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- Introduction: What Is time domain and frequency domain?
- Fourier synthesis and Fourier transform
- Time domain sampling of electrical signals ( ADCs)
- Bunch signals in time and frequency domain

a) single bunch single pass
b) single bunch multi pass (circular accelerator)
c) multi bunch multi pass (circular accelerator) → not this time
d) Oscillations within the bunch (head-tail oscillations) → not this time

- Fourier transform of time sampled signals 
basics, aliasing, windowing

- Methods to improve the frequency resolution 
a) interpolation 
b) fitting (the NAFF algorithm) 
c) influence of signal to noise ratio 
d) special case: no spectral leakage + IQ sampling

- Analysis of non stationary spectra: 
- STFT (:= Short time Fourrier transform) (Gabor transform) 
also called: Sliding FFT, Spectogram
- wavelet analysis 
- PLL tune tracking

Outline
In red: items dropped from 2 hour version
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Complete 2hour version of course

Slides:
https://indico.cern.ch/event/808940/contributions/3553569/attachments/1
906422/3149268/timefrequency12.pptx

Writeup: 
arXiv:2009.14544v1 [physics.acc-ph]



• At first: everything happens in time domain, i.e. we 
exist in a 4D world, where 3D objects change or 
move as a function of time.

• And we have our own sensors, which can watch this 
time evolution: eyes  bandwidth limit: 1 Hz

• For faster or slow processes we develop instruments 
to capture events and look at them:
oscilloscopes, stroboscopes, cameras…
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Introduction 1/3
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• But we have another sensor: ears

• What is this?
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Introduction 2/3
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Introduction 3/3

• Once we perceive the material in frequency domain (our brain does 

this for us), we can better understand the material.

• Essential:

Non matter whether we describe a phenomenon in 

time domain or in frequency domain, we describe the 

same physical reality. But the proper choice of 

description improves our understanding!



• Had crazy idea (1807):
• Any periodic function can 

be rewritten as a weighted sum 
of Sines and Cosines of 
different frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and other 
big wigs

– Not translated into English 
until 1878!

• But it’s true!
– called Fourier Series

– Possibly the greatest tool 

used in Engineering

Jean Baptiste Joseph Fourier (1768-1830)
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Any periodic function f(x) can be expressed as a series of harmonics

On the right we see a 

rectangular periodic 

Function represented as

Sum of the fundamental

(a sine wave with the 

same frequency) and 

many higher harmonics

(odd multiples of the 

Fundamental) with 

decreasing amplitudes.

Fourier Series
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Fourier Transform
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FT defined as:

Note:

   




 dxexfuF iux

1sincos  ikikeik

Any non-periodic time-domain function f(x) can be transformed 
by the Fourier-transform (FT) into frequency domain function F(u)



Fourier Transform Pairs (I)
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Fourier Transform Pairs (II)

Basic CAS 2021 H.Schmickler 12



Basic CAS 2021 H.Schmickler

Definitions

In real accelerators not all available 
RF-buckets are filled with particle 
bunches.
- a gap must be left for the 
injection/extraction kickers
- Physics experiments can impose a 
minimum  bunch distance, which is 
larger than one RF period (i.e. LHC) 

Revolution frequency:    ωrev = 2π frev

RF frequency: ωRF = 2π fRF = h* ωrev  (h=harmonic number)

Bunch Repetition frequency: ωrep = 2π frep = ωrev /n (n= number of RF buckets between bunches)

(frep = 1/bunch spacing)
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Example LHC beam



• Time and frequency domain description

• Measurement of bunch length in time domain

• Measurement of bunch length in frequency domain

Single bunch single pass
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Understanding beam signals in 
time and frequency domain

We start with:
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Particle beam with gaussian longitudinal distribution

A0, pick amplitude

σt

bunch length

σf
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• Sampling (=measurement) of an electrical signal in regular time 
intervals. The electrical signal is obtained from a monitor, which is 
sensitive to the particle intensity.

Time domain measurement of single bunch
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Sampling a pulse at 2 Gigasamples/sec

 50 mV/div, 2 ns/div

 SPS beam

 2 pairs of 10 mm button 
electrodes (second pair delayed 
by cables for clarity)

 Signals already “filtered” by quite 
long cables



ADC performance chart (2019)



Frequency domain measurement of single bunch
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Nice example from R&D work in 
CTF3 (CERN)
A.Dabrowski et al., Proc of PAC07, 
FRPMS045

Primary signal is EM wave of beam 
extracted through a thin window

Subdivision into 4 frequency bands

Measurement of rms amplitude in 
the 4 bands
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CTF3 results
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Time domain measurements of 4 bands

FFT of down-converted signals

fit
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Single bunch multi pass (circular accelerator)
 “Revolution harmonics”

Time domain
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• The continuous spectrum of a single bunch passage  becomes a 
line spectrum. 

• The line spacing is frev= 1/Trev . (Trev = revolution time)

• The amplitude envelope of the line spectrum is the “old” single 
pass frequency domain envelope of the single bunch.

• Why?
- short answer: Do the Fourier transform! 
- long answer: 
Understand in more detail  2,3,4…N consecutive bunch           
passages in time and frequency domain (next slides)

Understanding the revolution harmonics
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Bunch pattern simulations (1/4)
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1 bunch 0.5 
nsec

2 bunches
0.5 nsec

Δt = 5 nsec

• Frequencies in this range make a constructive interference (no phase difference)
• Frequencies in this range cancel each other (1800 phase difference)
• Other frequencies intermediate summation/cancelation
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Bunch pattern simulations (2/4)

Basic CAS 2021 H.Schmickler

Δt= 5 nsec

Δt= 10 nsec

Δt= 20 nsec

First harmonic @ 200 MHz

First harmonic @ 100 MHz

First harmonic @ 50 MHz
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Bunch pattern simulations (3/4)
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From top to bottom:
3, 5, 10 bunches (0.5nsec long, Δt = 10 nsec)
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Last bunch pattern simulation
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• 100 equidistant bunches (Δt = 10 nsec)
• Resulting spectrum is a line spectrum with the fundamental line given by the 

inverse of the bunch distance
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• Circular accelerator

 Beam signal periodic with revolution frequency: wrev

 Spectral components at:

A Measured Longitudinal beam spectrum

wrev

Spectrum of single bunch

Multi-bunch beam

wRF

2wRF

3wRF

Bunch not Gaussian.
Somewhat between triangular and parabolic
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Amplitude modulation

m= modulation index 0…1 (Venv = Vc)

Using trigonometric identity:
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Relevant example of amplitude modulation: 
stimulated betatron oscillation(or: tune measurement)

Beam centre of charge makes small betatron oscillation around the closed orbit
(- stimulated by an exciter or by a beam instability)

Depending on the proximity to an EM sensor the measured signal amplitude varies.

taken from R.Jones,

proc. of BI-CAS 2018
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taken from R.Jones,
proc. of BI-CAS 2018
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• Discrete Fourier Transform basics

Discrete Fourier Transforms

In general: 

We use DFTs of N equidistant time sampled signals; 

A FFT (Fast Fourier transform) is a DFT with N= 2k

Basic CAS 2021 H.Schmickler
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DFT - aliasing

• Periodic signals, which are sampled with at 
least 2 samples per period, can be 
unambiguously reconstructed from the 
frequency spectrum. (Nyquist-Shannon 
Theorem)

• In other words, with a DFT one only obtains 
useful information up to half the sampling 
frequency.

• Antialiasing filters before the sampling 
suppress usually unwanted higher spectral 
information.

Basic CAS 2021 H.Schmickler
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Spectral leakage caused by windowing

By measuring a continuous signal only over a finite length, we apply a “data 
window” to signal, which leads to spectral artefacts in frequency domain.
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• Recall: The Fourier transform of a product in time domain is the convolution of the 
individual Fourier transforms in Frequency domain

Windowing = Convolution of continuous signal 
with window function
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Rectangular window example

signal = amp1* sin (2π ω1t) + amp2 * sin(2π ω2t)

amp1 =1
amp2=0.01

ω1= 2π * 9990 Hz
ω2= 2π * 10010 Hz

The small signal 
component is 
completely masked 
by the sidelobe of 
the large signal

ZOOM

FFT
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Applying the Blackman-Harris window

signal = window * amp1* sin (2π ω1t) + amp2 * sin(2π ω2t)

amp1 =1
amp2=0.01

ω1= 2π * 9990 Hz
ω2= 2π * 10010 Hz

The small signal 
component is nicely 
resolved

ZOOM

FFT
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• The following link contains many frequently used window functions, their 
main features and application:

• https://en.wikipedia.org/wiki/Window_function

Popular window functions

The actual choice of the window depends 
on:
- The signal composition
- The required dynamic range
- The signal to noise ration

remark: every window except the 
rectangular window is linked to a loss in 
amplitude (we multiply many samples 
with almost “zero”)
 reduced S/N up to 6 dB
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• Recall: basic frequency resolution: 
Δf = 2*fsamp/Nsamp

• We can interpolate between the frequency 
bin with maximum content and the left and 
right neighbouring bins

• We limit the discussion to “three point 
interpolation methods”

• The interpolation function is either:

A) a parabola of the measurements
(:= parabolic interpolation)

B) a parabola of the log of the   
measurements
(:= Gaussian interpolation)

• Can get up to 1/N2 resolution

Improving the frequency resolution of a DFT spectrum

Details: https://mgasior.web.cern.ch/mgasior/pap/FFT_resol_note.pdf
Basic CAS 2021 H.Schmickler 39
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Improving the frequency resolution of a DFT spectrum

from: https://mgasior.web.cern.ch/mgasior/pap/FFT_resol_note.pdf

𝐺𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝐺 ≔
𝛥𝑓

2𝑥𝐸𝑟𝑟𝑜𝑟𝑚𝑎𝑥.
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A little summary on frequency resolution

• Frequency measurement error ε(N) as function of log (N)
for different S/N ratios

• Basic FFT resolution proportional to 1/N
• Plot shows result for interpolation using Hanning window.
• With interpolation and no noise proportional to 1/N2

1/N

1/N2

Taken from: R. Bartolini et al, Precise Measurement of the 
Betatron tune, Proceedings of PAC 1995, Vol. 55, pp 247-256



1. Excite beams with a 
sinusoidal carrier

1. Measure beam 
response

1. Sweep excitation 
frequency slowly 
through beam 
response

Other method: Network analysis
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• Stationary Signal
– Signals with frequency content unchanged in time

– All frequency components exist at all times

 ideal situation for Fourier transform (FT)
( orthonormal base functions of Fourier transform are infinitely long, no time 
information when spectral component happens)

• Non-stationary Signal
– Frequency composition changes in time

 need different analysis tools

– One example: the “Chirp Signal”

Analysis of non-stationary spectra



Example of simple stationary or non-stationary signals
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linear chirp: 2 Hz to 20 Hz

Upward or downward chirp
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Short Time Fourier Analysis

 In order to analyze small section of a signal, Denis Gabor (1946), 

developed a technique, based on the FT and using windowing : 

Short Time Fourier Transform:= STFT

• A compromise between time-based and frequency-based views of a 
signal.

• both time and frequency are represented in limited precision.
• The precision is determined by the size of the window.
• Once you choose a particular size for the time window - it will be the 

same for all frequencies.



• To follow betatron tunes during machine transitions we
need time resolved measurements. Simplest example:

– repeated FFT spectra as before (spectrograms)

Time Resolved Tune Measurements



STFT display:  Spectogram

• A very useful form of 
displaying the result of a STFT 
is a spectrogram, i.e a 3D view 
of many consecutive Fourier 
transforms, which “slide” 
along the time series of data.



Summary

Basic CAS 2021 H.Schmickler 49

• Single beam passage in a detector produces a signal with a continuous frequency 
spectrum. The shorter the bunch, the higher the frequency content.

• Repetitive bunch passages produce a line spectrum. They are called revolution 
harmonics.
Details of the bunch pattern, differences in bunch intensities etc. determine the 
final spectral distribution.

• Transverse or longitudinal oscillations of the bunch around the equilibrium produce 
sidebands around all revolution harmonics.

• These sidebands are used for the measurement of the betatron tunes or the 
synchrotron tune.

• The standard tool for obtaining spectral information is a Fourier transform (FFT) of 
the time sampled signals.

• Windowing and interpolation allow higher resolution measurements.
• Spectograms or STFTs are consecutive FFTs of larger datasets, which allow to follow 

time varying spectra.



Appendix I: Python Code for bunch 
pattern display
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• import numpy as np

• from numpy import fft

• import matplotlib.pyplot as plt

• N=16384

• NBUNCH=100

• sigmax = 0.5

• deltax=10

• T=1/N

• NLEFT=-50

• NRIGHT=50

• x1= np.linspace(NLEFT,N-NLEFT,N)

• xtime=np.linspace(NLEFT,NBUNCH*deltax + NRIGHT,N)

• IB=0

• y=NBUNCH*np.exp(-(x1*x1)/(2*sigmax*sigmax))

• ytime=NBUNCH*np.exp(-(xtime*xtime)/(2*sigmax*sigmax))

• y1=0

• y2=0

• y3=0

• ytime=0

• while True:

•

• y1=y1+np.exp(-(x1-IB*deltax)*(x1-IB*deltax)/(2*sigmax*sigmax))

• ytime=ytime+np.exp(-(xtime-IB*deltax)*(xtime-IB*deltax)/(2*sigmax*sigmax))

• IB=IB+1

• if IB==NBUNCH:

• break   

Appendix Ia: Python code for bunch 
pattern simulation 1st part
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• ffty=(fft.fft(y))

• ffty1=(fft.fft(y1))

• x2=np.linspace(0.0,500,N/2)

• y2=2.0*np.abs(ffty1[:N//2])/float(N)

• y3=2.0*np.abs(ffty[:N//2])/float(N)

• plt.rcParams["figure.figsize"] = [15,4]

• plt.subplot(1,2,1)

• plt.plot(xtime,ytime,'b-')

• plt.ylabel('amplitude')

• plt.xlabel('time [nsec]')

• plt.subplot (1,2,2)

• plt.plot (x2,y3,'r-')

• plt.plot (x2,y2,'b-')

• plt.ylabel('amplitude')

• plt.xlabel('frequency [MHz]')

• plt.tight_layout()

• plt.savefig (‘whatever.png')

• plt.show()

Appendix Ib: Python code for bunch 
pattern simulation 2nd part
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