousand mag	ota
MCTX	6	Dodecapole Spool-Piece Associated to MCBXA	8		JE	verai ulvusallu illagi	
MKA	1	Tune kicker	2	1 –		Ŭ	
MKD	1	Ejection dump kicker	30	1			
MKI	1	Injection kicker	8	1			
MKQ	1	Kicker For Q And Aperture Measurement	2	1			

And plenty of power circuits ...

Туре	Number of Circuits	Туре	Number of Circuits	Туре	Number of Circuits	Туре	Number of Circuits
RB	8	RCBH30	16	RCBYH6	2	ROT4	4
RBAWV	1	RCBH31	16	RCBYHS4	16	ROT5	4
RBLWH	1	RCBH32	16	RCBYHS5	8	ROTD	16
RBWMDV	1	RCBH33	16	RCBYV4	10	ROTE	16
RBXWH	1	RCBH34	8	RCBVV5	8	ROTI 10	8
RBXWSH	2	RCBV11	16	RCBVV6	2	ROTI 11	32
RBXWTV	2	RCBV12	16	RCB1V0	16	POTL7	32 0
RCBCH10	16	RCBV13	16	RCB1V54	10	RQIL/	0
RCBCH5	4	RCBV14	16	RCBYVS5	8	RQILS	8
RCBCH5	4	RCBV15	16	RCD	16	RQTL9	8
RCBCH0	12	RCBV16	16	RCO	16	RQX	8
RCBCH/	14	RCBV17	16	RCOSX3	8	RSD1	16
RCBCH8	16	RCBV18	16	RCOX3	8	RSD2	16
RCBCH9	16	RCBV19	16	RCS	16	RSF1	16
RCBCV10	16	RCBV20	16	RCSSX3	8	RSF2	16
RCBCV5	4	RCBV21	16	RCSX3	8	RSS	16
RCBCV6	12	RCBV22	16	RCTX3	8	- L	
RCBCV7	14	RCBV23	16	RD1	6	-	
RCBCV8	16	RCBV24	16	RD1	0	-	
RCBCV9	16	RCBV25	16	RD2	8	-	
RCBH11	16	RCBV26	16	RD3	2	-	
RCBH12	16	RCBV27	16	RD34	2		
RCBH13	16	RCBV28	16	RD4	2		
RCBH14	16	RCBV29	16	RMSD	2		
RCBH15	16	RCBV30	16	ROD	16		e veral
RCDI115	16	RCBV31	16	ROF	16		
RCBH10	10	RCBV32	16	RO10	12	L -	and mod
RCBH1/	10	RCBV33	10	RO4	12	† I I	unarea
RCBH18	16	RCBV34	8	ROS	14	-	
RCBH19	16	RCBWH4	4	RQS	18		wor
RCBH20	16	RCBWII5 RCBWV4	4	RQ0	10	hi	JWCI
RCBH21	16	RCBWV4	4	RQ/	10		
RCBH22	16	RCBYH1	4 8	RQ8	12		remite
RCBH23	16	RCBXH2	8	RQ9	12		ICUILS
RCBH24	16	RCBXH3	8	RQD	8		
RCBH25	16	RCBXV1	8	RQF	8		
RCBH26	16	RCBXV1	8	RQS	24		
RCBH27	16	RCBXV2	8	RQSX3	8	1	
RCBH28	16	RCBYH4	10	RQT12	32	t	
RCBH29	16	RCBYH5	8	RQT13	32	t	

Power converters for LHC

Equipment code	Cu	rrent		Voltage		Mains Input		Power losses		Qty
	Ultimate	Minimum	Steady	Boost	Peak	Peak	Peak	Water	Air	
	Α	Α	v	v	v	kW	kVA	kW	kW	
RPTE	13000	350	10	±180	190	2681	3540	150	50	8
RPHE	13000	350	13	±5	18	265	288	28	3	16
RPHF	8000	160	6	±2	8	78	85	13	1.5	21
RPHG	6000	120	6	±2	8	59	64	10	1.2	132
RPHH	4000	80	6	±2	8	40	42	6.5	0.7	40
RPMB	600	Bipolar	±8	±2	10	8.5	9	2	0.2	330
RPMC	600	Bipolar	±35	±2	40	27	30	3	0.3	24
RPMB	600	0	8	2	10	8.5	9	2	0.2	70
RPMC	600	0	35	5	40	27	30	3	0.5	2
RPLB	120	Bipolar	±8	±2	10	1.7	108	0	0.5	290
RPMC	120	Bipolar	±35	±5	40	5.5	6	0	0.1	10
RPLA	60	Bipolar	±2	±6	8	0.7	0.8	0	0.2	752
RPTL	650	60	160	0	160	113	141	0	25	3
RPTF	810	70	450	0	450	390	490	0	50	4
RPTG	810	70	950	0	950	820	1025	0	40	4
RPTM	1000	50	600	0	600	640	800	0	395	2
RPTI	6500	350	950	0	950	6 570	8220	0	14	2
RPTN	1000	50	±180	0	180	195	210	0	26	3
RPTJ	20000	1000	±26	0	26	620	795	76	5	1
RPHK	20500	1000	18	0	18	420	455	44	5	1
RPTH	33000	2000	170	0	170	6060	7610	340	60	1
RPTK	40	n.a.	100000	0	100000	4240	5300	180		4
TOTAL										1720

Basic questions in accelerator design

- What is the machine for?
- What energy do we need?
- What intensity do we need?
- What beam size do we need?
- What availability do we need?
- What particles should we use?
- What type of accelerator is best suited?
- What technology should we use?

Frontiers of Particle Accelerators

High Energy Particle Physics Research Energy / Emittance Protons / Ions / Leptons

High Power Industry / Research Energy / Intensity / Rep Protons / Ions High Brightness Synchrotron light Emittance / Intensity Leptons