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legislation 1n matters of attribution. Nevertheless the material represent
entirely standard teaching material known for more than ten years. Naturally
some figures will look alike those produced by other teachers.

Hamiltonian formalism, CERN Accelerator School, September 2021



=

a
)
The CERN Accelerator School |

B 2d order dif. equations of motion from Newton’s law (in
configuration space) can be solved by transforming them to
pairs of 1%t order dif. equations (in phase space)

B Natural appearance of invariant of motion (“energy”)

B Non-linear oscillators have frequencies which depend on
the invariant (or “amplitude”)

B Connected invariant of motion to system’s Hamiltonian
(derived through Lagrangian)

B Shown that through the Hamiltonian , the equations of
motions can be derived

B Poisson bracket operators are helpful for discovering
integrals of motion

Hamiltonian formalism, CERN Accelerator School, September 2021
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variable (q, p)to (Q,P), so system becomes simpler to study

The CERN Accelerator schoo- |

[ Find a function for transforming the Hamiltonian from

[ Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

Hamiltonian formalism, CERN Accelerator School, September 2021
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variable (q, p)to (Q,P), so system becomes simpler to study

ccelerator Schootl

The CERN A

[ Find a function for transforming the Hamiltonian from

[ Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

1 These “mixed variable” generating functions are derived by

OF OF OF: OF:
0 0P .. OFs  _ OF
FQ(q,P) - P = (9(]7, 9 Q’L — 8P,L F4(p7P) s qi — — apz y QZ - 8P7,

d A general non-autonomous Hamiltonian is transformed to

OF;
H(Q,P,t) :H(q7p7t)+a—tja ]: 1727374

Hamiltonian formalism, CERN Accelerator School, September 2021
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[ Find a function for transforming the Hamiltonian from

=

variable (q, p)to (Q,P), so system becomes simpler to study

[ Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

1 These “mixed variable” generating functions are derived by

0F OF} OF%5 OF;
F - Pi — ’ PZ — F: ’ - g = — ’ P’L —
(6, Q) : p 90, T 3(Q:P) 1 g . 0.
8F2 6F2 8F4 8F4
- Pi = P = Fa(p,P) 1 qi = — y Wi =
F>(q,P) : p; 90, @ 9P, 1(P,P) : ¢q Op; Q 9P,

d A general non-autonomous Hamiltonian is transformed to

OF;
H(Q7P7t):H(q7p7t)+a—tj7 j:1727374

1 One generating function can be constructed by the other
through Legendre transformations, e.g.

F2(q7P):F1(q7Q)_QP7 FS(Q,p):Fl(qu)_qu
with the inner product define as q-p =) _ aip:

1
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A fundamental property of canonical transformations is the
preservation of phase space volume

The CERN Accelerator schoo-

[ This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpid% :/ﬁdpisz’
i—1 i—1

Hamiltonian formalism, CERN Accelerator School, September 2021



2

A fundamental property of canonical transformations is the
preservation of phase space volume

Jee, Pr

[ This volume preservation in phase space can be represented
in the old and new variables as

/Hdpquz — /HdP dQ);

 The volume element in old and new variables are related
through the ]acoblan

O(Pyi,..., Py, Q1,....,Qu)
Hdpquz— 17 Y Ql Q HdeQZ
01, Pns Qs -5 Gn) 5
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A fundamental property of canonical transformations is the
preservation of phase space volume

The CERN Accelerator School|

[ This volume preservation in phase space can be represented
in the old and new variables as

/Hdpquz — /HdP dQ);

 The volume element in old and new variables are related
through the ]acoblan

O(Pyi,..., Py, Q1,....,Qu)
Hdpquz— 17 Y Ql Q HdeQZ
01, Pns Qs -5 Gn) 5

d These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to

ok, ... Py,O1,....0)
a(pla"'apn7Q17'“7qn)

a(plw"apnaqla'naqn)
O(Pi,...,Py,Q1,...,Qn)

Hamiltonian formalism, CERN Accelerator School, September 2021
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A The transformation () = —p, P = q, which interchanges
conjugate variables is area preserving, as the Jacobian is

@
Jele, Example

orP  0Q 1
oPQ) _|ap op|_ [0 —1)_4
9(p,q) or  0Q 1 0

0q 0q

Hamiltonian formalism, CERN Accelerator School, September 2021
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A The transformation () = —p, P = q, which interchanges
conjugate variables is area preserving, as the Jacobian is

orP  0Q
oPQ _|op op|_ [0 —1)_4
9(p,q) or 94Q 1 0

0q 0q

d On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos() , p = Psin() isnot, since

9(q,p) _ —Psin() Pcos@
8(Q7P) COSQ San

S &

Hamiltonian formalism, CERN Accelerator School, September 2021
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A The transformation () = —p, P = q, which interchanges
conjugate variables is area preserving, as the Jacobian is

or
d(p,q) opr
dq

9(Q,P)

oQ
Ip
o0Q
dq

cos ()

[ There are actually “polar” coordinates that are canonical,

givenby ¢ = —V2PcosQ, p=+V2PsinQ for which

(q,p) V 2PSII1Q

Hamiltonian formalism, CERN Accelerator School, September 2021

a(Q,P) — cos &

0 —1

1 0|:1

d On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos() , p = Psin() isnot, since

9(¢;p) __ |—PsinQ Pcos@

sin () =—F

V2P cos ()
sin Q) =1
V2P .
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The Relativistic
Hamiltonian for
electromagnetic fields

= 14
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JNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

@
Jole, singlc

H(x,p,t) = C\/(p - %A(X,t))Q + m2c? + ed(x,t)

H x = (z,y,2)
d p=(p,, DysDz) conjugate momenta

Cartesian positions

d A=(A4,,A,,A,) magneticvector potential

a o electric scalar potential

Hamiltonian formalism, CERN Accelerator School, September 2021
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JNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

COOE

H(x,p,t) = C\/(p -~ %A(X,t))Q + m2c? + ed(x,t)

H x = (z,y,2)
d p=(p,, DysDz) conjugate momenta

d A=(A4,,A,,A,) magneticvector potential
a o electric scalar potential

Cartesian positions

[ The ordinary kinetic momentum vector is written
— — _ £
P=ymv=p—-A

with v the velocity vector and v = (1 — 2 / 02)—1/ 2 the
relativistic factor

Hamiltonian formalism, CERN Accelerator School, September 2021
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H(x,p,t) = C\/(p — %A(X,t))2 + m?c? 4+ e®P(x,t)

Q Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

o
de @ Single-pa

O The Hamiltonian represents the total energy

H = FE =ymc® + e®

Hamiltonian formalism, CERN Accelerator School, September 2021
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H(x,p,t) = C\/(p — EA(X,t))2 + m?c? + ed(x, 1)

°
S1ing
(L8
The CERN Accelerator School

C

Q Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

O The Hamiltonian represents the total energy
H = FE =ymc® + e®
[ The total kinetic momentum is
HQ 1/2
P = ( : m262)
C
d Using Hamilton's equations

(x,p) = [(x,p), H]

it can be shown that motion is governed by Lorentz equations

Hamiltonian formalism, CERN Accelerator School, September 2021
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L It is useful (especially for rings) p g P oy
to transform the Cartesian
coordinate system to the
Frenet-Serret system moving
to a closed curve, with path length 5

L The position coordinates in the two systems are
connected by r =ro(s) + Xn(s) + Yb(s) = zux + yuy + 2u,

Hamiltonian formalism, CERN Accelerator School, September 2021
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L It is useful (especially for rings)
to transform the Cartesian
coordinate system to the
Frenet-Serret system moving
to a closed curve, with path length 5

L The position coordinates in the two systems are
connected by r =ro(s) + Xn(s) + Yb(s) = zux + yuy + 2u,

A The Frenet-Serret unit vectors and their derivatives

are defined as (t,n,b) = (%rg(s), —p(s )%ro( ),t X n)
1
J t (1) ~o(s) 0 (t
b 0 0 (s \b
with p(s) the radius of curvature and 7(s) the torsion

Hamiltonian formalism, CERN Accelerator School, September 2021
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QOWe are seeking a canonical transformation between

(a,p) — (Q,P) or
(x,Y, 2,2, Py, P2) +— (X,Y,s, Py, Py, Ps)

doe| Fro

The generating function is

OF3(p, OF5(p,
(q,P) = — (2R opQ))

By using the relationship for the positions,

r =ro(s) + Xn(s) + Yb(s) = zux + yuy + zu,
the generating function is

FB(pvQ):_p°r

Hamiltonian formalism, CERN Accelerator School, September 2021
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QFor planar motion, the momenta are
OF; OF; OF; X
ox oy as )~ Pmb 1+ )Y)

P = (Px, Py, Ps) = p(

L Taking into account that the vector potential is also

transformed in the same way

X
(AX,Ay,AS) — A-(n,b, (1 + ;)t)

the new Hamiltonian is given by

H(Qa P,t) = C\/(PX — ZA)()Q + (Py — %AY)Q +

Hamiltonian formalism, CERN Accelerator School, September 2021
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A It is more convenient to use the path lengths,
instead of the time as independent variable

0 The Hamiltonian can be considered as having 4
degrees of freedom, where the 4t “position” is
time and its conjugate momentum is P, = —H

Hamiltonian formalism, CERN Accelerator School, September 2021
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A It is more convenient to use the path lengths,
instead of the time as independent variable

0 The Hamiltonian can be considered as having 4
degrees of freedom, where the 4t “position” is
time and its conjugate momentum is P, = —H

dIn the same way, the new Hamiltonian with the
path length as the independent variable is just
P, = —H(X,Y,t,Px, Py, P:,,s) with

H = —%As—<1 + %) \/(Pt +C Py 22 (p, - ZAX)2 —(Py — %Ay)2

1t can be proved that this is indeed a canonical
transformation

 Note the existence of the reference orbit for zero

vector potential, for which (x,v, Py, Py, P.) = (0,0,0,0, P)

Hamiltonian formalism, CERN Accelerator School, September 2021
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Jele, Neg

d Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

~ e X Ho 5 o e ) e
=1+ ) (2 mze — (P — A2 — (Py — SAy )
H CAS (1+IO(S))\/‘(C) mc' (P CAX) (Y . Y)

P2

Hamiltonian formalism, CERN Accelerator School, September 2021
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d Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero

and the Hamiltonian is written as

7 _ %4 _ L ﬂz_ 2.2 _ _ € 2 _ _ € 2
H = CAS (1+IO(S)) \/‘(C) m C, (Px CAX) (Py CAY)

P2
1 The Hamiltonian is then written as
~ e X e e
— _ _ 2 _ _ _ 2 _ _ _ 2
e a1 ) o e A
L If static magnetic fields are considered, the time

dependence is also dropped, and the system is
having 2 degrees of freedom + “time” (path length)

Hamiltonian formalism, CERN Accelerator School, September 2021
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[ Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (a,p) or

Jele, Mo

The CERN Accelerator School

Px Py B

X, Y, t,Px,Py,P;) — (Z,9,t,p0,Dy,0t) = (X, Y, —ct,—, —,—
( yLylby X, 1LY, t) (xaya y Py Py pt) ( ¢ PO PO P()C

)

Hamiltonian formalism, CERN Accelerator School, September 2021
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[ Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (a,p) or

The CERN Accelerator Schoom

Px Py P

Py’ Py’ Py

(JThe new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

(X7Y7t7PX7PY7Pt) = (jj7g7t_7pxapy7ﬁt):(X7Y7_c t: )

_ H _ T ., m2c? _ _
%(x7y7tapm7pyapt) - X5 — —€A3—(1 + —) \/p% — — (pg; — 6143;)2 — (py — eAy)Q

Hamiltonian formalism, CERN Accelerator School, September 2021

Py p(s) Fo
. _ _ 1
Wlth (A:m yaAz) — —(AxaAyaAs)
5 o PO C
m=-c 1
and 2 522 .
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0 Along the reference trajectory p,0 = —

dt OH ) 1 Po
‘P Py a—pt!P Py — —Pto = —%

3 It is thus useful to move the reference frame to the

reference trajectory for which another canonical

transtformation is performed
(@p) = (4p) or

and

- A . . - S—80 . 1
(xayatapxapyapt) = (x7y7tapx7pyapt) — (ﬂf,y,t + — 7px7py7pt )
Bo Bo

Hamiltonian formalism, CERN Accelerator School, September 2021
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0 Along the reference trajectory p,0 = —

dt OH ) 1 Po
‘P Py 8—pt!P Py — —Pto = —%

W It is thus useful to move the reference frame to the

reference trajectory for which another canonical

transtformation is performed
(@p) = (4p) or

and

- . S—Sog . 1
(Z,9,t,Duy Dy, Dt) —  (Z,9,t,Du,Dy,Dt) = (T, 7, + —— B , Das Dy s Dt — 50)

L The mixed variable generating function is

0F3(q, 0F5(q,
(4, ) = ( F§§ B). F@(g P)) providing

F5(@, D) = TP + ypy + (E+ 5 ) (P
dThe Hamﬂtoman is then 0
1 1

EH (&, 3,8, Doy Dy, 1) = 3 (50 +pr)—eA,— <1 + @> \/(ﬁt + E)Q T (Pr — €A2)? — (By — €Ay)?

S — S0 1

Hamiltonian formalism, CERN Accelerator School, September 2021



Jole, reiaiivists

A First note that p;, = p; — L = Dt — Do = P — Fo =)
and | — § Bo Py

d1In the ultra-relativistic limit 5, — 1, 21 5 — 0
and the Hamiltonian is written as 07

/H(x7y’l7p$7py75) — (1_'_5)_61213_ (1 + %) \/(1 + 5)2 _ (px — 6121:8)2 — (py — eAy)Q

where the “hats” are dropped for simplicity

Hamiltonian formalism, CERN Accelerator School, September 2021
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1 P, — P,
A First note that p;, = p; — 5— = Dt — Do = tP 0 =5
and | = ¢ 0 . 0
QIn the ultra-relativistic limit 3y -1, —— —0
and the Hamiltonian is written as 0
c H(2,Y, 1, pa, py, 0) = (140) —e Ay~ (1 + @) \/(1 +0)2 — (pu — eA,)? — (p, — eA,)?

where the “hats” are dropped for simplicity

J1If we consider only transverse field components,
the vector potential has only a longitudinal
component and the Hamiltonian is written as

EI Note that the Hamiltonian is non-linear even in the

absence of any field component (i.e. for a drift)! .

Hamiltonian formalism, CERN Accelerator School, September 2021
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Jole) Cer

a Summary of canonical transformations and
approximations

From Cartesian to Frenet-Serret (rotating) coordinate
system (bending in the horizontal plane)

Changing the independent variable from time to the path
length s

Electric field set to zero, as longitudinal (synchrotron)
motion is much slower then transverse (betatron) one

Consider static and transverse magnetic fields
Rescale the momentum and move the origin to the

Hamiltonian formalism, CERN Accelerator School, September 2021

periodic orbit 1
For the ultra-relativistic limit 5o =1, —5— — 0
the Hamiltonian becomes 0
.. P -PR Lo
with =0

PO 33
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L It is useful for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

=

[ For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

1 Considering also the large machine approximation
r << p , (dropping cubic terms), the Hamiltonian
is simplified t(2) ,
> T+ 1+0 A
H = Pty  z(l+9) eA,
2(1+0)  p(s)

L This expansion may not be a good idea, especially
for low energy, small size rings "

Hamiltonian formalism, CERN Accelerator School, September 2021
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Je'e, Line

B Assume a 81mple case of linear transverse magnetic

2

fields, B, = bi(s)y
B, =—1bo(s) +bi1(s)x
main bending field — By = by(s) = 61;(85) T]
normalized by ( 8)
quadrupole gradient K( ) = by ( )cPo o [1/ 11 ]
P()C
magnetic rigidity Bp = T - m]|

€

35
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‘W Assume a simple case of linear transverse magnetic

2

fields, B, = bi(s)y
B, =—bo(s) +bi1(s)x
main bending field —By = by(s) = P%C) T]
ep(s
normalized by ( 8)
quadrupole gradient K(s) —Pb 1(s )cPo - [1/m”]
C
magnetic rigidity Bp = 2 T - m]|

B The vector potential has only a longitudinal
component which in curvilinear coordinates is

_ 1 0A, - 1 OA,
Be = "mm oy P T g o

B The previous expressions can be integrated to give
_ Poc |z _ (_1 z? v | — A
Ag(x,y,s) = =2 [ G <p(8)2 + K(s)) -+ K(s)% ] = Pyc As(x, v, 53)6



=

B The Hamiltonian for linear fields can be finally written as

The CERN Accelerator Schoo-

2 2
R 2 2 0 x2 K(s)/ 2 2
=317 ~ o T ez T 2 (" =y7)
A dp, 0 B 1 o)
ds 1+6° ds  p(s) <,02(3) + & )>

B Hamilton’s equation are
dy _ py  dpy

ds 146 ds
and they can be written as two second order uncoupled

differential equations, i.e. Hill’s equations

= K(s)y

5(s) (sin(1(s) + vo) + a(s) cos(¢(s) + 1)) .

g 7

E " 1 ( 1 0

z T+ + K(S)B r=—

5 1+4 \ p(s)? (5) ith th .

g 1 with the usual solution for
P Y )y =0 §=0and y=uzxy

E + 0 : 9

g K = +/€0(s) cos(1(s) + o)

E Y €

T
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2

‘There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

This set of variables are the action-angle variables

The action vector is defined as the integral J = 7{ pdq

over closed paths in phase space.

An integrable Hamiltonian is written as a function of only

the actions, i.e. Hy = Hy(J). Hamilton’s equations give
OHo(J)

. 0Ho(J)
J; = — 96, = 0 = J; = const.

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

The actions define the surface of an invariant torus,
topologically equivalent to the product of n circles 3



2

B Considering on-momentum motion, the Hamiltonian can

be written as y ,
H = PeTPy Ko (s)z® —Ky(s)y
2 | 2

4 Accelerat

B The generating function from the original to action angle
variables is

Fl(xvy7¢w7¢y;8) - =

72 2
25,(5) [tan ¢ (s) + ax(s)] — 28, (5)

tan @y, (s) + ay(s)]

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Considering on-momentum motion, the Hamiltonian can

be written as y ,
Y — Pz TDy, | Km(s)a:Q—Ky(s)y

(Q) L
The CERN Accelerator Schooﬁ

2 | 2
B The generating function from the original to action angle

variables is
Fi(2,9, 00, 003 5) = = 55 [tan 0 (s) + aa(9)] — 57 [tam 6y () + ay (9)]
T Y
B The old variables with respect to actions and angles are

u(s) = \/2Bu(8)Jy cos @y (8) , pu(s) = 1/5 5 (Sin ¢y (8) + y(S) cos Py (s))

and the Hamiltonian takes the form

Jy
HO(Jm7Jy7S) 533(8) | By (s)

B The “time” (longitudinal position) dependence can be
eliminated by the transformation to normalized coordinate

U\ (=7 O u U cos(vo)\ . 1 du
(U’) — (% \/3> (u,) or (Z/{’> V2J <81n(ugb)>W1th G T

2

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Make a coordinate transformation so that we get a simpler
form of the matrix, i.e. ellipses are transformed to circles
(simple rotation)

N\ - C

M=AocRo A" or: R=A'oMoA

B Using linear algebra, the solution is

Joe, Linea

VB(s0) 2 cos(uy)  sin(u,)
A = a(so) 1 and R= ' |

o \/ﬂ(TO) \/,B(TO) o Sln(/,l'\-) Cos(lu.\‘)

B This transformation can be extended to a non-linear system
(see Advanced course)

Hamiltonian formalism, CERN Accelerator School, September 2021
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Symplectic maps
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B A generalization of the matrix (which can only describe linear
systems), is a map, which transforms a system from some
initial to some final coordinates

Iy
I

initial M (k) w

2

B Analyzing the map, will give useful information about the
behavior of the system

m There are different ways to build the map:
Taylor (Power) maps
Lie transformations

Truncated Power Series Algebra (TPSA), can generate
maps from straight-forward tracking

Hamiltonian formalism, CERN Accelerator School, September 2021

m Preservation of symplecticity is important 3
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B Consider two sets of canonical variables Z 7 which
may be even considered as the evolution of the system

between two points in phase space

The CERN A E

B A transformation from the one to the other set can be
constructed throughamap M : 7z +— 7Z

B The Jacobian matrix of the map M = M (Z, t) is

0z;
7T 9z, 0 I
B The map is symplecticif M* JM = .J where J = (—I O)
B It can be shown that det(M) =1

B |t can be shown that the variables defined through a
symplecticmap |z;, Z;| = |2, 2j] = J;; ~whichisa
known relation satisfied by canonical variables

composed by the elements )M, =

Hamiltonian formalism, CERN Accelerator School, September 2021

B |n other words, symplectic maps preserve Poisson brackets
44
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B Symplecticity guarantees that the transformations in phase
space are area preserving

Jole, V

B To understand what deviation from symplecticity produces
consider the simple case of the quadrupole with the general
matrix written as

Mo — cos(vVkL) \/LE sin(vkL)
T\ vk sin(vkL)  cos(VEL)

B Take the Taylor expansion for small lengths, up to first

order 1 7 ,
Mq = <—kL 1> —|—O(L )

B This is indeed not symplectic as the determinant of the
matrix is equal to 1 4+ kL, i.e. there is a deviation from
symplecticity at 2" order in the quadrupole length

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The iterated non—symplectlc matrix does not
provide the well-know elliptic trajectory in phase
space

B Although the trajectory is very close to the original

= . ° ° ° °

<= one, it spirals outwards towards infinity

[«P]
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?i i exact quadrupole m
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S 0.0003 |- QU1 ]
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B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1fg] and:f:2g=[f[fg] etc

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1fg] and:f:2g=[f[fg] etc

B For a Hamiltonian system H(z,t) thereis a formal

solution of the equatlons of motion % =|H,z|=H :z

written as z(t) = Z tk — et'Hiz, with a symplectic

map M = eH: ¥

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

=

B They can be represented by (Lie) operators of the form

frg=1fg] and:f:2g=[f[fg] etc

B For a Hamiltonian system H(z,t) there isa formal

solution of the equatlons of motion % = |H,z| = H : z
written as z(t) = Z tk ERHE 0 — etiHig with a symplectic
map M = ¢

The 1-turn accelerator map can be represented by the
composition of the maps of each element

M = e f2i gif3t gifar  where f; (called the
generator) is the Hamiltonian for each element, a
polynomial of degree 7177 in the variables 21,..., 2,

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Considering the general expression of the the longitudinal
component of the vector potential is (see appendix)

In curvilinear coordinates (curved elements)

COOE S

The CERN Accelerator School

O

b, + ta,

— i - \n+1
A, =(1+ p(s))BO%e; — (x+zi/)
In Cartesi dinates A —B%ezbnﬂa”(ﬂi)"“
n Cartesian coordinates s — Do 2y 1 Y
with the multipole coefficients being written as
- 1 OBx andbn: 1 aBy
Bon! 0z™ lz=y=0 Bon! 0z™ |lz=y=0

B The general non-linear Hamiltonian can be written as

H (2, Y, Pas Py, ) = Ho(2, Y, D2 Dy, 8) + Y by i, ()25
ka ks

with the periodic functions hy, x,(s) = by, k, (s +C)

Hamiltonian formalism, CERN Accelerator School, September 2021
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Jo’e, Magn:

B Dipole: 2 2
P 0 r? Py + D,

H="— |
p 202 " 2(1+90)

B Quadrupole:
1
H = §]€1(ZC2 — y2)
B Sextupole: |
H = §]€2($3 — 3zy?) A
B Octupole:

1
H = Z/cg(a;4 — 622y + y*) -

=

vy +p;

2(1 + 0)

vy +p;
2(1+0)

vy +p;
2(1+ 0)

51
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de'e, Map for

B Consider the 1D quadrupole Hamiltonian
H = 5 (kiz* + p?)
B For a quadrupole of length [, the map is written as
6%:(l<1x2—|—192):

Hamiltonian formalism, CERN Accelerator School, September 2021
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Je'e Maj
B Consider the 1D quadrupole Hamiltonian
H = 2 (kia? + p?)
B For a quadrupole of length [, the map is written as
eéz(kle—l—pz):
B [ts application to the transverse variables is

5 o o L 2\n . 2\n
6—%:(k1x +p )x:Z(( le) T L( le) p>

s (Zn)' (2n + 1)!

it [ (—kyL?
em T )p—Z( (2n)! »- \F2 +1) )

n=0

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Consider the 1D quadrupole Hamiltonian
1
H = ) (k’lmz + p2)
B For a quadrupole of length [, the map is written as
eéz(kle—l—pz):
B [ts application to the transverse variables is

L. 2 | .23, = — kLA™ — k1 L2
o Likia +p).xzz<( 1 ):UIL( 1 ))'p>

=

e (2n)' (2n—|—1

0 2
—L:(k12?+p?):,, _ (— ke L7 /1. —k1 L)
‘ b %( (2n)! »- 2 + 1) )

B This finally provides the usual quadrupole matrix

6_%(k1x+p>x—c08\/7La:—|—\/k_sm\/7L
6_%:(kw+p) \/731n\/7L:C—|—COS \/7[/ 54
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B From Gauss law of magnetostatics, a vector potential exist

V-B=0 — dA: B=VxA

B Assuming transverse 2D field, vector potential has only one
component A,. The Ampere’ s law in vacuum (inside the

beampipe) Y x B=0 — 3JIV: B=-VV
B Using the previous equations, the relations between field
components and potentials are

OV _0A OV 0A,
or Oy ’ Y 0y Ox y
i.e. Riemann conditions of an analytic function |

Exists complex potential of z = x + iy  with /

power series expansion convergent in a circle
with radius |z| = r. (distance from iron yoke)

oo

A(x +iy) = As(x,y) +iV(z,y) = Z/ﬁ}n —Z n+ iy (x + iy)"

n=1

B, = —

Hamiltonian formalism, CERN Accelerator School, September 2021
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B From the complex potential we can derive the fields

0 o
B, +1iB, = — &U(A (x,y) +1V(z,y)) Zn i) (z +iy)"
B Setting b, = —n)\,, a,=n/,
O
: : : 1
B, +iB, = E (bn, — 2ay,)(z + iy)"
n=1
B Define normalized coefficients
b bn n—1 1 _ Qn n—1

"T1074B, 0 0 T 1074B,
on a reference radius r,, 10 of the main field to get

| B . + 1y
B, +iB. = 10~B b —ia )(E n
Y T Onz::l( n Zan)( ro )

B Note: n’ = n — 1 is the US convention 57
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