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Accelerators world-wide
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Dynamitron
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Dynam2.pct



Low energy irradiation of material
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Electrons are easy to produce, accelerate and 
shield
Use an energy below the nuclear reaction 
threshold of 10 MeV. (7 MeV in some cases)
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Production line for sterilization
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AC9.8.95_08(Impela).pct



Dose and beam power
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A milliamp of  particles, each  losing 2 MeV, 
passing through a 1 cm cube of material will  
for one second will deposit a total energy of 

This corresponds to a (beam) power of 2 kW
1 Gy is 1 Joule per kilo and if the density of 
the cube is 1 this will be a dose of 

This is not much and we need several kGy to 
disinfect material say 100 kW for 20 seconds
The dose would be the same for a thin film 
but we can use a lower energy and reach a 
much higher dose – 250 kGy to polymerize 
film.

Joules10.210  210 363 =×− 

Gy  210  210 33 =×− 



Methods of analysis by scattering
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Spectrum from PIXE analysis
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PIXE.pct



Scanning a lorry for drugs 
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Synchrotron light sources (ESRF)
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AC9.8.95_16(ESRF).pct



The cone of synchrotron radiation

E.J.N.Wilson - Introduction to Accelerators III – Applications  Slide 11
Fig.

When an electron is bent in a circle it 
radiates synchrotron “light” along a tangent 
in a narrow cone (opening angle = 1/γ)



The spectrum
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Spectrum is broad and looks the same when 
normalized to

Every quantity is normalized to the 
frequency of a characteristic quantum which 
is  proportional to  

  
uc = hω c =

3
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hcγ 3
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The scale of things
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Diffraction
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Diffraction experiment (synch.rad)
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Diff-phot.pct
Diff-diag.pct



A very complex molecule
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RNA Polymerase – the structure that enables 
the code for each protein to be used to make 
each protein



Lithography in practice
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AC9.8.95_11(mask).pct



Brightness (importance of small emittance)

E.J.N.Wilson - Introduction to Accelerators III – Applications  Slide 18
Fig.

γσσσ
θ

φθ

36.236.236.2

Brightness
4

zx

ddF
ddxdzd

d

=

=

γ
σ

θ

γ 2
1

fluxintegratedy verticalltheis      where

≈

ddF

Brightness is measured in :

Wigglers and undulators enhance this!
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ISIS
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Spallation source (ESS)
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Compare  with ISIS  

Average Beam Power: 2 x 5 MW

Average Neutron Flux :3.1 x 1014 n/cm2s

Pulse frequency = 16 2/3 Hz 

Neutron pulse length = 2 Milliseconds

Mean Power = 5 MW 

Target material = mercury

Max. Neutron flux = 1 x 1016 n/cm2s

Proton energy: 0.800 GeV

Protons per second: 2.5 x 1013 x 50 Hz = 1.3x1015 

Current = Charge/sec:x1.3x 1015 x 1.6 x 10-19 

=0.2 mA

Mean Power = 0.2 mA x 800 MeV = 0.16 MW 



High temperature superconductor
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Crystal structure of the 90K YBa2Cu3O7 superconductor

HgBa2CuO4.Color-PICT



GSI – Ions galore!
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View along the SIS accelerator ring, which can accelerate the ions coming
from the UNILAC to 90% of the speed of light. 

accel.gif



Ion- beam surface treatment
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Setup for surface treatment of artificial knee joint by low energy ion
implantation. Collaboration Aesculap and Technical University Darmstadt

Kniegelenk.gif



Membranes made with ion-beams
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The damage produced by the heavy ions along the track in the material can
be used to develop pores. With this technique tracks in many polymers, 
crystalline insulators, glasses, semi-conductors and recently amorphous 
metals are etcheable. 

Etched ion tracks in polymer foil. The pore density is 10 million
per cm^2. By ion track etching it is possible to produce membranes
with track diameter from 10 nm up to 10 µm and densities from 1 to
10^9 pores per cm^2.

quartz_MITE.gif



Quartz micro machining by control 
of ion track etch access 
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fluence= ions per area [ions / cm2]
1 ion/sample-single pore membrane
106…1010 ions/cm2-etching
109…1011ions/cm2 -single track regime
1011 1014ions/cm2 -overlapping tracks

quartz_MITE.gif



HYOGO (JPN)- Ion beam medical center
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Particle species p, He and C

Beam energy for p and He [MeV/u]

Beam energy for C [MeV/u]

Beam spill length [ms]

Repetition rate for He and C [Hz] 0.5

70 - 230

70 - 320

400

Beam intensity is typically 1010 ppp
The tumor is “painted “ with beam
Depth  modulation = energy loss absorber
Slow extraction must be ripple free.



Depth in tissue 
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Lawrence’s Cyclotron
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Isotopes for PET
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petiso.pct



Energy amplifier
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Carlo.pct



Inertial confinement
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The history of accelerators
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Need for Accelerators
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Why do we need accelerators? (2)

Resolution of "Matter" Microscopes:   

Wavelength of Particles (Photon, Electron, Proton, ...):    (de Broglie, 1923)   

  λ   =   h / p            (  =  1.2  fm / p    [  GeV/c]  ) 
The higher the momentum, the shorter the wavelength, the better the  
resolution  

 

 

Energy to Matter:  
Einstein (1905):  

 

Higher energy means we can produce more massive particles  

When particles approach  the speed of light, they get more massive, but  
not faster  

 

    

 

33

E =  mc 2  =   
mo c 2

1−
v 2

c 2

=  γ moc 2



Center of mass v.  Fixed target
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W = Energy available in center-of-mass for making new particles
 
For fixed target :

Ec.m. ≅ 2mTEB
... and we rapidly run out of money trying to gain a factor 10 in c.m. energy  

But a storage ring , colliding  two beams, gives:

Ec .m. ≅ 2 EB

Problem: Smaller probability that accelerated particles collide .... "Luminosity" of a collider  
 

L = N1N2
1
A

βc
2πR

≈ 1029 ...1034 cm −2s −1



Luminosity
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Imagine a blue particle colliding with a beam 
of cross section area - A
Probability of collision is

For N particles in both beams

Suppose they meet f times per second at the 
revolution frequency

Event rate

σ
A

⋅ N

σ
A

⋅ N2

f rev =
βc

2πR

f rev N 2

A
⋅ σ

LUMINOSITY

Make small

Make big

≈ 1030  to 1034  cm-2 s-1[ ]

e.g.  10−25



CLIC SCHEME
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III – Applications – E. Wilson
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