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publishing

lecture at the CERN Accelerator School. The term “lecture” includes any
material incorporated therein including but not limited to text, images and
references.

® The author hereby grants GERN a royalty-free license to use his image and
name as well as the recordings mentioned above, in order to post them on the

CAS website.

® The author hereby confirms that to his best knowledge the content of the
lecture does not infringe the copyright, intellectual property or privacy rights
of any third party. The author has cited and credited any third-party
contribution in accordance with applicable professional standards and
legislation 1n matters of attribution. Nevertheless the material represent
entirely standard teaching material known for more than ten years. Naturally
some figures will look alike those produced by other teachers.
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B The key point is how to derive equations of motion
and how to solve (integrate) them

eeeeeeeeeeeeeeeeeeeeeeee

B Introduce formalism of theoretical mechanics for
analysing particle motion in general (linear or non-
linear) dynamical systems, including particle
accelerators

B Connect this formalism with concepts already
studied in the introductory school (matrices,
synchrotron motion, invariants,...)

B Prepare the ground for the approaches followed for
studying non-linear particle motion in accelerators
(in the advanced course)
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B The motion of a “classical” particle in a force field is
described by Newton’s law:

dPu(t)  dp,(t) B
meaE T g Pl =

with ¢, the position

OV (u)
ou

D, the momentum
F(u) the force

V (u) the corresponding potential

B [t is essential to solve (integrate) the differential
equation for understanding the evolution of the
physical (dynamical) system
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B A linear restoring force (Harmonic oscillator) is described by

d*u(t) 5 k

. °

T | CUOU(t) =0 with wgp= E

A A A
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B A linear restoring force (Harmonic oscillator) is described by

d*u(t) 5 k

The CERN Accelerator Schoo.l

s + wiu(t) =0 with wo = —

B The solution obtained by the substitution u(t) — et

and the solutions of the characteristic polynomial are
A +ws = 0= A+ = iwo , which yields the general solution
u(t) = ce™t 4 c*e 7t = (O cos(wpt) + Oy sin(wot) = Asin(wgt + @)
with the “velocity”
du(t)

el —Chwo sin(wot) + Cawq cos(wot) = Awg cos(wot + @)
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B A linear restoring force (Harmonic oscillator) is described by
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d*u(t) | k
772 + wgu(t) =0 with wo = o
At

B The solution obtained by the substitution u(t) —e

and the solutions of the characteristic polynomial are
A2+ W(Q) = 0 = A+ = Lwyp , which yields the general solution
u(t) = ce™t 4 c*e 7t = (O cos(wpt) + Oy sin(wot) = Asin(wgt + @)
with the “velocity”
du(t)
dt

B Note that a negative sign in the differential equation provides
a solution described by hyperbolic sine/cosine functions

— —Cle Siﬂ(wot) + CZCUO COS(th) — ACUO COS(WOt - ¢)

B Note also that for no restoring force wg = 0, the motion is
unbounded
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B The amplitude and phase depend on the initial conditions

) 1/2
(u{) + w%u%)
— u6 = C2CUO , A o y tan(¢) —

Jeole, Matrixs

The CERN Accelerator School

du(0)
dt wWo Wolo

U

’LL(O) = Upg = Cl ,

B The solutions can be re-written thus as
/

u(t) = ug cos(wot) + 0 sin(wot)
Wo
u' (t) = —ugwp sin(wot) + ug cos(wot)
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B The amplitude and phase depend on the initial conditions

COORYET

1/2
(uo T Woug)

du(0) |
ul0) =to =Cr /L;(zt):“o:@“’o"‘l: wo ,tan(¢>=ﬁ
B The solutions can be re-written thus as
/
U
u(t) = ug cos(wot) + —2 sin(wot)
, . “o or in matrix form
u' (t) = —uowo sin(wot) + ugy cos(wot)
]_ .
u(t) ) cos(wot) - sin(wot) | (uo

u'(t) —wp sin(wpt)  cos(wot) Uy

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The amplitude and phase depend on the initial conditions
’ 2 2,2 12
(Uo +W0U0)

du(0) /
u(0) =ug =C1 2Zl(t)=fu,0=C’2wo,Az o ,tan((b):ﬁ
B The solutions can be re-written thus as
/
U
u(t) = ug cos(wot) + —2 sin(wot)
, , “o or in matrix form
u' (t) = —uowo sin(wot) + ugy cos(wot)
1 .
u(t)\ _ cos(wot) —sin(wot) | (uo
—wp sin(wpt)  cos(wgt) Uy

B By replacing wo — ko and T —> S, this becomes the
solution of a quadrupole (see Transverse Linear Beam
Dynamics lectures)
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B General transfer matrix from s, to s

(), =Moo () = (&) s'aty) (o).

® Note that det(M(s|sg)) = C(s]s0)S’(s]s0) — S(s|s0)C'(s]sg) = 1

which is always true for conservative systems (”energy” is constant)

1 O
B Note also that M(SOISO) = (O 1> =1

Hamiltonian formalism, CERN Accelerator School, September 2021
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B General transfer matrix from s, to s

(i), =M000 () = (e i) ().

B Note that det(M (s]sg)) = C(s|s0)S (s]|s0) — S(s|s0)C’'(s|s0) =1

which is always true for conservative systems (”energy” is constant)

1 O
B Note also that M(SOISO) = (O 1) =1

B The general solution can be build by a series of matrix multiplications

M(sn|s0) = M(sn|sn—1) ... M(s3|s2) - M(s2|s1) - M(s1]s0)

\ 7
Y

S, S, S, S, . S o from Soto s 1,
Y
S S o from s, to s, »
—
from s, to $3
— e

——
from s, to s,

(see Transverse Linear Beam Dynamics lectures)

Hamiltonian formalism, CERN Accelerator School, September 2021

13



=

Jele, Integral c

B Rewrite the dlfferentlal equation of the harmonic
oscillator as a pair of coupled 1%t order equations

dz;(tt) — pu(t)
Pull) gl

dt

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Rewrite the differential equation of the harmonic

Hamiltonian formalism, CERN Accelerator School, September 2021
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oscillator as a pair of coupled 1%t order equations

d%;it) — pu(d) which can be combined to
) _ provide
7 = —wou(?)
dp 5 du 1 d 2 . or
g Petwou g = 5 gy (u wgu’) =0
1

5 (p2 +wiu®) = I, with I; an integral of motion

identified as the mechanical energy of the system

15
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B Rewrite the differential equation of the harmonic
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oscillator as a pair of coupled 1%t order equations

d%;it) — pu(d) which can be combined to
dult) - provide
7 = —wou(?)
dpu 2 du 1d 2 — or
g Petwou g = 5 gy (u wgu’) =0
1

5 (p2 +wiu®) = I, with I; an integral of motion

identified as the mechanical energy of the system

B Solving the previous equation for Py, , the system

can be reduced to a first order equation

p— \/2]]_ —wOUZ y




=
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B The last equation can be solved as an explicit
integral or “quadrature”

uwo

/ dt = / du ielding t+ 1, = L arcsin ( )
B V211 — wiu? Y 5 * 7wy V214
V214

wo

or the well-known solution u(t) = sin(wot + wols)

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The last equat1on can be solved as an explicit
integral or “quadrature”

uwo

/ dt = / du ielding t++ 1, = i arcsin( )
B \/211—w8u2’ Y 5 > wo V214
V214

or the well-known solution u(t) = sin(wot + wols)

B Note: Although the previous route ncluaoy seem
complicated, it becomes more natural when non-
linear terms appear, where an ansatz of the type

u(t) = e is not applicable

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The last equation can be solved as an explicit
integral or “quadrature”

du : : 1 UWo
dt = / . vielding t+ I, = — arcsin ( )
/ \/2[1 —w%uQ Y 5 ? UIJO v 214
: V2
or the well-known solution u(t) = - L sin(wot + wolo)
0

B Note: Although the previous route may seem
complicated, it becomes more natural when non-
linear terms appear, where an ansatz of the type
u(t) = e is not applicable

B The ability to integrate a differential equation is not
just a nice mathematical feature, but deeply
characterizes the dynamical behavior of the system
described by the equation

19
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B The period of the harmonic oscillator is calculated through
the previous mtegral after integration between two extrema

COORELL .

The CERN Accelerator School

(when the Ve10C1ty — /21, — w2 Vanishes), i.e. uq = L V2l
Wo
\/F
~0 du 2T

T =2 =
\/21 2,,2
_—wol \/2]1 wou wO

Hamiltonian formalism, CERN Accelerator School, September 2021
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2

B The period of the harmonic oscillator is calculated through
the previous integral after integration between two extrema

) . ) V2T
(when the velocity % _ \/2 I, — w22 Vanishes), i.e. ugq = £ Y=L
dt 0 wo
w/2I1
w0 du 27

T =2 =
/21 2,,2
_—wol \/2[1 wou wO

B The period (or the frequency) of linear systems is
independent of the integral of motion (energy)

Hamiltonian formalism, CERN Accelerator School, September 2021
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B The period of the harmonic oscillator is calculated through
the previous mtegral after integration between two extrema

Cl:\‘ )l I
The CERN Accelera |

(when the Ve10C1ty _ \/2 I, — wzu? Vanishes), i.e. ug; =+ 2L
Wo
\/F
T — o9 wQ du _ 27

_@ \/211—w(2)u2 Wo
B The period (or the frequency) of linear systems is
independent of the integral of motion (energy)

B Note that this is not true for non-linear systems, e.g. for an

oscillator with a non-linear restoring force CCZZT;L +ku®)?®=0

1

1
B The integral of motionis {1 = 51?3 + Zk u* and the

integration yields /“”1/ Oh du T el gy gy
— 1

— (41, /k)1/4 \/211 — %k U4 2 4

Hamiltonian formalism, CERN Accelerator School, September 2021

B This means that the period (frequency) depends on the

integral of motion (energy) i.e. the maximum “amplitude” *
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B An important non-linear equation which can be integrated is
the one of the pendulum, for a string of length L and
gravitational constant g

¢ g .
W -+ E S111 Qb — O
B For small displacements it reduces to a harmonic oscillator
g

with frequency wy = 7

B By appropriate substitutions, this becomes the equation of
synchrotron motion (see Longitudinal BD lectures)

Hamiltonian formalism, CERN Accelerator School, September 2021
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B An important non-linear equation which can be integrated is
the one of the pendulum, for a string of length L and
gravitational constant g

ol

¢ g .
W -+ E S111 gb — O
B For small displacements it reduces to a harmonic oscillator
g

with frequency wy = 7

B By appropriate substitutions, this becomes the equation of
synchrotron motion (see Longitudinal BD lectures)

B The integral of motion (scaled energy) is
(49 2—£cos¢:I:E’
2 \ dt L :

and the quadrature is written as L= / \/2 1 _|_ T cos ¢)
]
assuming that for t=0, ¢o=0(0)=0

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Using the substitutions cos ¢ = 1 — 2k*sin* 6 with
k=+/1/2(1+1,L/g) - the integral is

L [° df .
Ry and can be solved using
9Jo \/1—Kk2sin%0

Jacobi elliptic functions: ¢(t) = 2arcsin [k sn (t g k)]

L?

Hamiltonian formalism, CERN Accelerator School, September 2021
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B Using the substitutions cos ¢ = 1 — 2k?sin® @ with

k=+1/20+1,L/g) the integral is

L [° do .
Ry / and can be solved using
9Jo \/1—k2sin?0

)

B For the period, the integration is performed between
the two extrema, i.e. ¢ = 0 and ¢ = arccos(—I1L/g),
correspondingto # =0 and 60 = /2, for which

L (72 L
T =4/~ / 40 =4y = F ()2, k)
g Jo \/1—k281n29 g

i.e. the complete elliptic integral (whose argument
depends on the integral of motion) multiplied by four
times the period of the harmonic oscillator 2%

Jacobi elliptic functions: ¢(t) = 2arcsin

Hamiltonian formalism, CERN Accelerator School, September 2021
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Jele, La

d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time #,

[ It can be achieved by the Lagrangian function
L(ql, co oy (n, (jl, . ,qn,t) W1th(q1, . ,qn) the
generalized coordinates and (qi, ..., q,) the
generalized velocities

Hamiltonian formalism, CERN Accelerator School, September 2021
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d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time #,

[ It can be achieved by the Lagrangian function
L(ql, co oy (n, le, . ,qn,t) W1th(q1, . ,qn) the
generalized coordinates and (qi, ..., q,) the
generalized velocities

0 The Lagrangian is definedas [, =T — V , i.e.
difference between kinetic and potential energy

dThe integral W = [ L(g;,d;,t)dt .
defines the action
JdHamilton’s principle: system 1
evolves so as the action becomes
extremum (principle of stationary action)

Hamiltonian formalism, CERN Accelerator School, September 2021
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Hamiltonian

2

By using Hamilton’s principle, i.e. oW = 0,
over some time interval ¢; and ¢, for two
stationary pointsdq(t1) = dq(t2) =0 (see
appendix), the following differential
equations for each degree of freedom are
obtained, the Euler-Lagrange equations

d 0L

oL

dt 9q;

4

30
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By using Hamilton’s principle, i.e. oW = 0,
over some time interval ¢; and ¢, for two
stationary pointsdq(t1) = dq(t2) =0 (see
appendix), the following differential
equations for each degree of freedom are
obtained, the Euler-Lagrange equations

eeeeeeeeeeeeeeeeeeeeeeee

d 0L 0L

UIn other words, by knowing the form of the
Lagrangian, the equations of motion can be
derived

— 0

nian formalism, CERN Accelerator School, September 2021
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COOMRE
QFor a simple force law contained in a potential
function, governing motion among interacting

particles, the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that...”)

|

i=1
4 For velocity independent potentials, Lagrange
equations become I/
miq; = ’

0q;

i.e. Newton’s equations.

Hamiltonian formalism, CERN Accelerator School, September 2021
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JSome disadvantages of the Lagrangian formalism:

No uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

Hamiltonian formalism, CERN Accelerator School, September 2021
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2

No uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

dLagrangian function provides in general 1 second

order differential equations (coordinate space)

dWe already observed the advantage to move to a
system of 2n first order ditferential equations,
which are more straightforward to solve (phase
space)

L These equations can be derived by the Hamiltonian
of the system o

Hamiltonian formalism, CERN Accelerator School, September 2021
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1 The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

' oL
dg;

e, Hamil

where the generalised momenta are P; =

Hamiltonian formalism, CERN Accelerator School, September 2021
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1 The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

2 0L

Je'e, Ha

where the generalised momenta are P; = e
qi

[ The generalised velocities can be expressed as a function of
the generalised momenta if the previous equation is

invertible, and thereby define the Hamiltonian of the system

Hamiltonian formalism, CERN Accelerator School, September 2021
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1 The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

' OL
0q;
[ The generalised velocities can be expressed as a function of

the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

where the generalised momenta are P; =

d Example: consider  [(q,¢) = % Z mig; —V (g1, qn)

; oL
O From this, the momentum can be determined as p; = 94, = mg;
which can be trivially inverted to provide the Hamiltonian

2

H(q,p)=22]:;

1

Hamiltonian formalism, CERN Accelerator School, September 2021

(q15-- -5 qn)
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o', H.

dThe equations of motion can be derived
from the Hamiltonian following the same
variational principle as for the Lagrangian
(“stationary” action) but also by simply
taking the differential of the Hamiltonian
(see appendix)
0H . OH 0L OH

formalism, CERN Accelerator School, September 2021

Hamiltonian
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Jole, |
dThe equations of motion can be derived
from the Hamiltonian following the same
variational principle as for the Lagrangian

(“stationary” action) but also by simply
taking the differential of the Hamiltonian

(see appendix)
.o . OH 9L  0H
= Op; b= Oqg > ot Ot

formalism, CERN Accelerator School, September 2021

These are indeed 2n + 2 equations describing
the motion in the “extended” phase space

(Qia ceesdnyP1y .- 7p’nat7 _H)

Hamiltonian

39
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Je'e, Pr

A The variables (¢, ..., qn,p1,...,pn. t,—H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

1 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

dThe variables used in the Lagrangian do not
necessarily have this property

Hamiltonian formalism, CERN Accelerator School, September 2021
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A The variables (¢, ..., qn,p1,...,pn. t,—H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

[ These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

dThe variables used in the Lagrangian do not
necessarily have this property

JdHamilton’s equations can be written in vector form
Z — J y VH(Z) with z = (Qia"°7Q’rL7p17"'7pn)
and V = (8%7 R 7aq”,7 8}?1, R 76pn)

dThe 2n x 2n matrix J — ( 2 (I)) is called the

Hamiltonian formalism, CERN Accelerator School, September 2021
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dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

1 Consider a time dependent function of phase
space. Its time evolution is given by

d ~—(dg: Of | dpi Of of
dtf(p’q’t) =2 ( dt dq; AT 5’pi> T

1=1
" (OH Of OH Of\ Of of
_Z<apz dgi O, ap)* ot — H 1T

where [H, f] is the Poisson bracket of f with H

Hamiltonian formalism, CERN Accelerator School, September 2021
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dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

1 Consider a time dependent function of phase
space. Its time evolution is given by
d N~ (dq: 0f  dp; f\  Of
Ef(p’q’t) N Z:Zl ( dt 5’qz- i dt 8pz> i ot
& (OH Of OHAf\  Of of
_Z<apz' dqi  0q; 5pi>+ =L

ot ot

1=1

where [H, f] is the Poisson bracket of f with H
dIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.

commutes with the /), it is a constant (or integral)
of motion (as an autonomous Hamiltonian itself)

Hamiltonian formalism, CERN Accelerator School, September 2021
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A The variation of the action can be written as

t2 t2 /O oL
S — / (L(q + 80,4 + 66, t) — L(g, 4, )) dt = / OL s+ Lo as
t1 t1 aq 6q

L
0L s

oW = 54

[ Taking into account that 5 = -

d0L 0L

Hamiltonian formalism, CERN Accelerator School, September 2021

=0

%4 the ond part of the

integral can be integrated by parts giving

to t
2 (0L d ([ OL
-+ — — : dqgdt = 0

dThe first term is zero because §¢(t;) = d¢(t2) = 0
so the second integrant should also vanish,
providing the following differential equations for
each degree of freedom, the Lagrange equations
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Je’e Derival

0 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

’ OL OL OL

dH = Z gjdéi + ¢;dp; acjf{q’? 9 dg; — —-dt
P Di

Hamiltonian formalism, CERN Accelerator School, September 2021
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1 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

oL .. 0L oL

[ These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (¢;,...,q,,p1,...,Pn,t,—H) &

% dH = Zp}dQZ -+ %dpz ./dc}@- dq — —dt
£ 8% ({9(]@' Ot

g 1.7 /\,_Y_’ \ )

;o ' Di

: OH OH
%dH q, p7 Z q’bdpz pzd(]z — —d Z apz dpz 8qz dqz + a—dt
% d By equatmg terms, Hamilton’s equatlons are derived

g . OH . OH OL B OH

g Q’L - apz ) p’L _ 8(] 9 82,; T at

.‘é

I
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"~ QThe Poisson brackets between two functions of a set
of canonical variables can be defined by the
differential operator

S~ (0f 99 09g Of
[fag] - Z (8]9@ 0q; B Op; aq2>

1=1

Hamiltonian formalism, CERN Accelerator School, September 2021
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Jole, | 2
" UThe Poisson brackets between two functions of a set

of canonical variables can be defined by the

differential operator

“/O0f Og Og Of
g ; (8]%' dq;  Op; 3%‘)

0 From this definition, and for any three given

functions, the following properties can be shown

af + bg,h] = alf,h] + blg,h] ,a,b € R bilinearity

nian formalism, CERN Accelerator School, September 2021

£.9] = =g, f] anticommutativity
f, 19, Bl + [g, [h, f1] + [h, [f, g]] = O Jacobi’s identity
f,gh] = f,glh+ g|f, h] Leibniz’s rule

Hamilto

JPoisson brackets operation satisfies a Lie algebra

49



