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What is electromagnetism?
The study of Maxwell’s equations, devised in 1863 to represent 
the relationships between electric and magnetic fields in the 
presence of electric charges and currents, whether steady or 
rapidly fluctuating, in a vacuum or in matter.

The equations represent one of the most elegant and concise 
way to describe the fundamentals of electricity and magnetism. 
They pull together in a consistent way earlier results known 
from the work of Gauss, Faraday, Ampère, Biot, Savart and 
others.

Remarkably, Maxwell’s equations are perfectly consistent with 
the transformations of special relativity.



Maxwell’s Equations
Relate Electric and Magnetic fields generated by charge 
and current distributions.
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E = electric field

D = electric displacement

H = magnetic field

B = magnetic flux density

ρ= charge density

j = current density

µ0 (permeability of free space) = 4π 10-7

ε0 (permittivity of free space) = 8.854 10-12

c (speed of light) = 2.99792458 108 m/s
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Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to 
the total electric charge Q enclosed within the surface.

A point charge q generates an electric field

Maxwell’s 1st Equation 
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Area integral gives a measure of the net charge 
enclosed; divergence of the electric field gives the density 
of the sources.



Gauss’ law for magnetism:   

The net magnetic flux out of any 
closed surface is zero. Surround a 
magnetic dipole with a closed surface. 
The magnetic flux directed inward 
towards the south pole will equal the 
flux outward from the north pole. 

If there were a magnetic monopole 
source, this would give a non-zero 
integral. 

Maxwell’s 2nd Equation 0=⋅∇ B
r
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Gauss’ law for magnetism is then a statement that
There are no magnetic monopolesThere are no magnetic monopoles



Equivalent to Faraday’s Law of Induction:

(for a fixed circuit C)

The electromotive force round a 
circuit is proportional to 
the rate of change of flux of magnetic 
field, through the circuit.
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Faraday’s Law is the basis for electric generators. It also forms the 
basis for inductors and transformers.
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Maxwell’s 4th Equation t
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Originates from Ampère’s (Circuital) Law :

Satisfied by the field for a steady line current (Biot-Savart Law, 
1820):
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Need for displacement current
Faraday: vary B-field, generate E-field
Maxwell: varying E-field should then produce a B-field, but not covered by Ampère’s 
Law.

Surface 1 Surface 2

Closed loop

Current I
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Apply Ampère to surface 1 (flat disk): line 
integral of B = µ0I

Applied to surface 2, line integral is zero 
since no current penetrates the deformed 
surface.

In capacitor,            , so

Displacement current density is
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Consistency with charge conservation

Charge conservation: Total 
current flowing out of a region equals 
the rate of decrease of charge within 
the volume.

From Maxwell’s equations:
Take divergence of (modified) 
Ampère’s equation
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Maxwell’s Equations in Vacuo

In vacuum

Source-free equations:

Source equations

Equivalent integral forms 
(sometimes useful for 
simple geometries)
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Example: Calculate E from B

⎩
⎨
⎧

>
<

=
0

00

0
cos

rr
rrtB

Bz

ω

∫∫∫ ⋅−=⋅ dSB
dt
dldE

rrr

trBE

tBrrErr

ωω
ωωππ

θ

θ

cos
2

cos2

0

0
2

0

−=⇒

−=<

t
r
BrE

tBrrErr

ωω

ωωππ

θ

θ

cos
2

cos2

0
2

0

0
2

00

−=⇒

−=>

Also from 
t
BE
∂
∂

−=∧∇
r

r

dt
E

c
jB

r
rr ∂
+=∧∇ 20

1µ then gives current density necessary 
to sustain the fields

r

z



Lorentz force law
Supplement to Maxwell’s equations, gives force on a charged 
particle moving in an electromagnetic field:

For continuous distributions, have a force density

Relativistic equation of motion

4-vector form:

3-vector component:
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Motion of charged particles in constant 
electromagnetic fields

Constant E-field gives uniform 
acceleration in straight line

Solution of 

Energy gain

Constant magnetic field gives 
uniform spiral about B with 
constant energy.
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Relativistic Transformations of E and B

According to observer O in frame F, particle has velocity     , fields are      and     
and Lorentz force is 

In Frame F′, particle is at rest and force is 
Assume measurements give same charge and force, so

Point charge q at rest in F:

See a current in F′, giving a field

Suggests
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Electromagnetic waves
Maxwell’s equations predict the existence of electromagnetic waves, later discovered 
by Hertz.
No charges, no currents:
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Nature of electromagnetic waves
A general plane wave with angular frequency ω travelling in the direction of 
the wave vector        has the form

Phase                     = 2π × number of waves and so is a Lorentz invariant.
Apply Maxwell’s equations
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Plane electromagnetic wave



Plane Electromagnetic Waves
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Waves in a conducting medium
For a medium of conductivity σ,                                        

Modified Maxwell:

Put
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Attenuation in a Good Conductor
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Maxwell’s Equations in a uniform perfectly 
conducting guide

z
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Hollow metallic cylinder with perfectly 
conducting boundary surfaces

Maxwell’s equations with time dependence exp(jωt)are:
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γ is the propagation constant Can solve for the fields completely 
in terms of Ez and Hz



Special cases
Transverse magnetic (TM modes):

Hz=0 everywhere, Ez=0 on cylindrical  boundary

Transverse electric (TE modes):
Ez=0 everywhere,                  on cylindrical boundary

Transverse electromagnetic (TEM modes):
Ez=Hz=0 everywhere
requires
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A simple model with Ez=0
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Cut-off frequency, ωc

ω<ωc gives real solution for γ, so 
attenuation only. No wave propagates: 
cut-off modes.
ω>ωc gives purely imaginary solution for
γ, and a wave propagates without 
attenuation.

For a given frequency ω only a finite 
number of modes can propagate.
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Propagated electromagnetic fields
From
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Phase and group velocities

Plane wave exp j(ωt-kx) has 
constant phase ωt-kx at peaks
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Wave packet structure

Phase velocities of individual plane waves making up 
the wave packet are different, 
The wave packet will then disperse with time  



Phase and group velocities in the simple 
wave guide

Wave number is 

so wavelength in guide         the free-space wavelength

Phase velocity is                         larger than free-space velocity

Group velocity is less than infinite space value
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Calculation of wave properties
If a=3 cm, cut-off frequency of lowest order mode is

At 7 GHz, only the n=1 mode propagates and
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Waveguide animations
TE1 mode above cut-off ppwg_1-1.mov
TE1 mode, smaller ω ppwg_1-2.mov
TE1 mode at cut-off ppwg_1-3.mov
TE1 mode below cut-off ppwg_1-4.mov
TE1 mode, variable ω ppwg_1_vf.mov
TE2 mode above cut-off ppwg_2-1.mov
TE2 mode, smaller ppwg_2-2.mov
TE2 mode at cut-off ppwg_2-3.mov
TE2 mode below cut-off ppwg_2-4.mov
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