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Introduction

- Accelerators have limited ranges of energies s

— A synchrotron have a typical range of energy of 20
LHC from 450GeV to 7000TeV for protons (x15) JLHC
SPS from 14GeV to 450GeV for protons (x30) ALICE A North Area: LHCh

— Particles get accelerated in a chain of accelerators

- Injection and extraction between stage needs ™
careful consideration
— to maintain the beams properties, in particular brightness
— To deliver beams with required properties to fixed target
experiments =
- The limits of this lecture
— No (synchro-)cyclotrons, rodhotron, FFA, electrostatic

— Most principles discussed here are applicable to any
type of accelerator

— Focus synchrotrons, more specifically alternating
gradient synchrotrons
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Injection techniques : Fast injection

Injected beam ‘boxcar’ stacking
T intensity injected
beam
Septum magnet J H H H |
% T kicker field \
—t’
Circulating beam \\
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Injection techniques : Fast injection

- Principle
— Injected beam is directly injected into the
ring -
— Conservation of the beam brightness in Girculating bears
all 3 phase spaces u
- Challenges D-quad  Kicker magnet

— Injected beam needs to be matched and

aligned to the lattice and trajectory of the { intensity injected
beam

Septum magnet

4

P o-mimim T
>

.

e NN
— Injection kicker(s) needs to be fast i
enough to deflect only the injected beam
+ Applications T kicker field

— At LEIR to PS, PS to SPS and SPS to
LHC
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Injection techniques : Fast injection

- Seen from the ring

— in the normalized transverse phase space in the plane of injection
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Injection techniques : Fast injection

- Seen from the ring
— in the normalized transverse phase space in the plane of injection

Septum magnet

Circulating beam >

1
1
U

KiCKEI: magnet

I




Injection techniques : Fast injection
- Example of the LHC injection
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Injection techniques : Fast injection
- Injection with an error, here of A in angle at the kicker
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Injection techniques : Fast injection

- In the normalized phase space
— The beam rotates around the closed orbit

After 1 turn...

Septum magnet

Circulating beam
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Injection techniques : Fast injection

- In the normalized phase space
— The beam rotates around the closed orbit

After 2 turns...
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Injection techniques : Fast injection

- In the normalized phase space
— The beam rotates around the closed orbit

After 3 turns etc...

Septum magnet

Circulating beam
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Injection techniques : Fast injection
- Example of such effect observed, at the SPS to LHC injection
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Injection techniques : Fast injection

« Filamentation

— Mismatch between the injected position and ring
closed orbit leads to a dipole oscillation around
the closed orbit :

— Mismatch between the injected shape and ring |
closed solution leads to a quadrupole oscillation
of the beam i}

— Both errors lead to filamentation, and a

reduction of the beam brightness |

- Turn after turn the brightness of the of

beam decreases as its emittance
Increases

— This effect is due to non-liner behaviour: 1
particles at different distances from the center
do no rotate at the same speed |
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Injection techniques : Fast injection

« Filamentation

— Mismatch between the injected position and ring
closed orbit leads to a dipole oscillation around
the closed orbit .

— Mismatch between the injected shape and ring |
closed solution leads to a quadrupole oscillation
of the beam i}

— Both errors lead to filamentation, and a

reduction of the beam brightness |

- Turn after turn the brightness of the of

beam decreases as its emittance
Increases

— This effect is due to non-liner behaviour: 1
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Injection technigques : Fast injection Position as a function of time af

- Observables one BPM
— For a steering error the beam centroid oscillate around the

closed orbit, which can be observed using a BPM s
— For a shape, or optical mismatch §| |
the beam profile needs measured turn after turn for a direct 0|
measurement % : m-‘
Indirectly, by comparing the measured beam equilibrium emittance to =l \
expected values o 1
- Important point
— Any error and the induced filamentation will lead to an T
increase in emittance and a loss of brightness jieforence ciosed orbit

— This applies to both transverse and longitudinal phase
spaces

- Mitigation techniques . ]

— Measurement of injected beam shape and trajectory I N ]

correction and their correction T

— Transverse damper can mitigate the effect of filamentation
by damping the injection oscillations
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Injection techniques : Mmulti-turn injection

- Principle
— Injected beam is injected in a small part of
the available phase space Injected beam
— The injected trajectory is moved relative to (usuallyfrom alinac)
the closed orbit during the injection process

— Allows to accumulate intensity and “paint’
the phase space with a beam smaller than
the available ring acceptance, typically from
a linac to a ring

- Challenges

Septum magnet

Circulating bheam

— Complex manipulation of the injected beam [ | B S e
and ring closed orbit during the injection
process Programmable closed orbit bump
- Applications
— At CERN PSB until LS2
— At GSI SIS18 heavy ions injection




Injection techniques : Mmulti-turn injection

- In the case of the PSB (pre-LS2) the beam is injected in the
horizontal plane and the ring fractional tune is close to 0.25

Turn1

On each turninject a new
batch and reduce the
bump amplitude

Septum magnet

Circulating beam

x|

:

Septum




Injection techniques : Mmulti-turn injection

- In the case of the PSB (pre-LS2) the beam is injected in the
horizontal plane and the ring fractional tune is close to 0.25

Turn 2

Septum magnet

Circulating beam

I
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Injection techniques : Mmulti-turn injection

- In the case of the PSB (pre-LS2) the beam is injected in the
horizontal plane and the ring fractional tune is close to 0.25

Turn 3

Septum magnet
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Injection techniques : Mmulti-turn injection
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Injection techniques : Mmulti-turn injection
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Injection techniques : Mmulti-turn injection

- In the case of the PSB (pre-LS2) the beam is injected in the
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Injection techniques : Mmulti-turn injection

- In the case of the PSB (pre-LS2) the beam is injected in the

horizo
Turn 15

Circulating beam




Injection techniques : multi-turn injection [1]

Other example at the GSI SIS18, injection of
heavy ions from the UNILAC

Conclusion

— Disadvantages inherent in using an injection septum:
Width of several mm reduces aperture

Beam losses from circulating beam hitting septum:
Typically 30 — 40 % for the CERN PSB injection pre-LS2

Limits number of injected turns to 10 - 20
Allows to accumulate intensity into a ring, from a much
smaller beam source, typically a linear accelerator

Is complex to optimize, with few observables as
individual beamlets cannot be measured

10+

o N A OO
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Fig. 5. Snapshot of an MTI simulation with GA optimized injection parameters. The

inner beamlets do not overlap through earlier loss at the septum.
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Fig. 7. The PA front for the multiplication factor and MTI loss. GA found a much better

PA front than the previous simulation studies.

[1]S. Appel, O. Boine-Frankenheim, and F. Petrov, ‘Injection optimization in a heavy-ion synchrotron using
genetic algorithms’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 852, pp. 73-79, Apr. 2017, doi:
10.1016/j.nima.2016.11.069.
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Injection techniques . Charge exchange
- Principle

Injected beam changes charge states
through stripping in the injection region

Since both injected and circulating beam

can cross the same space at the same
time, longer injection times and higher
brightness are reachable

- Challenges

More elements than in other injection
scheme

- Applications

C
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At CERN PSB since 2020
At BNL AGS-Booster since the 1992
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Injection techniques . Charge exchange

- Principle

Injected beam changes charge states
through stripping in the injection region
Since both injected and circulating beam
can cross the same space at the same
time, longer injection times and higher
brightness are reachable

- Challenges

More elements than in other injection
scheme

- Applications
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At CERN PSB since 2020
At BNL AGS-Booster since the 1992
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Injection techniques . Charge exchange
- Carefull adjustment of the injection parameters allow to produce very different

beams

This beam has a high intensity at a small beam size.
This maximum density beam is called high brightness
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beam and is required for the LHC experiments.
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This beam has a large beam size to accommodate a very high intensity (large
number of protons).

The large beam size is required to avoid that the protons repel each other.
Similar high intensity beams are required for experiments in the ISOLDE
facility.




Injection techniques . Charge exchange
- Example of the PSB

— Paint uniform transverse phase PSB
space density by modifying closed injection
orbit bump and steering injected 4 rings
beam stacked

— Foil thickness calculated to double-
strip most ions (=99%)
200 pg.cm? (= 1 ym of C!)
Carbon foils generally used — very fragile
— Injection chicane reduced or switched
off after injection, to avoid excessive
foil heating and beam blow-up

Foils cassette
developed by
SY-ABT
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Injection techniques : Lepton Injection

Injected beam

- Principle
— In a synchrontron-radiation dominated

lepton ring one can take advantage of the
fast damping of oscillations

— Can use transverse or longitudinal damping:

Septum magnet

. Circulating
Transverse - Betatron accumulation beam
Longitudinal - Synchrotron accumulaton ~— ———— [ || [ L[\;
® Chal Ie ng es Closed orbit bumpers or kickers

— Injection scheme and model needs to
account for the synchrotron radiation
damping experienced by the beam

- Applications

— At CERN LEP injection

— In most synchrotron light sources, where it .
Allows continuous injection, allowing "
continuous operation ~constant current %




Injection techniques : summary
- Several different techniques using kickers, septa and bumpers:

— Single-turn injection for hadrons
Boxcar stacking: transfer between machines in accelerator chain
Angle / position errors = injection oscillations
Uncorrected errors = filamentation = emittance increase
— Multi-turn injection for hadrons
Phase space painting to increase intensity
H- injection allows injection into same phase space area

— Lepton injection: take advantage of damping

Less concerned about injection precision and matching
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Extraction technigues : Fast extraction

Extracted beam

- Principle
— Mirror of the fast injection thechnique

— Circulating beam is moved close to the septum
magnet Circulating

beam
— Afast kicker magnet imparts a final deflection to
channel the beam towards the septum aperture

Septum magnet

SR

Kicker magnet

Closed orbit bumpers

and the extraction line F-quad D-quad
- Challenges ymensiy
— Higher energies require stronger elements than J H H H

for injection

- Applications
— At CERN PSB, SPS, AD and more

T kicker field

— At many other synchrotrons around the world —
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- Principle
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Extraction technigues : Fast extraction

Extracted beam

- Example of the LEIR extraction

Septum magnet

Septum

Circulating
beam

AU NN RN
Kicker magnet

Closed orbit bumpers
F-quad D-quad

Kicker
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Extraction technigques : Multi-turn extraction

- Principle
— Somewhat mirrors the principle of multi-turn
injection
— Circulating beam is brought close to an Extracted beam o
electrostatic septum and partially pushed trough septum

using fast kicker
— The beam is shaved over a few turns —

- Challenges

— The electrostatic septum is used for its thin blade
(down to a few tens of um), but limited effect on
high energy beams ¢

Electrostatic —

%septum

— This scheme is intrinsically lossy and will create -
activation around the extraction elements, and in
particular the electrostatic septum
- Applications
— At CERN PS until 2015




Extraction technigques : Multi-turn extraction
« CERN PS to SPS: 5-turn continuous transfer

Q,=0.25 septum

A

Magnetic
septum

% Electrostatic
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Extraction technigques : Multi-turn extraction
« CERN PS to SPS: 5-turn continuous transfer

Qh =0.25 septum
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Extraction technigques : Multi-turn extraction
« CERN PS to SPS: 5-turn continuous transfer

Qh=0.25

I

5
X Bumpv_s.tu!' )
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— Resonant extraction
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Extraction technigues : resonant extraction, Multi-turn extraction

- Principle
— Direct evolution of the PS continuous extraction,
significantly lower losses (no particles at the septum in transverse plane)
Phase space matching improved with respect to existing non-resonant multi-turn extraction -
‘beamlets’ have similar emittance and optical parameters
— Adiabatic capture of beam in stable “islands”
Use non-linear fields (sextupoles and octupoles) to create islands of stability in phase space

A slow (adiabatic) tune variation to cross a resonance and to drive particles into the islands
(capture) with the help of transverse excitation (using damper)

Variation of field strengths to separate the islands in phase space

- Challenges

— Highly non-linear, and complex, beam-dynamics
- Applications

— At CERNPS




Extraction techniques . Resonant extraction, PS Multi-turn extraction (MTE)

20253 a. Unperturbed beam
Bopeof
Sora i i i
M b. Increasing non-linear fields
Turn number
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e lzooo a. Beam captured in stable islands
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Courtesy M. Giovannozzi: MTE Design Report, CERN-
Cw 2006-011, 2006
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Extraction techniques . Resonant extraction, PS Multi-turn extraction (MTE)

it Beam distribution after 0 turns T Beam distribution after 4000 wrns a . U n p e rtu rb e d b e am
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Extraction techniques : Resonant extraction, slow extraction

¢ PrInCIple Extracted beam
Magnetic
— Slow bumpers move the beam near the septum
septum % _
Tune adjusted close to nth order betatron EL:‘:H:,IStat'c ]
resonance Sy

Multipole magnets excited to define stable area in
phase space, size depends on AQ = Q — Qr

— Provides a continuous beam ‘spill’ to ya
experiments, over any length of times from
milliseconds to hours

Closed orbit bumpers Ce

- Challenges
— Non-linear beam dynamics
— Lossy process
- Applications
— At CERN PS and SPS
— At BNL AGS until 2000 and Booster




Extraction techniques : Resonant extraction, slow extraction

- 3rd order resonances
— Sextupole fields distort the circular normalised phase space particle trajectories.
— Stable area defined, delimited by unstable Fixed Points. /

\/ pr

\%

R; 1z ocAQ-ki

p
2

- Sextupole magnets arranged to produce suitable phase space orientation of the stable
triangle at thin electrostatic septum

- Stable area can be reduced by...

— Increasing the sextupole strength, or...

— Fixing the sextupole strength and scanning the machine tune Qh (and therefore the resonance) through
the tune spread of the beam




Extraction techniques : Resonant extraction, slow extraction

Evolution of the phase space for slow extraction
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Evolution of the phase space for slow extraction
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Evolution of the phase space for slow extraction
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Extraction techniques : Resonant extraction, slow extraction

Evolution of the phase space for slow extraction
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Evolution of the phase space for slow extraction
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Extraction techniques : Resonant extraction, slow extraction

Evolution of the phase space for slow extraction
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Extraction techniques : resonant extraction, slow extraction from the SPS
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Extraction technigues : summary

- Single-turn fast extraction:
— for transfer between machines in accelerator chain, beam abort, etc.

- Non-resonant (fast) multi-turn extraction
— slice beam into equal parts for transfer between machine over a few turns.

- Resonant low-loss (fast) multi-turn extraction
— create stable islands in phase space: slice off over a few turns.

- Resonant (slow) multi-turn extraction

— create stable area in phase space and slowly drive particles into resonance —long spill over
many thousand turns.
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Further reading (with the formulae !), and ressources

- CAS 2017 on Beam injection, extraction and transfer at

https://indico.cern.ch/event/451905/

— This talk, more detailed and with formulae by M. Fraser
https://indico.cern.ch/event/451905/contributions/2159062/

— Overlooked here, timing and synchronization by RF expert H. Damerau
https://indico.cern.ch/event/451905/contributions/2159053/

— Detailed talk on resonant slow extraction by P. Bryant
https://indico.cern.ch/event/451905/contributions/2159064/

— Exotic extraction methods that discuss all the possibilities overlooked here by B.
Goddard https://indico.cern.ch/event/451905/contributions/2159103

- This CAS lecture on Kickers and Septa by M. Barnes
https://indico.cern.ch/event/1018359/contributions/4312229

- CERN GIS machine portal https://gis.cern.ch/qgisportal/Machine.htm
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Thank you

CERN

18/05/2021 CAS 2021 : Injection and extraction84



