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Copyright statement and speaker’s release for video 
publishing 

n The author consents to the photographic, audio and video recording of  this 
lecture at the CERN Accelerator School. The term “lecture” includes any 
material incorporated therein including but not limited to text, images and 
references. 
n The author hereby grants CERN a royalty-free license to use his image and 
name as well as the recordings mentioned above, in order to post them on the 
CAS website. 
n The author hereby confirms that to his best knowledge the content of  the 
lecture does not infringe the copyright, intellectual property or privacy rights 
of  any third party. The author has cited and credited any third-party 
contribution in accordance with applicable professional standards and 
legislation in matters of  attribution. Nevertheless the material represent 
entirely standard teaching material known for more than ten years. Naturally 
some figures will look alike those produced by other teachers. 
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Summary of Lecture I
n 2nd order dif. equations of motion from Newton’s law (in 

configuration space) can be solved by transforming them to 
pairs of 1st order dif. equations (in phase space)

n Natural appearance of invariant of motion  (“energy”)
n Non-linear oscillators have frequencies which depend on 

the invariant (or “amplitude”)
n Connected invariant of motion to system’s Hamiltonian

(derived through Lagrangian)
n Shown that through the Hamiltonian , the equations of 

motions can be derived
n Poisson bracket operators are helpful for discovering 

integrals of motion
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Canonical 
transformations
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Canonical Transformations
q Find a function for transforming the Hamiltonian from 

variable           to           ,  so system becomes simpler to study
q Transformation should be canonical (or symplectic), so that 

Hamiltonian properties (phase-space volume) are preserved

(q,p) (Q,P)
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6

Canonical Transformations
q Find a function for transforming the Hamiltonian from 

variable           to           ,  so system becomes simpler to study
q Transformation should be canonical (or symplectic), so that 

Hamiltonian properties (phase-space volume) are preserved
q These “mixed variable” generating functions are derived by

q A general non-autonomous Hamiltonian is transformed to

(q,p) (Q,P)

H(Q,P, t) = H(q,p, t) +
@Fj

@t
, j = 1, 2, 3, 4

F1(q,Q) : pi =
@F1

@qi
, Pi = �@F1

@Qi

F2(q,P) : pi =
@F2

@qi
, Qi =

@F2

@Pi

F3(Q,p) : qi = �@F3

@pi
, Pi = �@F3

@Qi

F4(p,P) : qi = �@F4

@pi
, Qi =

@F4

@Pi
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7

Canonical Transformations
q Find a function for transforming the Hamiltonian from 

variable           to           ,  so system becomes simpler to study
q Transformation should be canonical (or symplectic), so that 

Hamiltonian properties (phase-space volume) are preserved
q These “mixed variable” generating functions are derived by

q A general non-autonomous Hamiltonian is transformed to

q One generating function can be constructed by the other 
through Legendre transformations, e.g. 

with the inner product define as              

(q,p) (Q,P)

H(Q,P, t) = H(q,p, t) +
@Fj

@t
, j = 1, 2, 3, 4

F1(q,Q) : pi =
@F1

@qi
, Pi = �@F1

@Qi

F2(q,P) : pi =
@F2

@qi
, Qi =

@F2

@Pi

F3(Q,p) : qi = �@F3

@pi
, Pi = �@F3

@Qi

F4(p,P) : qi = �@F4

@pi
, Qi =

@F4

@Pi

F2(q,P) = F1(q,Q)�Q ·P , F3(Q,p) = F1(q,Q)� q · p , . . .
q · p =

X

i

qipi
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8

Preservation of Phase Volume
q A fundamental property of canonical transformations is the 

preservation of phase space volume
q This volume preservation in phase space can be represented 

in the old and new variables asZ nY

i=1

dpidqi =

Z nY

i=1

dPidQi
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9

Preservation of Phase Volume
q A fundamental property of canonical transformations is the 

preservation of phase space volume
q This volume preservation in phase space can be represented 

in the old and new variables as

q The volume element in old and new variables are related 
through the Jacobian

Z nY

i=1

dpidqi =

Z nY

i=1

dPidQi

nY

i=1

dpidqi =
@(P1, . . . , Pn, Q1, . . . , Qn)

@(p1, . . . , pn, q1, . . . , qn)

nY

i=1

dPidQi
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10

Preservation of Phase Volume
q A fundamental property of canonical transformations is the 

preservation of phase space volume
q This volume preservation in phase space can be represented 

in the old and new variables as

q The volume element in old and new variables are related 
through the Jacobian

q These two relationships imply that the Jacobian of a 
canonical transformation should have determinant equal to 
1

Z nY

i=1

dpidqi =

Z nY

i=1

dPidQi

nY

i=1

dpidqi =
@(P1, . . . , Pn, Q1, . . . , Qn)

@(p1, . . . , pn, q1, . . . , qn)

nY

i=1

dPidQi

����
@(P1, . . . , Pn, Q1, . . . , Qn)

@(p1, . . . , pn, q1, . . . , qn)

���� =
����
@(p1, . . . , pn, q1, . . . , qn)

@(P1, . . . , Pn, Q1, . . . , Qn)

���� = 1
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11

Examples of transformations
q The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  
Q = �p , P = q

@(P,Q)
@(p,q) =

�����

@P
@p

@Q
@p

@P
@q

@Q
@q

����� =
����
0 �1
1 0

���� = 1
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12

Examples of transformations
q The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  

q On the other hand, the transformation from Cartesian to 
polar coordinates is not, since

Q = �p , P = q

@(P,Q)
@(p,q) =

�����

@P
@p

@Q
@p

@P
@q

@Q
@q

����� =
����
0 �1
1 0

���� = 1

q = P cosQ , p = P sinQ

@(q,p)
@(Q,P ) =

����
�P sinQ P cosQ
cosQ sinQ

���� = �P
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13

Examples of transformations
q The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  

q On the other hand, the transformation from Cartesian to 
polar coordinates is not, since

q There are actually “polar” coordinates that are canonical, 
given by for which

Q = �p , P = q

@(P,Q)
@(p,q) =

�����

@P
@p

@Q
@p

@P
@q

@Q
@q

����� =
����
0 �1
1 0

���� = 1

q = P cosQ , p = P sinQ

@(q,p)
@(Q,P ) =

����
�P sinQ P cosQ
cosQ sinQ

���� = �P

@(q,p)
@(Q,P ) =

�����

p
2P sinQ

p
2P cosQ

� cosQp
2P

sinQp
2P

����� = 1

q = �
p
2P cosQ , p =

p
2P sinQ
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The Relativistic 
Hamiltonian for 

electromagnetic fields
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15

Single-particle relativistic Hamiltonian

qNeglecting self fields and radiation, motion can be 
described by a “single-particle” Hamiltonian

q Cartesian positions
q conjugate momenta
q magnetic vector potential
q electric scalar potential

x = (x, y, z)
p = (px, py, pz)
A = (Ax, Ay, Az)

�

H(x,p, t) = c

q�
p� e

cA(x, t)
�2

+m2c2 + e�(x, t)
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16

Single-particle relativistic Hamiltonian

qNeglecting self fields and radiation, motion can be 
described by a “single-particle” Hamiltonian

q Cartesian positions
q conjugate momenta
q magnetic vector potential
q electric scalar potential

qThe ordinary kinetic momentum vector is written

with      the velocity vector and the 
relativistic factor

x = (x, y, z)
p = (px, py, pz)
A = (Ax, Ay, Az)

�

P = �mv = p� e
cA

� = (1� v2/c2)�1/2v

H(x,p, t) = c

q�
p� e

cA(x, t)
�2

+m2c2 + e�(x, t)
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17

Single-particle relativistic Hamiltonian

q It is generally a 3 degrees of freedom one plus time (i.e., 4 
degrees of freedom)

q The Hamiltonian represents the total energy
H ⌘ E = �mc

2 + e�

H(x,p, t) = c

q�
p� e

cA(x, t)
�2

+m2c2 + e�(x, t)
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18

Single-particle relativistic Hamiltonian

q It is generally a 3 degrees of freedom one plus time (i.e., 4 
degrees of freedom)

q The Hamiltonian represents the total energy

q The total kinetic momentum is

q Using Hamilton's equations

it can be shown that motion is governed by Lorentz equations

P =

✓
H

2

c2
�m

2
c
2

◆1/2

(ẋ, ṗ) = [(x,p), H]

H ⌘ E = �mc
2 + e�

H(x,p, t) = c

q�
p� e

cA(x, t)
�2

+m2c2 + e�(x, t)
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From Cartesian to “curved” coordinates
q It is useful (especially for rings)                                 

to transform the Cartesian                            
coordinate system to the                                       
Frenet-Serret system moving                                       
to a closed curve, with path length    

qThe position coordinates in the two systems are 
connected by

s

r = r0(s) +Xn(s) + Y b(s) = xux + yuy + zuz

s

Particle trajectory

ρ

n

b

t

x
y

φr0

r



H
am

ilt
on

ia
n 

fo
rm

al
is

m
, C

ER
N

 A
cc

el
er

at
or

 S
ch

oo
l, 

Se
pt

em
be

r 2
02

1

20

From Cartesian to “curved” coordinates
q It is useful (especially for rings)                                 

to transform the Cartesian                            
coordinate system to the                                       
Frenet-Serret system moving                                       
to a closed curve, with path length    

qThe position coordinates in the two systems are 
connected by

qThe Frenet-Serret unit vectors and their derivatives 
are defined as 

with        the radius of curvature and        the torsion
which vanishes in case of planar motion

s

r = r0(s) +Xn(s) + Y b(s) = xux + yuy + zuz

s

Particle trajectory

ρ

n

b

t

x
y

φr0

r

(t,n,b) = (
d

ds
r0(s),�⇢(s)

d2

ds2
r0(s), t⇥ n)

⇢(s) ⌧(s)

<latexit sha1_base64="6s1cnSt+9IhELolaZJop69mfQGE="></latexit>

d

ds

0

@
t
n
b

1

A =

0

@
0 � 1

⇢(s) 0
1

⇢(s) 0 �⌧(s)

0 0 ⌧(s)

1

A

0

@
t
n
b

1

A
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From Cartesian to “curved” variables
qWe are seeking a canonical transformation between 

qThe generating function is 

qBy using the relationship for the positions, 

the generating function is 

(q,p) 7! (Q,P) or

(x, y, z, px, py, pz) 7! (X,Y, s, Px, Py, Ps)

(q,P) = �(@F3(p,Q)
@p , @F3(p,Q)

@Q )

<latexit sha1_base64="l1b0WJhOvXcst1NfWWBWAR08NXo=">AAACE3icbZDLSsNAFIYn9VbrLerSzdAi1FtJVNSNEBTEZQv2Ak0pk+mkHTq5MDMRQsg7uNBXceNCEbdu3PVtnDZdqPWHgY//nMOZ8zsho0IaxkjLzc0vLC7llwsrq2vrG/rmVkMEEcekjgMW8JaDBGHUJ3VJJSOtkBPkOYw0neH1uN68J1zQwL+TcUg6Hur71KUYSWV19f2b7kk5sR0XhukhnEAt3YOX8CgzoY17gYSQp7Crl4yKMRGcBXMKJatoHzyOrLja1b/sXoAjj/gSMyRE2zRC2UkQlxQzkhbsSJAQ4SHqk7ZCH3lEdJLJTSncVU4PugFXz5dw4v6cSJAnROw5qtNDciD+1sbmf7V2JN2LTkL9MJLEx9kiN2JQBnAcEOxRTrBksQKEOVV/hXiAOMJSxVhQIZh/T56FxnHFPKuc1sySdQUy5cEOKIIyMME5sMAtqII6wOABPINX8KY9aS/au/aRtea06cw2+CXt8xtyN55g</latexit>

F3(p,Q) = �p · r

r = r0(s) +Xn(s) + Y b(s) = xux + yuy + zuz
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From Cartesian to “curved” variables
qFor planar motion, the momenta are

qTaking into account that the vector potential is also 
transformed in the same way

the new Hamiltonian is given by 

H(Q,P, t) = c

s
(PX �

e

c
AX)2 + (PY �

e

c
AY )2 +

(Ps �
e
cAs)2

(1 + X
⇢(s) )

2
+m2c2+ e�

(AX , AY , As) = A·(n,b, (1 + X

⇢
)t)

<latexit sha1_base64="X68O0tlP1grlHL3I+fOBVb/KD9I="></latexit>

P = (PX , PY , Ps) = p·(@F3

@X
,
@F3

@Y
,
@F3

@s
) = p·(n,b, (1 + X

⇢
)t)
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Changing of the independent variable
q It is more convenient to use the path length , 

instead of the time as independent variable
q The Hamiltonian can be considered as having 4 

degrees of freedom, where the 4th “position” is 
time and its conjugate momentum is 

s

Pt = �H
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24

Changing of the independent variable
q It is more convenient to use the path length , 

instead of the time as independent variable
q The Hamiltonian can be considered as having 4 

degrees of freedom, where the 4th “position” is 
time and its conjugate momentum is 

qIn the same way, the new Hamiltonian with the 
path length as the independent variable is just 

with

qIt can be proved that this is indeed a canonical 
transformation

qNote the existence of the reference orbit for zero 
vector potential, for which 

s

Pt = �H

Ps = �H̃(X,Y, t, PX , PY , Pt, s)

H̃ = �
e

c
As�

✓
1 +

X

⇢(s)

◆r
(
Pt + e�

c
)2 �m2c2 � (Px �

e

c
AX)2 � (PY �

e

c
AY )2

(X,Y, PX , PY , Ps) = (0, 0, 0, 0, P0)
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Neglecting electric fields
q Due to the fact that longitudinal (synchrotron) 

motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

H̃ = �
e

c
As �

✓
1 +

X

⇢(s)

◆r
(
H

c
)2 �m2c2 � (Px �

e

c
AX)2 � (PY �

e

c
AY )2

P 2
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26

Neglecting electric fields
q Due to the fact that longitudinal (synchrotron) 

motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

q The Hamiltonian is then written as

q If static magnetic fields are considered, the time 
dependence is also dropped, and the system is 
having 2 degrees of freedom + “time” (path length)

H̃ = �
e

c
As �

✓
1 +

X

⇢(s)

◆r
(
H

c
)2 �m2c2 � (Px �

e

c
AX)2 � (PY �

e

c
AY )2

H̃ = �
e

c
As �

✓
1 +

X

⇢(s)

◆r
(P 2 � (Px �

e

c
AX)2 � (PY �

e

c
AY )2

P 2
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Momentum rescaling
q Due to the fact that total momentum is much larger 

than the transverse ones, another transformation 
may be considered, where the transverse momenta 
are rescaled

(Q,P) 7! (q̄, p̄) or

(X,Y, t, PX , PY , Pt) 7! (x̄, ȳ, t̄, p̄x, p̄y, p̄t) = (X,Y,�c t,
PX

P0
,
PY

P0
,� Pt

P0c
)
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Momentum rescaling
q Due to the fact that total momentum is much larger 

than the transverse ones, another transformation 
may be considered, where the transverse momenta 
are rescaled

qThe new variables are indeed canonical if the 
Hamiltonian is also rescaled and written as 

with 

and

H̄(x̄, ȳ, t̄, p̄x, p̄y, p̄t) =
H̃

P0
= �eĀs�

✓
1 +

x̄

⇢(s)

◆s

p̄2t �
m2c2

P0
� (p̄x � eĀx)2 � (p̄y � eĀy)2

(Q,P) 7! (q̄, p̄) or

(X,Y, t, PX , PY , Pt) 7! (x̄, ȳ, t̄, p̄x, p̄y, p̄t) = (X,Y,�c t,
PX

P0
,
PY

P0
,� Pt

P0c
)

(Āx, Āy, Āz) =
1

P0 c
(Ax, Ay, As)

m2c2

P0
=

1

�2
0�

2
0



H
am

ilt
on

ia
n 

fo
rm

al
is

m
, C

ER
N

 A
cc

el
er

at
or

 S
ch

oo
l, 

Se
pt

em
be

r 2
02

1

29

Moving the reference frame
q Along the reference trajectory and

q It is thus useful to move the reference frame to the
reference trajectory for which another canonical 
transformation is performed

p̄t0 =
1

�0
dt̄

ds

��
P=P0

=
@H̄

@p̄t
|P=P0 = �p̄t0 = � 1

�0

(q̄, p̄) 7! (q̂, p̂) or

(x̄, ȳ, t̄, p̄x, p̄y, p̄t) 7! (x̂, ŷ, t̂, p̂x, p̂y, p̂t) = (x̂, ŷ, t̄+
s� s0
�0

, p̂x, p̂y, p̄t �
1

�0
)
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Moving the reference frame
q Along the reference trajectory and

q It is thus useful to move the reference frame to the
reference trajectory for which another canonical 
transformation is performed

qThe mixed variable generating function is 
providing

qThe Hamiltonian is then

p̄t0 =
1

�0
dt̄

ds

��
P=P0

=
@H̄

@p̄t
|P=P0 = �p̄t0 = � 1

�0

(q̄, p̄) 7! (q̂, p̂) or

(x̄, ȳ, t̄, p̄x, p̄y, p̄t) 7! (x̂, ŷ, t̂, p̂x, p̂y, p̂t) = (x̂, ŷ, t̄+
s� s0
�0

, p̂x, p̂y, p̄t �
1

�0
)

(q̂, p̄) = (@F2(q̄,p̂)
@p̂ , @F2(q̄,p̂)

@q̄ )

F2(q̄, p̂) = x̄p̂x + ȳp̂y + (t̄+
s� s0
�0

)(p̂t +
1

�0
)

Ĥ(x̂, ŷ, t̂, p̂x, p̂y, p̂t) =
1

�0
(
1

�0
+p̂t)�eÂs�

✓
1 +

x̂

⇢(s)

◆s

(p̂t +
1

�0
)2 �

1

�2
0�

2
0

� (p̂x � eÂx)2 � (p̂y � eĀy)2
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Relativistic and transverse field approximations

q First note that 
and  

qIn the ultra-relativistic limit 
and the Hamiltonian is written as                        

where the “hats” are dropped  for simplicity

p̂t = p̄t �
1

�0
= p̄t � p̄t0 =

Pt � P0

P0
⌘ �

l = t̂
�0 ! 1 ,

1

�2
0�

2
! 0

H(x, y, l, px, py, �) = (1+�)�eÂs�

✓
1 +

x

⇢(s)

◆q
(1 + �)2 � (px � eÂx)2 � (py � eÂy)2
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Relativistic and transverse field approximations

q First note that 
and  

qIn the ultra-relativistic limit 
and the Hamiltonian is written as                        

where the “hats” are dropped  for simplicity
qIf we consider only transverse field components, 

the vector potential has only a longitudinal
component and the Hamiltonian is written as

qNote that the Hamiltonian is non-linear even in the 
absence of any field component (i.e. for a drift)!

p̂t = p̄t �
1

�0
= p̄t � p̄t0 =

Pt � P0

P0
⌘ �

l = t̂
�0 ! 1 ,

1

�2
0�

2
! 0

H(x, y, l, px, py, �) = (1+�)�eÂs�

✓
1 +

x

⇢(s)

◆q
(1 + �)2 � (px � eÂx)2 � (py � eÂy)2

H(x, y, l, px, py, �) = (1 + �)� eÂs �

✓
1 +

x

⇢(s)

◆q
(1 + �)2 � p2x � p2y
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Canonical transformations and approximations

qSummary of canonical transformations and 
approximations 
q From Cartesian to Frenet-Serret (rotating) coordinate 

system (bending in the horizontal plane)
q Changing the independent variable from time to the path 

length 
q Electric field set to zero, as longitudinal (synchrotron) 

motion is much slower then transverse (betatron) one
q Consider static and transverse magnetic fields
q Rescale the momentum and move the origin to the 

periodic orbit
q For the ultra-relativistic limit

the Hamiltonian becomes 

with

s

�0 ! 1 ,
1

�2
0�

2
! 0

H(x, y, l, px, py, �) = (1 + �)� eÂs �

✓
1 +

x

⇢(s)

◆q
(1 + �)2 � p2x � p2y

Pt � P0

P0
⌘ �
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High-energy, large ring approximation
q It is useful for study purposes (especially for 

finding an “integrable” version of the Hamiltonian) 
to make an extra approximation

q For this, transverse momenta (rescaled to the 
reference momentum) are considered to be much 
smaller than 1, i.e. the square root can be expanded.

q Considering also the large machine approximation
, (dropping cubic terms), the Hamiltonian 

is simplified to  

qThis expansion may not be a good idea, especially 
for low energy, small size rings 

x << ⇢

H =
p2x + p2y
2(1 + �)

�
x(1 + �)

⇢(s)
� eÂs
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Linear magnetic fields 
n Assume a simple case of linear transverse magnetic 

fields, 

q main bending field 
q normalized 

quadrupole gradient

q magnetic rigidity

Bx = b1(s)y

By =� b0(s) + b1(s)x
,

�B0 ⌘ b0(s) =
P0c
e⇢(s) [T]

K(s) = b1(s)
e

cP0
= b1(s)

B⇢ [1/m2]

B⇢ =
P0c

e
[T · m]
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Linear magnetic fields 
n Assume a simple case of linear transverse magnetic 

fields, 

q main bending field 
q normalized 

quadrupole gradient

q magnetic rigidity

n The vector potential has only a longitudinal 
component which in curvilinear coordinates is

n The previous expressions can be integrated to give

Bx = b1(s)y

By =� b0(s) + b1(s)x
,

Bx = � 1
1+ x

⇢(s)

@As
@y , By = 1

1+ x
⇢(s)

@As
@x

As(x, y, s) =
P0c
e

h
� x

⇢(s) �
⇣

1
⇢(s)2 +K(s)

⌘
x2

2 +K(s)y
2

2

i
= P0c Âs(x, y, s)

�B0 ⌘ b0(s) =
P0c
e⇢(s) [T]

K(s) = b1(s)
e

cP0
= b1(s)

B⇢ [1/m2]

B⇢ =
P0c

e
[T · m]
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The integrable Hamiltonian
n The Hamiltonian for linear fields can be finally written as

n Hamilton’s equation are 

and they can be written as two second order uncoupled 
differential equations, i.e. Hill’s equations 

with the usual solution for 
and

H =
p2
x+p2

y

2(1+�) �
x�
⇢(s) +

x2

2⇢(s)2 + K(s)
2 (x2

� y2)

x00 +
1

1 + �

✓
1

⇢(s)2
+K(s)

◆
x =

�

⇢(s)

y00 � 1

1 + �
K(s)y = 0

Kx

Ky

dx

ds
=

px
1 + �

,
dpx
ds

=
�

⇢(s)
�

✓
1

⇢2(s)
+K(s)

◆
x

dy

ds
=

py
1 + �

,
dpy
ds

= K(s)y

u = x, y� = 0
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Action-angle variables
n There is a canonical transformation to some optimal  set of 

variables which can simplify the phase-space motion 
n This set of variables are the action-angle variables
n The action vector is defined as the integral     

over closed paths in phase space.
n An integrable Hamiltonian is written as a function of only 

the actions, i.e. . Hamilton’s equations give

i.e. the actions are integrals of motion and the angles are 
evolving linearly with time, with constant frequencies 
which depend on the actions

n The actions define the surface of an invariant torus, 
topologically equivalent to the product of circles 

J =

I
pdq

H0 = H0(J)

�̇i =
@H0(J)

@Ji
= !i(J) ) �i = !i(J)t+ �i0

J̇i = �@H0(J)

@�i
= 0 ) Ji = const.

n
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Accelerator Hamiltonian in action-angle 
variables

n Considering on-momentum motion, the Hamiltonian can 
be written as

n The generating function from the original to action angle 
variables is

H =
p2
x+p2

y

2 + Kx(s)x
2�Ky(s)y

2

2

F1(x, y,�x,�y; s) = � x2

2�x(s)
[tan�x(s) + ax(s)]�

y2

2�y(s)
[tan�y(s) + ay(s)]
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Accelerator Hamiltonian in action-angle 
variables

n Considering on-momentum motion, the Hamiltonian can 
be written as

n The generating function from the original to action angle 
variables is

n The old variables with respect to actions and angles are 

and the Hamiltonian takes the form

n The “time” (longitudinal position) dependence can be 
eliminated by the transformation to normalized coordinate 

or with

H =
p2
x+p2

y

2 + Kx(s)x
2�Ky(s)y

2

2

F1(x, y,�x,�y; s) = � x2

2�x(s)
[tan�x(s) + ax(s)]�

y2

2�y(s)
[tan�y(s) + ay(s)]

H0(Jx, Jy, s) =
Jx

�x(s)
+ Jy

�y(s)

u(s) =
p
2�u(s)Ju cos�u(s) , pu(s) = �

q
2Ju
�u(s)

(sin�u(s) + ↵u(s) cos�u(s))

✓
U
U 0

◆
=

p
2J

✓
cos(⌫�)
sin(⌫�)

◆
⌫ =

1

2⇡

I
du

�(s)
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n Make a coordinate transformation so that we get a simpler 
form of the matrix, i.e. ellipses are transformed to circles 
(simple rotation)

n Using linear algebra, the solution is

n This transformation can be extended to a non-linear system 
(see Advanced course) 

Linear normal forms
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Symplectic maps



H
am

ilt
on

ia
n 

fo
rm

al
is

m
, C

ER
N

 A
cc

el
er

at
or

 S
ch

oo
l, 

Se
pt

em
be

r 2
02

1

43

n A generalization of the matrix (which can only describe linear 
systems), is a map, which transforms a system from some 
initial to some final coordinates

n Analyzing the map, will give useful information about the 
behavior of the system

n There are different ways to build the map: 
q Taylor (Power) maps
q Lie transformations 
q Truncated Power Series Algebra (TPSA), can generate 

maps from straight-forward tracking 
n Preservation of symplecticity is important

Maps
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Symplectic maps
n Consider two sets of canonical variables which 

may be even considered as the evolution of the system 
between two points in phase space

n A transformation from the one to the other set can be 
constructed through a map 

n The Jacobian matrix of the map is 

composed by the elements

n The map is symplectic if  where
n It can be shown that 
n It can be shown that the variables defined through a 

symplectic map which is a 
known relation satisfied by canonical variables

n In other words, symplectic maps preserve Poisson brackets

z , z̄

M : z 7! z̄
M = M(z, t)

Mij ⌘
@z̄i
@zj

J =

✓
0 I

�I 0

◆

[z̄i, z̄j ] = [zi, zj ] = Jij

MTJM = J
det(M) = 1

<latexit sha1_base64="ZOn1TyEzCixnjs/ZE2/rn2e165k=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CnoRil68CBWsLWyXks1m29BssiSzQin9GV48KOLVX+PNf2Pa7kFbHww83pthZl6YCm7Adb+dwsrq2vpGcbO0tb2zu1feP3g0KtOUtagSSndCYpjgkrWAg2CdVDOShIK1w+HN1G8/MW24kg8wSlmQkL7kMacErOR3IwbVu1N8hb1eueLW3BnwMvFyUkE5mr3yVzdSNEuYBCqIMb7nphCMiQZOBZuUuplhKaFD0me+pZIkzATj2ckTfGKVCMdK25KAZ+rviTFJjBkloe1MCAzMojcV//P8DOLLYMxlmgGTdL4ozgQGhaf/44hrRkGMLCFUc3srpgOiCQWbUsmG4C2+vEwe6zXvrFa/P680rvM4iugIHaMq8tAFaqBb1EQtRJFCz+gVvTngvDjvzse8teDkM4foD5zPHxfWj9E=</latexit>
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Why symplecticity is important
n Symplecticity guarantees that the transformations in phase 

space are area preserving
n To understand what deviation from symplecticity produces 

consider the simple case of the quadrupole with the general 
matrix written as

n Take the Taylor expansion for small lengths, up to first 
order

n This is indeed not symplectic as the determinant of the 
matrix is equal to , i.e. there is a deviation from 
symplecticity at 2nd order in the quadrupole length

MQ =

 
cos(

p
kL) 1p

k
sin(

p
kL)

�
p
k sin(

p
kL) cos(

p
kL)

!

MQ =

✓
1 L

�kL 1

◆
+O(L2)

1 + kL2
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Phase portrait for non-symplectic matrix
n The iterated non-symplectic matrix does not 

provide the well-know elliptic trajectory in phase 
space

n Although the trajectory is very close to the original 
one, it spirals outwards towards infinity
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Lie formalism
n The Poisson bracket properties satisfy what is 

mathematically called a Lie algebra
n They can be represented by (Lie) operators of the form        

and etc.: f : g = [f, g] : f : 2g = [f, [f, g]]
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Lie formalism
n The Poisson bracket properties satisfy what is 

mathematically called a Lie algebra
n They can be represented by (Lie) operators of the form        

and etc.
n For a Hamiltonian system there is a formal 

solution of the equations of motion 
written as with a symplectic 
map

dz
dt = [H, z] =: H : z

H(z, t)

z(t) =
1P
k=0

t
k:H:k

k! z0 = et:H:z0

M = e:H:

: f : g = [f, g] : f : 2g = [f, [f, g]]
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Lie formalism
n The Poisson bracket properties satisfy what is 

mathematically called a Lie algebra
n They can be represented by (Lie) operators of the form        

and etc.
n For a Hamiltonian system there is a formal 

solution of the equations of motion 
written as with a symplectic 
map 

n The 1-turn accelerator map can be represented by the 
composition of the maps of each element

where (called the 
generator) is the Hamiltonian for each element, a 
polynomial of degree in the variables    

dz
dt = [H, z] =: H : z

H(z, t)

z(t) =
1P
k=0

t
k:H:k

k! z0 = et:H:z0

M = e:H:

M = e:f2: e:f3: e:f4: . . .

: f : g = [f, g] : f : 2g = [f, [f, g]]

fi

m z1, . . . , zn
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General non-linear Accelerator 
Hamiltonian

n Considering the general expression of the the longitudinal 
component of the vector potential is (see appendix)
q In curvilinear coordinates (curved elements)

q In Cartesian coordinates

with the multipole coefficients being written as

n The general non-linear Hamiltonian can be written as 

with the periodic functions

As = (1 +
x

⇢(s)
)B0Re

1X

n=0

bn + ian
n+ 1

(x+ iy)n+1

As = B0Re
1X

n=0

bn + ian
n+ 1

(x+ iy)n+1

H(x, y, px, py, s) = H0(x, y, px, py, s) +
�

kx,ky

hkx,ky (s)xkxyky

and

hkx,ky (s) = hkx,ky (s + C)
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Magnetic element Hamiltonians
n Dipole:

n Quadrupole:

n Sextupole:

n Octupole:

H =
x�

⇢
+

x
2

2⇢2
+

p
2
x + p

2
y

2(1 + �)

H =
1

2
k1(x

2 � y
2) +

p
2
x + p

2
y

2(1 + �)

H =
1

3
k2(x

3 � 3xy2) +
p
2
x + p

2
y

2(1 + �)

H =
1

4
k3(x

4 � 6x2
y
2 + y

4) +
p
2
x + p

2
y

2(1 + �)
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Map for quadrupole
n Consider the 1D quadrupole Hamiltonian

n For a quadrupole of length , the map is written as 
H = 1

2 (k1x
2 + p

2)
L

e
L
2 :(k1x

2+p2):
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Map for quadrupole
n Consider the 1D quadrupole Hamiltonian

n For a quadrupole of length , the map is written as 

n Its application to the transverse variables is

H = 1
2 (k1x

2 + p
2)

L

e
L
2 :(k1x

2+p2):

e�
L
2 :(k1x

2+p2):x =
1X

n=0

✓
(�k1L2)n

(2n)!
x+ L

(�k1L2)n

(2n+ 1)!
p

◆

e�
L
2 :(k1x

2+p2):p =
1X

n=0

✓
(�k1L2)n

(2n)!
p�

p
k1

(�k1L2)n

(2n+ 1)!
p

◆
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Map for quadrupole
n Consider the 1D quadrupole Hamiltonian

n For a quadrupole of length , the map is written as 

n Its application to the transverse variables is

n This finally provides the usual quadrupole matrix

H = 1
2 (k1x

2 + p
2)

L

e
L
2 :(k1x

2+p2):

e�
L
2 :(k1x

2+p2):x =
1X

n=0

✓
(�k1L2)n

(2n)!
x+ L

(�k1L2)n

(2n+ 1)!
p

◆

e�
L
2 :(k1x

2+p2):p =
1X

n=0

✓
(�k1L2)n

(2n)!
p�

p
k1

(�k1L2)n

(2n+ 1)!
p

◆

e�
L
2 :(k1x

2+p2):p = �
p

k1 sin(
p

k1L)x+ cos(
p

k1L)p

e�
L
2 :(k1x

2+p2):x = cos(
p

k1L)x+
1p
k1

sin(
p

k1L)p
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Appendix
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Magnetic multipole expansion
n From Gauss law of magnetostatics, a vector potential exist 

n Assuming transverse 2D field, vector potential has only one 
component As. The Ampere’s law in vacuum (inside the 
beam pipe) 

n Using the previous equations, the relations between field 
components and potentials are

i.e. Riemann conditions of an analytic function

Exists complex potential of with  
power series expansion convergent in a circle 
with radius (distance from iron yoke)

x

y
iron

rcz = x+ iy

|z| = rc
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Multipole expansion II
n From the complex potential we can derive the fields

n Setting

n Define normalized coefficients 

on a reference radius r0, 10-4 of the main field to get

n Note: is the US conventionn� = n� 1


