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Introduction to cooling, temperature, phase
space and Liouville

Stochastic cooling

Electron cooling

Laser cooling

Radiation damping

lonisation and other cooling

Beam cooling

Emphasis on physical ideas (description and
understanding)

Will not review existing all facilities and
performances

Will not derive cooling time, but give crude
formula and comment on important
dependencies




Beam cooling

» Since beamcooling is "slow”, it is only
effective in storage rings;

* however, ionisation and "stochastic
cooling” has been or will be used in
beamlines for muons

Introduction
What is cooling? What is Temperature?
(% KT, = % m(ﬁf,/ )
v isthe velocity relative to the reference particle

moving with the average ion velocity.
Temperature is ameasure of the disordered motion.




My old thermodynamics teacher

 How do you measure the
temperature og an ant?

Introduction
What is cooling? What is Temperature?
(% KT, = % m(ﬁf,/ )
v isthe velocity relative to the reference particle

moving with the average ion velocity.
Temperature is ameasure of the disordered motion.

In an accelerator

T, = MCZ,B2<AP/P>2
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Why beam cooling?
DTGH FUN

Dieep vithin the atomic superodlider, the search continues for the
liidvi dliglanting,

| gy 04

e . D ol e Lot ol b
miam

R ] -
= i Lewrerosip of Himih Ca

L R Ll e P e ]
Il ear = fmapa ek

& Copsrgen | PR Dawid Parkey. wo-ld ripho resesec

Why beam cooling?

Improve beam quality

* beam size, emittance

* energy spread

* intensity of beam, accumulation, stacking
* lifetime of beam

Counteract degradation of beam quality

due to interaction of ions with

* other ions (intrabeam scattering)

* rest-gas (internal targets)

* non-ideal fields, resonances, instabilities
injection errors
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Stacking by cooling
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ASTRID SR source:
~200 mA accumulated
from many injections
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Fermilab antiproton
accumulator
stacking for 1 hour

108/2 sec pbar at 8 GeV

injection stack tail  core




Phase space and Liouville

Liouville:  For hamiltonian systems, the phase space density
IS constant (when measured along atrajectory)
The phase space volume (emittance) is conserved

Often the two transverse and the longitudinal degrees of freedom
are decoupled

Phase space, Liouville and cooling

Liouvilles theorem means that cooling is not possible
for Hamiltonian systems, that is systems with forces
that can be derived from potentials.

In addition particles cannot be injected into already
filled areas of Phase space.

All you can do is to change the form of phase space.

However, with vel ocity-dependent forces
drag, friction (dissipative) forces

electron, radiation, Laser, ionisation cooling

cooling isindeed possible!!




Coffee, cream, Liouville and
Stochastic cooling

Stochastic cooling principle
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Stochastic cooling

Liouville: Cooling is not possible with electromagnetic forces
deflecting the particles (continous fluid, og N=).

When single particles can be observed, and a corresponding
correction applied, cooling is possible!

Thisisthe secret of stochastic cooling!

pick-up kicker

N=108, 6=5mm
-1 -1 o/NN=0.5um

In reality W< o

Stochastic cooling

transverse
kicker

T=12W

v L ‘
pulse at
kicker

Cooling time W bandwidth
w=NIW




Stochastic cooling exercise

1) Ask for 5 random numbers with <x>=0 and c=1
2) Find actual <x> (in general <x>=0)

3) Subtract error in mean to restore mean to zero
4) Calculate new

5) Goto 1)

6) Watch o asfunction of time

7) What isthe cooling time?

8) Include electronical noise! Sl [T
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Cooling Time
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Cooling time 2
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Decrease gain as cooling proceeds

Good mixing, I" = 1, by designing storage ring so
n=0(ATIT)Io(Aplp) islarge. However small mixing PU—>K
Large bandwidth (> GHz, N.~103N)

Weak dependence on energy

Z dependencein v

Stochastic cooling

Betatron cooling: 2 systems (hor. and vert.)
dist. PU — kicker = odd number of A/4

Momentum cooling:
acc. gap instead of transverse kicker

(?) PU in high-dispersion region Ax/x=D Aplp
(i) detect Aflf=n Aplp and correct Ap/p

Stochastic cooling facilities:
ISR (1977), ICE, AA, AC, LEAR, AD @ CERN :]
Fermilab L=

TARN @ |

COSY,GSI 1R
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FNAL antiproton source
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Stochastic Cooling

Fermilab antiproton
accumulator

AD at CERN stacking for 1 hour

108/2 sec pbar at 8 GeV

Debut Stochastic Cooling
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Electron cooling

lons

e-gun (T~0.2eV) collector
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ASTRID electron cooler

Electron cooling 2

Initially 12 > 2

T/ sle_[2 >> imv_t2 =T
2 2

Findly 7/ =T/ no heating

N /ﬁv;ms oL /ﬁvgms
M 43\ M

13



Electron cooling drag force

||:|‘
SN
rms\ PF N _ 5 N r '-'J:'-' -
(v[ >ve ) f(vc) - (ve) E LR TII R
— =
- AmZ%e* . ~ VY F.
F=- — Ly, v, =+ -
my, v,

rms N m
(v, <v, rof ™,) Z[ﬁ] (5‘Xp(—m"e2 12T,)

- 4\/% nez? m ¥z
L. v,

F=-—
3 m

Electron cooling time
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Typically t~tens of seconds ( Z=1)
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Electron cooling

Electron cooling at AD

LEAR, ICE, AD @ CERN H

CRYRING, CELSIUS =:

TSR, COSY, SIS, ESR

IUCF, Fermilab

TARN, .. .

o S

LEAR/AD
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MUSES el ectron cooler
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SIS electron cooler
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Mod. to simple description

1) Flattened distribution due to acceleration

E, =E+V N
AE, =A(Emv)=AE =T, % ‘4.4'
T, =im(Av,)? ~ ﬁ———<<T

Cay |
07T, ~0=17,{ n\ i

i

B=w—>T, ~0->7, {(r, «v,°)

_—
In practice B=o only for distant Lo oTo0TF — B

collisions

2) B=#0
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Virtues of electron cooling

Versatile cooling technique
Longitudinal and transverse cooling
Cooling times t~0.1-1sec4/Q?
T,<<0.1eV

T, ~01leV

in addition: adiabatic expansion 7', .« B

lons

Laser cooling

Mv, =g

r
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Kick from one photon
absorption-emission

i+ 1s2,
100 keV Li 54854 P
(2.3 eV) 1=42ns
1s2s

Changen momentumAp =i/ A

Changean energy. AE = pAv =12meV

At saturatior(stimulatel = spontaneos)(1mWin @3mm)
r=%=10"s"

in2m:r-2mly =15

changein2m:0.2eV

Ultimatelimit : singlerecoil =12meV

Laser cooling

Q)
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— Laser coolingin
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Laser cooling

Virtues of laser cooling:

Laser cooling isfast

However:

Only effective for longitudinal cooling

Not versatile: Li*, Bet, Mg*, ...
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(for details,

Radiation damping  seelecturesby L. Rivkin)

In principle: any charged particle
In practise: only electrons/positrons
since t=E/(Uy/T))

e

RF

Vertical betatron caoling
Horisontal: dispersion!
Longitudinal: finite energy quanta

lonisation cooling

Frictionforce F oc —y

Slowing down in matter

Not hadrons due to large inelastic cross section
Not electrons due to short radiation length

Can only be used for in p in p-collider/ v-factory
v's produced by decaying’s
w's produced from decayings

7’'s produced by p’s on target

Sincey’s do not live forever (2.2s)
cooling has to be fast.

Also emittances are very large!
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lonisation cooling principle

Transverse cooling:
muons lose energy by dE/dx and longitudinal momentum is

replaced by RF

dE/dx

—

dE/dx

dE/dx

i

dE/dx

i

/ F

To minimize heating from Coulomb scattering:
@®Small B, (high-field solenoids)
®Large L, (low-Z absorber): Liquid H,

lonisation energy cooling

lonisation energy cooling using awedge and dispersion
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possible v-factory at CERN

Possible layout of a neutrino factory at
CERM, showing the 4-megawall proton
driver, the target and plon capture, the
muon phase rotation and cooling, the
three stages of muon accelerator and the
bow-tie shaped muon storage ring
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MICE at RAL
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/PLASTIC BOOT
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Other cooling methods

Stimulated radiation cooling

Radiative cooling
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Conclusions

Stochastic | Electron | Radiation | Laser Ionisation
Species all ions ele* someions | muons
Favoured medium
beam high 0.01<p |veryhigh |any(but |any
velocity B<0l |y>100 Doppler)
Favoured
beam low any any any any
intensity
Cooling
time N-108s 10-102s |>10%s 104-10°5s | 106s
Favoured
beam high low any low any
temperature
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