Introduction	Event systems	Timing concepts	Timing technologies	Parting

Timing for Accelerators

Javier Serrano

European Organisation for Nuclear Research (CERN)

CERN Accelerator School

30 June 2021

Introdu	uction

Timing concepts

Timing technologies

Parting words

Goals of this lecture

In scope

- A quick introduction to event-based systems
- How to distribute a common notion of time to many nodes
- Usual timing performance specification methods
- Existing technologies for different performance goals

Out of scope

- A detailed survey of all deployed solutions
- How to use event systems to sequence accelerator operation

Introduction

Event systems

3

Timing concepts

- Background on phase noise
- Background on phase-locked loops

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Introduction ●○○	Event systems	Timing concepts	Timing technologies	Parting words o
Outline				

Introduction

Event systems

Timing concepts

- Background on phase noise
- Background on phase-locked loops

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Carata	بير معرف المعط ا	a al		
o ● O	oooo			o Parting words
bedress also address.	Example an extension	These taxans a second second se	There is an element of a set of a	De attace a consta

General background

Why timing systems

- Having many systems act in sync.
- Providing a common notion of time to make sense of distributed diagnostics data.

Challenges

- Generating a very good (periodic) clock signal at the source.
- Evaluating transmission delay from that source to each destination so we can account for it.

Clock jitter becomes amplitude noise in the sampled signal, with a conversion factor depending on signal slope.

Introduction	Event systems ●○○○	Timing concepts	Timing technologies	Parting words o
Outline				

Introduction

Timing concepts

- Background on phase noise
- Background on phase-locked loops

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Introduction	Event systems ○●○○	Timing concepts	Timing technologies	Parting words o
Sequer	ncing and sy	/nchronisati	on	

Introduction Event systems Timing concepts Timing technologies Parting work ooo ooooooooooooooooooooooooooooooooo	0			. La constante	
	Introduction	Event systems ○○●○	Timing concepts	Timing technologies	Parting words

General Machine Timing lower layers

Courtesy Greg Kruk

Javier Serrano | CERN BE-CEM-EDL Timing for accelerators

 Introduction
 Event systems
 Timing concepts
 Timing technologies
 Parting words

 Phase Locked Loops (PLL) for
 Clock & Data Recovery (CDR)
 Formation (CDR)
 Formation (CDR)

Outline

Introduction

2 Event systems

3 Tir

Timing concepts

- Background on phase noise
- Background on phase-locked loops

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Table of Contents

1 Introduction

2 Event systems

3

Timing concepts

- Background on phase noise
- Background on phase-locked loops

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Introduction	Event systems	Timing concepts	Timing technologies	Parting wo

The imperfect sine wave

With both amplitude and phase noise

$$a(t) = A(1 + \alpha(t))\sin(\omega t + \varphi(t))$$

If we use hard-limiters, AGCs, etc.

$$a(t) = A\sin\left(\omega\left(t + \frac{\varphi(t)}{\omega}\right)\right)$$

DI	·			
		000000000		
Introduction	Event systems	Timing concepts	Timing technologies	Parting words

Phase noise Power Spectral Density (PSD)

Parseval's theorem

$$\int_{-\infty}^{+\infty} |\varphi(t)|^2 dt = \int_{-\infty}^{+\infty} |\Phi(f)|^2 dt$$

Truncated signal

$$\Phi_T(f) = \int_{-T/2}^{+T/2} \varphi_T(t) e^{-j2\pi f t} dt$$

Truncated Parseval

$$\frac{1}{T}\int_{-T/2}^{+T/2}\left|\varphi_{T}(t)\right|^{2}dt=\int_{-\infty}^{+\infty}\frac{\left|\Phi_{T}(t)\right|^{2}}{T}dt$$

Introduction	Event systems	Timing concepts ○○○○●○○○○○	Timing technologies	Parting words
Phase	noise Powe	r Spectral D	ensitv (PSD)	

Wiener-Khintchine theorem

$$S_{\varphi}^{\prime\prime}(f) = \lim_{T \to \infty} \frac{1}{T} |\Phi_T(f)|^2$$

In practice

$$S_{\varphi}(f) pprox rac{2}{T} \left< |\Phi_T(f)|^2 \right>_m$$

Introduction	Event systems	Timing concepts	Timing technologies	Parting words o		
Integrating DCD: littor						

Timing concepts

Timing technologies

Parting words

Table of Contents

1 Introduction

2 Event systems

3 Timing concepts

- Background on phase noise
- Background on phase-locked loops
- 4 Timing technologies
 - Millisecond timing
 - Microsecond timing
 - Nanosecond and picosecond timing
 - Femtosecond timing

Introduction	Event systems	Timing concepts	Timing technologies	Parting words o
PLL block	k diagram			

Introduction	Event systems	Timing concepts	Timing technologies	Partin o

PLL transfer functions

Total output phase spectrum

$$\Phi_o(s) = H(s) \cdot \Phi_i(s) + E(s) \cdot \Phi_n(s)$$

System transfer function (low pass)

 $H(s) = rac{K_{VCO}K_dF(s)}{s + K_{VCO}K_dF(s)}$

Error transfer function (high pass)

$$E(s) = 1 - H(s) = \frac{s}{s + K_{VCO}K_dF(s)}$$

words

Introduction	Event systems	Timing concepts	Timing technologies ●ooooooooooooooooooooooooo	Parting words o
Outline				

1 Introduction

2 Event systems

Timing concepts

- Background on phase noise
- Background on phase-locked loops

4

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Two-way delay compensation schemes

Having the values of t_1 , t_2 , t_3 and t_4 , the slave can calculate the one-way link delay:

$$\delta_{ms} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

Parting words

Timing concepts

Timing technologies

Parting words

Table of Contents

Introduction

2 Event systems

Timing concepts

- Background on phase noise
- Background on phase-locked loops
- 4

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Millional	and discrimination			
Introduction	Event systems	Timing concepts	Timing technologies	Parting wor

Millisecond timing Example: Network Time Protocol (NTP)

Used in general-purpose computers

- Works across the Internet.
- Each client (slave) gets synchronised to one or more servers.

Cannot do better than 1 ms

- Asymmetries in network, switches and routers.
- Non-determinism due to OS scheduler (time tags done in SW).
- Requires strong statistics artillery to average over many measurements.

Timing concepts

Timing technologies

Parting words

Table of Contents

Introduction

2 Event systems

Timing concepts

- Background on phase noise
- Background on phase-locked loops
- 4

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Introduction Event systems Timing concepts Conce

Microsecond timing Example: Precision Time Protocol (PTP, IEEE1588)

Acts on both of NTP's shortcomings

- Time-tagging can be done in HW.
- Special PTP switches ensure no loss in precision.

Has a hard time doing better than $1\mu s$

- Typical nodes use a free-running oscillator.
- Frequency offset (and drift) compensation generates extra traffic.

Introduction 000	Event systems	Timing concepts	Timing technologies ○○○○○●○○○○○○○○	Parting words o
Talala				

Table of Contents

1 Introduction

2 Event systems

Timing concepts

- Background on phase noise
- Background on phase-locked loops

4

Timing technologies

- Millisecond timing
- Microsecond timing

Nanosecond and picosecond timing

Femtosecond timing

White Ra	abbit techr	ology - sub-	ns synchronisat	ion
Introduction	Event systems	Timing concepts	Timing technologies	Parting words

Based on

• IEEE 1588 Precision Time Protocol on Gigabit Ethernet over fibre

				•
Introduction	Event systems	Timing concepts	Timing technologies	Parting words

Based on

 IEEE 1588 Precision Time Protocol on Gigabit Ethernet over fibre

Enhanced with

- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model

Introduction	Event systems	Timing concepts	Timing technologies	Parting words

Layer 1 Syntonisation

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps

Digital Dual Mixer Time Difference (DDMTD)

- Precise phase measurements in FPGA
- WR parameters:
 - clk_{in} = 62.5 MHz
 - *clk_{DDMTD}* = 62.496185 MHz (N=14)
 - *clk_{out}* = 3.814 kHz
- Theoretical resolution of 0.977 ps

Introduction	Event systems	Timing concepts	Timing technologies	Parting words o
Link dela	av model			

 Correction of Round Trip Time (RTT) for asymmetries

Introduction	Event systems	Timing concepts	Timing technologies	Parting words o
Link dela	av model			

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion

I the later later							
Introduction	Event systems	Timing concepts	Timing technologies	Parting words o			

Link delay model

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

 $\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$

I to be shall be							
Introduction	Event systems	Timing concepts	Timing technologies	Parting words o			

Link delay model

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

Accurate offset from master (OFM):

$$\begin{split} \delta_{ms} &= \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right) \\ OFM &= t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S \right) \end{split}$$

000	0000	0000000000		o O			
Introduction	Event eveteme	Timing concepto	Timing toobhologioo	Porting words			

WR time transfer: out-of-the-box

Introduction	Event systems	Timing concepts	Timing technologies	Parting words o		
WP time transfer: out of the box						

WR time transfer: out-of-the-box

Introduction	Event systems	Timing concepts	Timing technologies	Parting word

WR time & frequency transfer: state of the art

GM-out to end-node-out: accuracy of <10 ps</p>

GM-out to end-node-out: jitter of <100 fs RMS 10 Hz-10 MHz

Javier Serrano | CERN BE-CEM-EDL Timing for accelerators

Introduction Event systems Timing concepts Conce

Javier Serrano | CERN BE-CEM-EDL Timing for accelerators

Nonood	and and r	icoccord t	imina	Ŭ
Introduction	Event systems	Timing concepts	Timing technologies	Parting words

Another example: neutrino oscillation experiments

Table of Contents

Introduction

2 Event systems

Timing concepts

- Background on phase noise
- Background on phase-locked loops
- 4

- Millisecond timing
- Microsecond timing
- Nanosecond and picosecond timing
- Femtosecond timing

Introduction	Event systems	Timing concepts	Timing technologies ○○○○○○○○○○○○○○○○	Parting words o			
Femtosecond timing							

Parting words

Specify well

Jitter (with PSD integration limits), UTC vs. beam-synchronous, automatic delay compensation...

Choose well

Going from milliseconds to femtoseconds has costs (money, complexity, reliability...). Pick the technology which suits your needs best.