

BADEN - AUSTRIA 20 September 2004

Multi-Particle Effects: Space Charge

Karlheinz SCHINDL - CERN/AB

Direct space charge (Self fields)

Fields and forces

Defocusing effect of space charge

Incoherent tune shift in a synchrotron

Image fields

Image effect on incoherent tune shift

Coherent tune shift "Laslett" coefficients

Bunched beams

Effect of longitudinal motion

Energy shapes limited synchrot

Space-charge limited synchrotrons

How to remove the space-charge limit

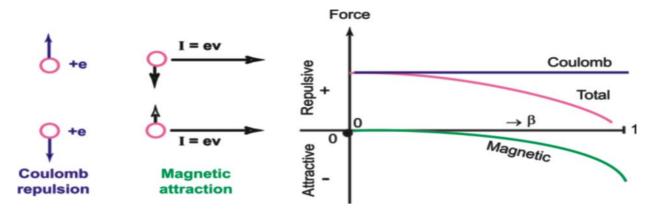
A. Hofmann, Tune shifts from self-fields and images, CAS Jyväskylä 1992, CERN 94-01, Vol. 1, p. 329

P.J. Bryant, Betatron frequency shifts due to self and image fields, CAS Aarhus 1986, CERN 87-10, p. 62

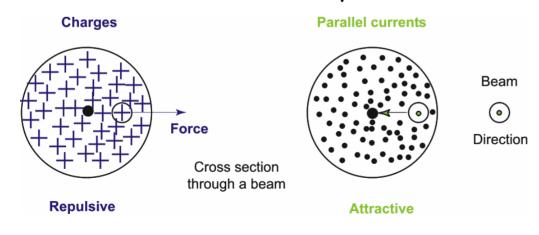
K. Schindl, Space charge, Proc. Joint US-CERN-Japan-Russia School on Part.Acc., "Beam Measurement", Montreux, May 1998, World Scientific, 1999, p. 127

Space Charge Force

Two Particles



Many Particles



Force in beam centre = 0

Force larger near beam edge

Direct Space Charge - Fields

η...charge density in Cb/m³

 λ ... constant line charge π a² η

I...constant current $\lambda \beta c = \pi a^2 \eta \beta c$

a...beam radius

 $\mathbf{z}_{\mathrm{E}_{\mathrm{r}}}$

X

cross section

$$\vec{E} = E_r$$

$$\operatorname{div} \vec{E} = \frac{\eta}{\varepsilon_0}$$

Magnetic

$$\overrightarrow{B} = B_{\phi}$$

$$\operatorname{curl} \overrightarrow{B} = \mu_0 \overrightarrow{J}$$

Current density (βcη)

$$\iiint\!\operatorname{div} \vec{E} \vec{d} V = \iint\!\vec{E} \vec{d} \vec{S} \qquad \oint\!\vec{B} \vec{r} \overset{\rightarrow}{d\phi} = \iint\!\operatorname{curl} \vec{B} \vec{d} \vec{A}$$

$$\oint \overrightarrow{B} r d\overrightarrow{\phi} = \iint curl \overrightarrow{B} d\overrightarrow{A}$$

Apply these integrals over

cylinder radius r length 1

$$r^2 \pi l \frac{\eta}{\varepsilon_0} = E_r 2r\pi 1$$

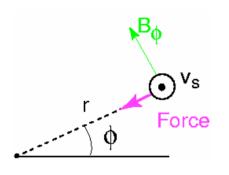
$$E_{r} = \frac{I}{2\pi\varepsilon_{0}\beta c} \frac{r}{a^{2}}$$

cross section radius r

$$B_{\varphi} 2r\pi = \mu_0 r^2 \pi \beta c \eta$$

$$B_{\varphi} = \frac{I}{2\pi\varepsilon_0 c^2} \frac{r}{a^2}$$

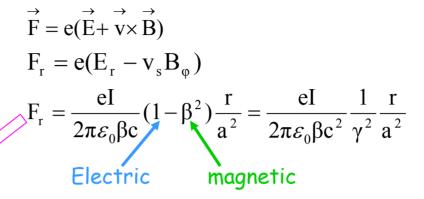
Force on a Test Particle Inside the Beam

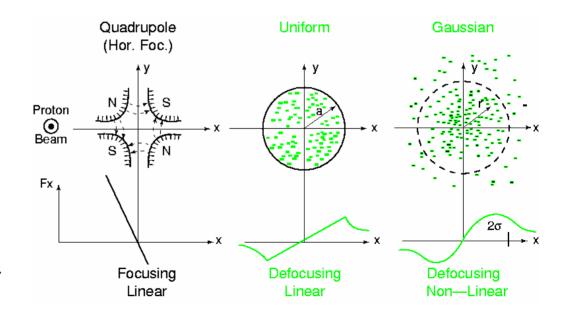


$$F_{x} = \frac{eI}{2\pi\varepsilon_{0}\beta c\gamma^{2}a^{2}}x$$

$$F_{y} = \frac{eI}{2\pi\varepsilon_{0}\beta c\gamma^{2}a^{2}}y$$
Space charge force

- □ circular beam
- ☐ uniform charge density
- \Box F_x, F_y linear in x, y \Box force → 0 for γ » 1 (β→1)
- □ defocusing lens in either plane





Space Charge in a Transport Line

$$x'' + K(s)x = 0$$

Transport line with quadrupoles

$$x'' + (K(s) + \underline{K_{SC}(s)})x = 0$$

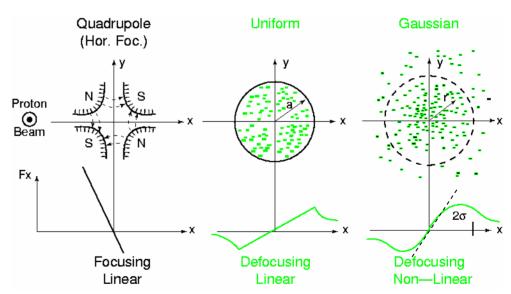
 $x'' + (K(s) + K_{sc}(s))x = 0$ Transport line with quadrupoles and space charge

$$x'' = \frac{d^2x}{ds^2} = \frac{1}{\beta^2c^2} \frac{d^2x}{dt^2} = \frac{1}{\beta^2c^2} \frac{(F_x)}{m_0\gamma} = \frac{2r_0I}{ea^2\beta^3\gamma^3c} x \qquad \text{where} \qquad r_0 = \frac{e^2}{4\pi\epsilon_0 m_0c^2}$$

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0$$

$$K_{SC}$$

In a transport line, the focusing by quadrupoles is counteracted by space charge, making focusing weaker



Incoherent Tune Shift in a Synchrotron

- ☐ Beam not bunched (so no acceleration)
- ☐ Uniform density in the circular x-y cross section (not very realistic)

$$x'' + \left(K(s) + \underline{K_{SC}(s)}\right)x = 0$$

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 \rightarrow Q_{x0} (external) + ΔQ_x (space charge)

For small "gradient errors" k_x $\Delta Q_x = \frac{1}{4\pi} \int_0^{2\kappa\pi} k_x(s) \beta_x(s) ds = \frac{1}{4\pi} \int_0^{2\kappa\pi} K_{SC}(s) \beta_x(s) ds$

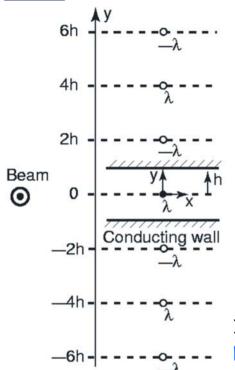
$$\Delta Q_{x} = -\frac{1}{4\pi} \int_{0}^{2R\pi} \frac{2r_{0}I}{e\beta^{3}\gamma^{3}c} \frac{\beta_{x}(s)}{a^{2}} ds = -\frac{r_{0}RI}{e\beta^{3}\gamma^{3}c} \left\langle \frac{\beta_{x}(s)}{a^{2}(s)} \right\rangle = -\frac{r_{0}RI}{e\beta^{3}\gamma^{3}cE_{x}}$$

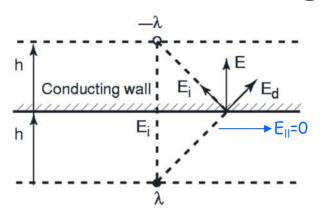
$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi E_{x,y} \beta^2 \gamma^3} \qquad \begin{array}{c} \text{using } I = (\text{Ne}\beta c)/(2R\pi) \text{ with } \\ \text{N...number of particles in ring } \\ E_{x,y} \dots \text{emittance containing 100} \end{array}$$

 $E_{\rm x\; \nu}....$ emittance containing 100% of particles

- □ "Direct" space charge, unbunched beam in a synchrotron
- \Box Vanishes for $\gamma \gg 1$
- ☐ Important for low-energy machines
- \square Independent of machine size $2\pi R$ for a given N

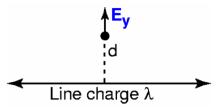
Incoherent Tune Shift: Image Effects





"Image charge" $-\lambda$ to render $E_{\parallel} = 0$ on conductive wall

Flectric field around a line charge



$$E_{y} = \frac{\lambda}{2\pi\varepsilon_{0}} \frac{1}{d}$$

Image (line) charges created by two parallel conducting plates, distance 2h

$$E_{i1y} = \frac{\lambda}{2\pi\varepsilon_0} \left(\frac{1}{2h - y} - \frac{1}{2h + y} \right), \quad E_{i2y} = \frac{\lambda}{2\pi\varepsilon_0} \left(\frac{1}{4h + y} - \frac{1}{4h - y} \right)$$

$$E_{iny} = \frac{(-1)^{n+1}\lambda}{2\pi\varepsilon_0} \left(\frac{1}{2nh-y} - \frac{1}{2nh+y}\right) = (-1)^{n+1}\frac{\lambda}{4\pi\varepsilon_0} \frac{y}{n^2h^2} \quad \text{Image Field E_{iny} generated by the n-th pair of line charges}$$

Image Effect of Parallel Conducting Plates ctd.

Vertical image field E_{iv}:

- \square vanishes at y=0

- \square large if vacuum chamber small (small h)

$$div\vec{E}_{i}=0=\frac{\partial E_{ix}}{\partial x}+\frac{\partial E_{iy}}{\partial y} \Rightarrow E_{ix}=-\frac{\lambda}{4\pi\epsilon_{o}h^{2}}\frac{\pi^{2}}{12}x \qquad \qquad \text{because between the conducting plates no image charges}$$

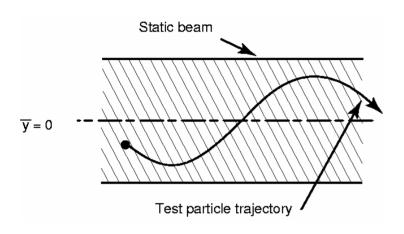
$$\begin{aligned} F_{ix} &= -\frac{e\lambda}{\pi\epsilon_0 h^2} \frac{\pi^2}{48} x \\ F_{iy} &= \frac{e\lambda}{\pi\epsilon_0 h^2} \frac{\pi^2}{48} y \end{aligned} \quad \begin{aligned} \text{From these image forces F_{ix} and F_{iy}} \\ &\Rightarrow \textbf{K}_{sc} \Rightarrow \Delta \textbf{Q}_{x,y} \end{aligned}$$

$$\Delta Q_x = -\frac{2r_0 IR\langle\beta_x\rangle}{ec\beta^3\gamma} \left(\frac{1}{2\langle a^2\rangle\gamma^2} - \frac{\pi^2}{48h^2} \right)$$
tune shift direct image
$$\Delta Q_y = -\frac{2r_0 IR\langle\beta_y\rangle}{ec\beta^3\gamma} \left(\frac{1}{2\langle b^2\rangle\gamma^2} + \frac{\pi^2}{48h^2} \right)$$

- \square Image effects do not vanish for large γ , thus not negligible for electron machines
- □ Electrical image effects normally focusing in horizontal, defocusing in vertical plane
- ☐ Image effects also due to ferromagnetic boundary (e.g. synchrotron magnets)

Incoherent and Coherent Motion

Incoherent motion

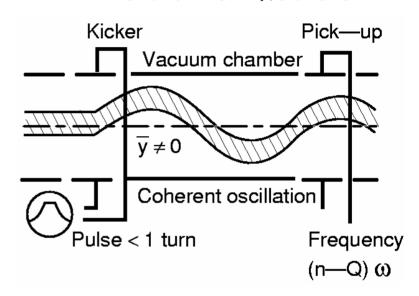


Test particle in a beam whose centre of mass does not move

The beam environment does not "see" any motion

Each particle features its individual amplitude and phase

Coherent motion

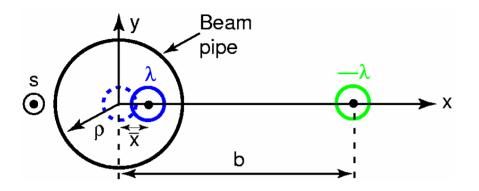


The centre of mass moves doing betatron oscillation as a whole

The **beam environment** (e.g. a position monitor "sees" the "coherent motion")

On top of the coherent motion, each particles has still its individual one

Coherent Tune Shift, Round Beam Pipe



 \overline{X} ...hor. beam position (centre of mass) a...beam radius ρ ...beam pipe radius (ρ » a)

 $b\overline{x} = \rho^2$ (mirror charge on a circle)

$$E_{ix}(\overline{x}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b - \overline{x}} \approx \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}$$

$$F_{ix}(\overline{x}) = \frac{e\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}$$

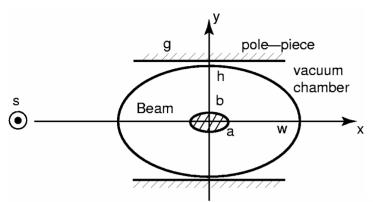
- \square same in vertical plane (y) due to symmetry
- $\hfill\Box$ force linear in \overline{X}
- ☐ force positive hence defocusing in both planes

$$\Delta Q_{x,y\,coh} = -\frac{r_0 R \langle \beta_{x,y} \rangle I}{ec\beta^3 \gamma \rho^2} = -\frac{r_0 \langle \beta_{x,y} \rangle}{2\pi \beta^2} \frac{N}{\gamma \rho^2}$$

Coherent tune shift, round pipe

- □ negative (defocusing) both planes
- \Box only weak dependence on γ
- \square ΔQ_{coh} always negative

The "Laslett" * Coefficients



$$\Delta Q_{y,inc} = -\frac{Nr_0 \langle \beta_y \rangle}{\beta^2 \gamma \pi} \left(\frac{\epsilon_0^y}{b^2 \gamma^2} + \frac{\epsilon_1^y}{h^2} + \beta^2 \frac{\epsilon_2^y}{g^2} \right)$$

direct electr. magnet.

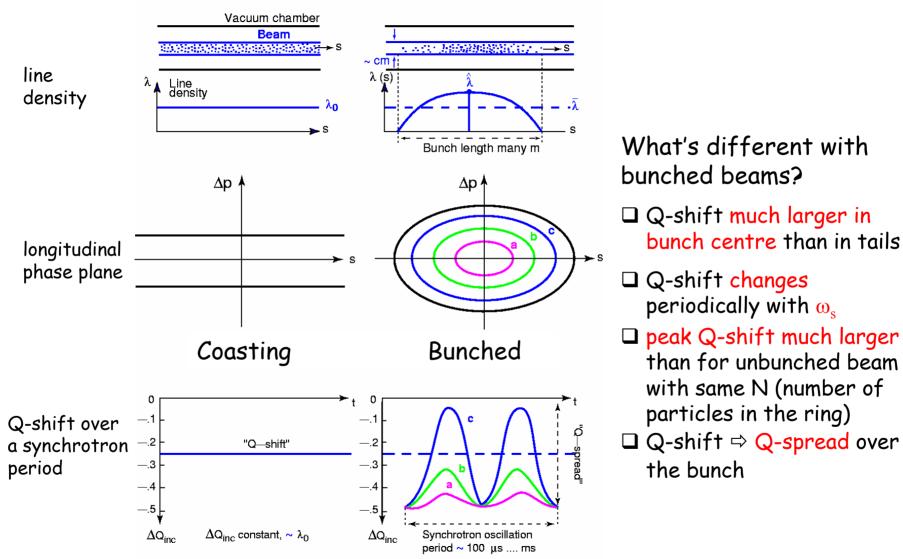
$$\Delta Q_{y,coh} = -\frac{Nr_0 \left\langle \beta_y \right\rangle}{\beta^2 \gamma \pi} \left(\begin{array}{ccc} & \text{image} & \text{image} \\ & \frac{\xi_1^y}{h^2} + \ \beta^2 \frac{\xi_2^y}{g^2} \end{array} \right)$$

Uniform, elliptical beam in an elliptical beam pipe. Similar formulae for ΔQ_x In general, $\Delta Q_y > \Delta Q_x$

Laslett	Circular	Elliptical	Parallel plates	
coefficients	$(a=b, \ w=h)$	(e.g. $w = 2h$)	(h/w = 0)	
$\varepsilon_0^{\mathbf{x}}$	1/2	$\frac{b^2}{a(a+b)}$		
$\varepsilon_0^{\mathrm{y}}$	1/2	$\frac{b}{a+b}$		
$arepsilon_1^{\mathrm{x}}$ $arepsilon_1^{\mathrm{y}}$	0	-0.172	-0.206	
$\varepsilon_1^{ m y}$	0	0.172	0.206	
	1/2	0.083	$0 \frac{\pi^2/4}{}$	
$ \xi_1^{\mathbf{x}} $ $ \xi_1^{\mathbf{y}} $ $ \varepsilon_2^{\mathbf{x}} $ $ \varepsilon_2^{\mathbf{y}} $ $ \xi_2^{\mathbf{x}} $ $ \xi_2^{\mathbf{y}} $ $ \xi_2^{\mathbf{y}} $	1/2	0.55	$0.617(\pi^2/16)$	
$\varepsilon_2^{\mathrm{x}}$	$-0.411(-\pi^2/24)$	-0.411	-0.411	
$\varepsilon_2^{\mathrm{y}}$	$0.411(\pi^2/24)$	0.411	0.411	
ξ_2^{x}	0	0	0	
ξ_2^{y}	$0.617(\pi^2/16)$	0.617	0.617	

*L.J. Laslett, 1963

Bunched Beam in a Synchrotron



Incoherent ΔQ : A Practical Formula

$$\Delta Q_{y} = -\frac{r_{0}}{\pi} \left(\frac{q^{2}}{A}\right) \frac{N}{\beta^{2} \gamma^{3}} \frac{F_{y} G_{y}}{B_{f}} \left\langle \frac{\beta_{y}}{b(a+b)} \right\rangle \qquad \left\langle \frac{\beta_{y}}{b(a+b)} \right\rangle = \left\langle \frac{\beta_{y}}{b^{2} \left(1 + \frac{a}{b}\right)} \right\rangle \approx \frac{1}{E_{y} \left(1 + \sqrt{\frac{E_{x} Q_{y}}{E_{y} Q_{x}}}\right)}$$

$$\Delta Q_{x,y} = -\frac{r_{0}}{\pi} \left(\frac{q^{2}}{A}\right) \frac{N}{\beta^{2} \gamma^{3}} \frac{F_{x,y} G_{x,y}}{B_{f}} \frac{1}{E_{x,y} \left(1 + \sqrt{\frac{E_{y,x} Q_{x,y}}{E_{x,y} Q_{y,x}}}\right)}$$

q/A..... charge/mass number of ions (1 for protons, e.g. 6/16 for $_{16}O^{6+}$)

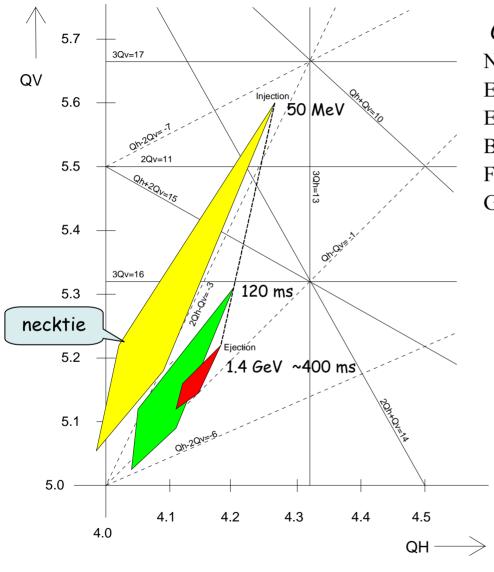
 $\mathbf{F}_{\mathbf{x},\mathbf{y}}$"Form factor" derived from Laslett's image coefficients $\epsilon_1{}^x$, $\epsilon_1{}^y$, $\epsilon_2{}^x$, $\epsilon_2{}^y$ (F ≈ 1 if dominated by direct space charge)

 $G_{x,y}$Form factor depending on particle distribution in x,y. In general, $1 < G \le 2$ Uniform G=1 ($E_{x,y}$ 100% emittance)

Gaussian G=2 ($E_{x,y}$ 95% emittance)

 ${\bf B_f}$ "Bunching Factor": average/peak line density ${\bf B_f}=\frac{\lambda}{\hat{\lambda}}=\frac{I}{\hat{I}}$

A Space-Charge Limited Accelerator



CERN PS Booster Synchrotron

 $N = 10^{13} \text{ protons}$

 $E_x^* = 80 \mu \text{rad m} [4 \beta \gamma \sigma_x^2/\beta_x] \text{ hor. emittance}$

 $E_v^* = 27 \mu rad m$ vertical emittance

$$B_f = 0.58$$

$$F_{x,y} = 1$$

$$G_x/G_v = 1.3/1.5$$

- □ Direct space charge tune spread ~0.55 at injection, covering 2nd and 3rd order stop-bands
- \Box "necktie"-shaped tune spread shrinks rapidly due to the $1/\beta^2\gamma^3$ dependence
- ☐ Enables the working point to be moved **rapidly** to an area clear of strong stop-bands

How to Remove the Space-Charge Limit?

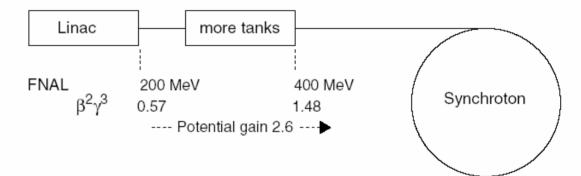
Direct space charge

$$\Delta Q_y \approx \frac{N}{E_y \beta^2 \gamma^3} \frac{\hat{I}}{\bar{I}}$$

Problem: A large proton synchrotron is limited in N because ΔQ_y reaches 0.3 ... 0.5 when filling the (vertical) acceptance.

Solution: Increase N by raising the injection energy and thus $\beta^2\gamma^3$ while keeping to the same ΔQ . Ways to do this:

Make a longer (higher-energy)
Linac (by adding tanks as has
been done in Fermilab)



Add a small "Booster"
synchrotron of radius r = R/n
with n the number of
batches (BNL) or rings (CERN)

L	inac —		Range	
			Booster	Synchroton
			r = R/n	(B
'n	Potential gain in N	Achieved		
-1	EO	15		_ _

	Linac (MeV)	Booster (GeV)	n=R/r	Potential gain in N	Achieved
CERN PS	50	1	4(rings)	59	~15
BNL AGS	200	1.5	4(batches)	26	~8

Lecture Summary

"Direct" space charge generated by the self-field of the beam

- > acts on incoherent motion but has no effect on coherent (dipolar) motion
- > proportional to beam intensity
- > defocusing in both transverse planes
- > scales with $1/\gamma^3 \Rightarrow$ barely noticeable in high-energy hadron and low-energy lepton machines

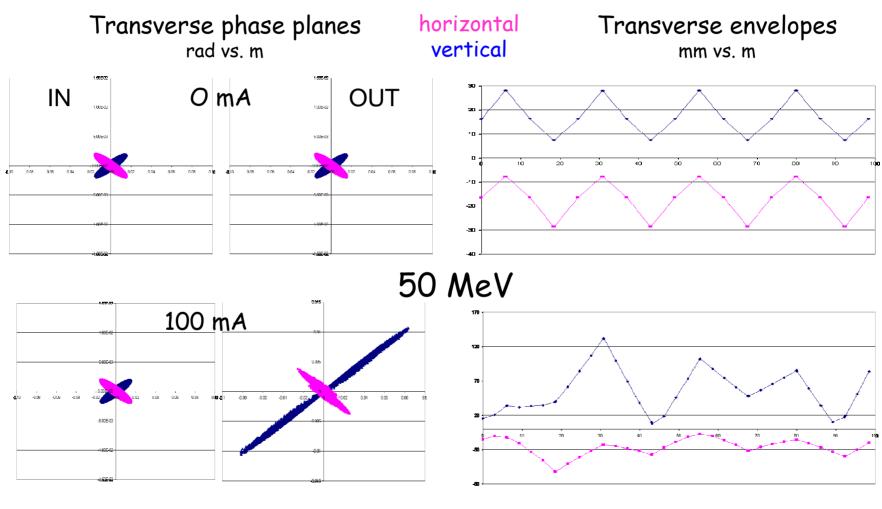
Image effects due to mirror charges induced in the vacuum envelope

- > proportional to beam intensity
- > scales with $1/\gamma \Rightarrow$ not negligible for high- γ beams and machines
- > give rise to a further change in the incoherent motion, but focusing in one plane, defocusing in the other plane
- > modify the transverse coherent motion (coherent Q-change)

Bunched beams: Space-charge defocusing depends on the particle's position in the bunch leading to a Q-spread (rather than a shift)

- > Direct space charge is a hard limit on intensity/emittance ratio
- > can be overcome by a higher-energy injector •

High Intensity Proton Beam in a FODO Line



Courtesy of Alessandra Lombardi/ CERN, 8/04