
Computational Tools

Andrea Latina
andrea.latina@cern.ch

CAS, Introduction to Accelerator Physics, 25 September 2021 - 08 October 2021

Table of contents

1. Introduction

• Purpose
• Some references

2. Internal representation of numbers

• Machine precision
• Numerical errors

• Round-off
• Truncation
• Cancellation

3. Tools

• Octave and Python
• Maxima
• C++ and libraries
• Shell tools

4. Accelerator tools

2/38 A. Latina - Computational Tools - CAS 2021

Purpose of this course

In these two lessons, we will outline the fundamental concepts in scientific
computing and guide the novice through the multitude of tools available. We will
describe the main tools and explain which tool should be used for a specific
purpose, dispelling common misconceptions, and suggest good practices.

We will suggest reference readings and clarify important aspects of numerical
stability to help avoid making bad but unfortunately common mistakes.
Numerical stability should be basic knowledge of every scientist.

We will exclusively refer to free and open-source software running on Linux or
other Unix-like operating systems. Also, we will unveil powerful shell commands
that can speed up simulations, facilitate data processing, and in short, increase
your scientific throughput.

3/38 A. Latina - Computational Tools - CAS 2021

Purpose of this course

In these two lessons, we will outline the fundamental concepts in scientific
computing and guide the novice through the multitude of tools available. We will
describe the main tools and explain which tool should be used for a specific
purpose, dispelling common misconceptions, and suggest good practices.

We will suggest reference readings and clarify important aspects of numerical
stability to help avoid making bad but unfortunately common mistakes.
Numerical stability should be basic knowledge of every scientist.

We will exclusively refer to free and open-source software running on Linux or
other Unix-like operating systems. Also, we will unveil powerful shell commands
that can speed up simulations, facilitate data processing, and in short, increase
your scientific throughput.

3/38 A. Latina - Computational Tools - CAS 2021

Purpose of this course

In these two lessons, we will outline the fundamental concepts in scientific
computing and guide the novice through the multitude of tools available. We will
describe the main tools and explain which tool should be used for a specific
purpose, dispelling common misconceptions, and suggest good practices.

We will suggest reference readings and clarify important aspects of numerical
stability to help avoid making bad but unfortunately common mistakes.
Numerical stability should be basic knowledge of every scientist.

We will exclusively refer to free and open-source software running on Linux or
other Unix-like operating systems. Also, we will unveil powerful shell commands
that can speed up simulations, facilitate data processing, and in short, increase
your scientific throughput.

3/38 A. Latina - Computational Tools - CAS 2021

Some references

1. “Numerical Recipes: The Art of Scientific Computing”, W. Press, S. Teukolsky, W.
Vetterling, and B. Flannery, 1992 (2nd edition) − 2007 (3rd edition)

2. Donald Knuth, “The Art of Computer programming”, 1968 − (the book is still
incomplete)

3. Abramowitz and Stegun, “Handbook of Mathematical Functions with Formulas”, 1964
4. Olver, F. , Lozier, D. , Boisvert, R. and Clark, C., “The NIST Handbook of Mathematical

Functions”, 2010
5. Zyla, P. A., et al., “Review of Particle Physics”, Oxford University Press.

More in the proceedings...

4/38 A. Latina - Computational Tools - CAS 2021

Internal representation of numbers

Integers

• Int, or integer, is a whole number, positive or negative, without decimals. In binary format

• Typically, an integer occupies four bytes, or 32 bits.

• The possible range for 32-bit integers is

−231 < X < 231 − 1

(from -2,147,483,648 to 2,147,483,647).

5/38 A. Latina - Computational Tools - CAS 2021

Internal representation of numbers

Integer types

• In compiled languages such as C and C++, specific types exist for better control:

Data Type Size Size in bytes Signed range

[un|signed] char 8 bits 1 -128 to 127

[un|signed] short int 16 bits 2 -32768 to 32767

[un|signed] int 32 bits 4 -2147483648 to 2147483647

[un|signed] long int 32 bits 4 -2147483648 to 2147483647

[un|signed] long long int 64 bits 8 −263 to 263 − 1

• Arithmetic between numbers in integer representation is
::::
exact, if the answer is not

outside the range of integers that can be represented.

6/38 A. Latina - Computational Tools - CAS 2021

Internal representation of numbers

Real numbers

• Real numbers use a floating-point representation IEEE-754

value = (−1)sign × 2exponent × 1.M

• a sign bit (interpreted as plus or minus)
• an exact integer exponent
• en exact positive integer mantissa (or fraction)

• Single-precision floating point representation (32 bits)

The C / C++ type is float.
• Double-precision floating point representation (64 bits)

The C / C++ type is double.
7/38 A. Latina - Computational Tools - CAS 2021

Internal representation of numbers

Range of real numbers

The complete range of the positive normal floating-point numbers in single-precision is:

smin = 2−126 ≈ 1.17× 10−38,

smax = 2127 ≈ 3.4× 1038.

In double-precision the range is:

dmin = 2−1022 ≈ 2× 10−308,

dmax = 21023 ≈ 2× 10308.

Single precision retains up to about 7 significant digits after the comma, double precision about
15.

Note: Some CPUs internally store floating point numbers in even higher precision: 80-bit in
extended precision, and 128-bit in quadruple precision. In C++ quadruple precision may be
specified using the long double type, but this is not required by the language.

8/38 A. Latina - Computational Tools - CAS 2021

Internal representation of numbers

Range of real numbers

The complete range of the positive normal floating-point numbers in single-precision is:

smin = 2−126 ≈ 1.17× 10−38,

smax = 2127 ≈ 3.4× 1038.

In double-precision the range is:

dmin = 2−1022 ≈ 2× 10−308,

dmax = 21023 ≈ 2× 10308.

Single precision retains up to about 7 significant digits after the comma, double precision about
15.

Note: Some CPUs internally store floating point numbers in even higher precision: 80-bit in
extended precision, and 128-bit in quadruple precision. In C++ quadruple precision may be
specified using the long double type, but this is not required by the language.

8/38 A. Latina - Computational Tools - CAS 2021

Internal representation of numbers

Special numbers

IEEE-754 floating-point types may support special values:

• infinity (positive and negative)

• the negative zero, -0.0. It compares equal to the positive zero, but is meaningful in some
arithmetic operations, e.g. 1.0/0.0 == INFINITY, but 1.0/-0.0 == -INFINITY)

• Not-a-number (NaN), which does not compare equal with anything (including itself)

9/38 A. Latina - Computational Tools - CAS 2021

Machine precision

• The machine accuracy εm :
is
:::
the

:::::::
smallest

::::::::::
floating-point

::::::
number which, added to 1.0,

produces a floating-point result different from 1.0:

1.0+ εm 6= 1.0

• For single precision
εm ≈ 3 · 10−8,

• For double precision
εm ≈ 2 · 10−16.

• It is important to understand that εm is not the smallest floating-point number that can
be represented on a machine.

Note: The smallest number, dmin, depends on how many bits there are in the exponent. εm
depends on how many bits there are in the mantissa.

10/38 A. Latina - Computational Tools - CAS 2021

Machine precision

• The machine accuracy εm :
is
:::
the

:::::::
smallest

::::::::::
floating-point

::::::
number which, added to 1.0,

produces a floating-point result different from 1.0:

1.0+ εm 6= 1.0

• For single precision
εm ≈ 3 · 10−8,

• For double precision
εm ≈ 2 · 10−16.

• It is important to understand that εm is not the smallest floating-point number that can
be represented on a machine.

Note: The smallest number, dmin, depends on how many bits there are in the exponent. εm
depends on how many bits there are in the mantissa.

10/38 A. Latina - Computational Tools - CAS 2021

Round-off error

The round-off error, also called rounding error, is the difference between the exact result and
the result obtained using finite-precision, rounded arithmetic.

As an example of round-off error, see the representation of the number 0.1

[link]

Round-off errors accumulate with increasing amounts of calculation.

If, in the course of obtaining a calculated value, one performs N such arithmetic operations,
one might end up having a total round-off error on the order of

√
Nεm (when lucky)

(Note: The square root comes from a random-walk, as the round-off errors come in randomly up or down.)

The golden rule: try to reduce the number of operations required to perform a calculation.

11/38 A. Latina - Computational Tools - CAS 2021

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Round-off error

The round-off error, also called rounding error, is the difference between the exact result and
the result obtained using finite-precision, rounded arithmetic.

As an example of round-off error, see the representation of the number 0.1

[link]

Round-off errors accumulate with increasing amounts of calculation.

If, in the course of obtaining a calculated value, one performs N such arithmetic operations,
one might end up having a total round-off error on the order of

√
Nεm (when lucky)

(Note: The square root comes from a random-walk, as the round-off errors come in randomly up or down.)

The golden rule: try to reduce the number of operations required to perform a calculation.

11/38 A. Latina - Computational Tools - CAS 2021

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Round-off error

The round-off error, also called rounding error, is the difference between the exact result and
the result obtained using finite-precision, rounded arithmetic.

As an example of round-off error, see the representation of the number 0.1

[link]

Round-off errors accumulate with increasing amounts of calculation.

If, in the course of obtaining a calculated value, one performs N such arithmetic operations,
one might end up having a total round-off error on the order of

√
Nεm (when lucky)

(Note: The square root comes from a random-walk, as the round-off errors come in randomly up or down.)

The golden rule: try to reduce the number of operations required to perform a calculation.
11/38 A. Latina - Computational Tools - CAS 2021

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Overflow and underflow, cancellation error

The Overflow occurs when an operation attempts to create a numeric value that is outside of
the range that can be represented with a given number of digits – either higher than the
maximum or lower than the minimum representable value.

The Underflow is a condition in a computer program where the result of a calculation is a
number of smaller absolute value than the computer can actually represent in memory.

Example: consider the difference between 123457.1467 and 123456.659 with 6-digit precision

e=5; s=1.234571
- e=5; s=1.234567

e=5; s=0.000004
e=-1; s=4.000000 (after rounding and normalization)

which is 20% different from actual result is 0.4877. This is called
::::::::
cancellation error.

12/38 A. Latina - Computational Tools - CAS 2021

Overflow and underflow, cancellation error

The Overflow occurs when an operation attempts to create a numeric value that is outside of
the range that can be represented with a given number of digits – either higher than the
maximum or lower than the minimum representable value.

The Underflow is a condition in a computer program where the result of a calculation is a
number of smaller absolute value than the computer can actually represent in memory.

Example: consider the difference between 123457.1467 and 123456.659 with 6-digit precision

e=5; s=1.234571
- e=5; s=1.234567

e=5; s=0.000004
e=-1; s=4.000000 (after rounding and normalization)

which is 20% different from actual result is 0.4877. This is called
::::::::
cancellation error.

12/38 A. Latina - Computational Tools - CAS 2021

Catastrophic cancellations

Take for example
1e100+ 1− 1e100 = ?

The result is zero... which is simply wrong. We call this a “catastrophic” cancellation.

Catastrophic cancellation can occur in the evaluation of expressions like:

1. Algebraic binomials, e.g.
x2 − y2

can incur in underflow errors if y2 � x2 (when y2/x2 < εm). This expression
is more accurately evaluated as

(x + y) (x − y)

Note: Although the expression (x − y) (x + y) does not cause catastrophic cancellation, it is slightly less accurate then
x2 − y2 if x � y or x � y . In this case, (x − y) (x + y) has three rounding errors, but x2 − y2 has only two, since the
rounding error committed when computing the smaller of x2 and y2 does not affect the final subtraction.

13/38 A. Latina - Computational Tools - CAS 2021

Catastrophic cancellations

Take for example
1e100+ 1− 1e100 = ?

The result is zero... which is simply wrong. We call this a “catastrophic” cancellation.

Catastrophic cancellation can occur in the evaluation of expressions like:

1. Algebraic binomials, e.g.
x2 − y2

can incur in underflow errors if y2 � x2 (when y2/x2 < εm). This expression
is more accurately evaluated as

(x + y) (x − y)

Note: Although the expression (x − y) (x + y) does not cause catastrophic cancellation, it is slightly less accurate then
x2 − y2 if x � y or x � y . In this case, (x − y) (x + y) has three rounding errors, but x2 − y2 has only two, since the
rounding error committed when computing the smaller of x2 and y2 does not affect the final subtraction.

13/38 A. Latina - Computational Tools - CAS 2021

Catastrophic cancellations

Take for example
1e100+ 1− 1e100 = ?

The result is zero... which is simply wrong. We call this a “catastrophic” cancellation.

Catastrophic cancellation can occur in the evaluation of expressions like:

1. Algebraic binomials, e.g.
x2 − y2

can incur in underflow errors if y2 � x2 (when y2/x2 < εm). This expression
is more accurately evaluated as

(x + y) (x − y)

Note: Although the expression (x − y) (x + y) does not cause catastrophic cancellation, it is slightly less accurate then
x2 − y2 if x � y or x � y . In this case, (x − y) (x + y) has three rounding errors, but x2 − y2 has only two, since the
rounding error committed when computing the smaller of x2 and y2 does not affect the final subtraction.

13/38 A. Latina - Computational Tools - CAS 2021

Catastrophic cancellations /II

2. Quadratic formula:

r1 =
−b +

√
b2 − 4ac
2a

r2 =
−b −

√
b2 − 4ac
2a

cancellation occurs. A good solution is:

• r1: if b2 � ac and b > 0, better use r1 =
2c

−b −
√
b2 − 4ac

• r2: if b2 � ac and b < 0, better use r2 =
2c

−b +
√
b2 − 4ac

3. Summations of many numbers of very large different magnitude. There are
two solutions:

1. Sort the numbers by abs(magnitude) and sum from the smallsr to the
largest

2. Kahan summation algorithm

14/38 A. Latina - Computational Tools - CAS 2021

Catastrophic cancellations /II

2. Quadratic formula:

r1 =
−b +

√
b2 − 4ac
2a

r2 =
−b −

√
b2 − 4ac
2a

cancellation occurs. A good solution is:

• r1: if b2 � ac and b > 0, better use r1 =
2c

−b −
√
b2 − 4ac

• r2: if b2 � ac and b < 0, better use r2 =
2c

−b +
√
b2 − 4ac

3. Summations of many numbers of very large different magnitude. There are
two solutions:

1. Sort the numbers by abs(magnitude) and sum from the smallsr to the
largest

2. Kahan summation algorithm

14/38 A. Latina - Computational Tools - CAS 2021

Built-in mathematical functions

log1p(x)

Internally, all functions are implemented using Taylor expansions:

log (x) = (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ . . .

which makes the function incur in cancellation whenever x < εm.

To overcome this problem, the C standard library, as well as Octave and Python, provide the
function log1p, which implements

log1p(x) = log (1+ x) = x −
x2

2
+

x3

3
−

x4

4
+ . . .

this is numerically stable.

15/38 A. Latina - Computational Tools - CAS 2021

Built-in mathematical functions

log1p(x)

Internally, all functions are implemented using Taylor expansions:

log (x) = (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ . . .

which makes the function incur in cancellation whenever x < εm.

To overcome this problem, the C standard library, as well as Octave and Python, provide the
function log1p, which implements

log1p(x) = log (1+ x) = x −
x2

2
+

x3

3
−

x4

4
+ . . .

this is numerically stable.

15/38 A. Latina - Computational Tools - CAS 2021

Built-in mathematical functions

hypot(a,b)

provides a numerically stable implementation of

c =
√
a2 + b2

which causes cancellaton when |a| � |b| or |b| � |a| .

The C standard library provides hypot(a,b):

c = m ·
√
1+ (M/m)2

where m = min (|a| , |b|), M = max (|a| , |b|).

16/38 A. Latina - Computational Tools - CAS 2021

Built-in mathematical functions

hypot(a,b)

provides a numerically stable implementation of

c =
√
a2 + b2

which causes cancellaton when |a| � |b| or |b| � |a| .

The C standard library provides hypot(a,b):

c = m ·
√
1+ (M/m)2

where m = min (|a| , |b|), M = max (|a| , |b|).

16/38 A. Latina - Computational Tools - CAS 2021

Implementation of functions

Sin cardinal

Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)
x otherwise.

pdf

numerical instabilities appear due to the division between two nearly-zero numbers. A robust
implementation comes from a careful consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x
≈ 1−

x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√
6 εm.

A similar approach might also be taken with functions like: 1− cos (x), 1− cosh (x), log (x), etc.

17/38 A. Latina - Computational Tools - CAS 2021

Implementation of functions

Sin cardinal

Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)
x otherwise.

pdf

numerical instabilities appear due to the division between two nearly-zero numbers. A robust
implementation comes from a careful consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x
≈ 1−

x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√
6 εm.

A similar approach might also be taken with functions like: 1− cos (x), 1− cosh (x), log (x), etc.

17/38 A. Latina - Computational Tools - CAS 2021

Implementation of functions

Sin cardinal

Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)
x otherwise.

pdf

numerical instabilities appear due to the division between two nearly-zero numbers. A robust
implementation comes from a careful consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x
≈ 1−

x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√
6 εm.

A similar approach might also be taken with functions like: 1− cos (x), 1− cosh (x), log (x), etc.

17/38 A. Latina - Computational Tools - CAS 2021

Implementation of functions

Sin cardinal

Also the implementation of functions requires attention. Take for example the function “sin
cardinal”,

sinc (x) =

{
1 for x = 0
sin(x)
x otherwise.

pdf

numerical instabilities appear due to the division between two nearly-zero numbers. A robust
implementation comes from a careful consideration of this function.

Let’s take the Taylor expansion sinc(x) to first order,

sin x
x
≈ 1−

x2

6
+ . . .

If we look at the right-hand side, we can appreciate the fact that in this form, when x is small,
the numerical instability simply disappears. The final result will differ from zero if and only if∣∣∣∣− x2

6

∣∣∣∣ < εm,

If x is made explicit, a robust implementation should return 1 when:

|x | <
√
6 εm.

A similar approach might also be taken with functions like: 1− cos (x), 1− cosh (x), log (x), etc.17/38 A. Latina - Computational Tools - CAS 2021

Truncation error

Finite differentiation

Imagine that you have a procedure which computes a function f (x), and now you want to
compute its derivative f ′(x). Easy, right? The definition of the derivative,

f ′ (x) = lim
h→0

f (x + h)− f (x)
h

practically suggests the program: Pick a small value h; evaluate f (x + h) and f (x), finally apply
the above equation.

Applied uncritically, the above procedure is almost guaranteed to produce inaccurate results.
There are two sources of error in equation: the truncation error and the round-off error.

Let’s focus on the truncation error now, we know that

f (x + h) = f (x) + hf ′ (x) +
1
2
h2f ′′ (x) + . . .

(Taylor expansion), therefore
f (x + h)− f (x)

h
= f ′ +

1
2
hf ′′ + . . .

Then, when we approximate f ′ as in the above equation, we make a truncation error:

εt =
1
2
hf ′′ + . . . = O(h)

In this case, the truncation error is linearly proportional to h. Higher-order formulations of the
first derivative give smaller error.

18/38 A. Latina - Computational Tools - CAS 2021

Truncation error

Finite differentiation

Imagine that you have a procedure which computes a function f (x), and now you want to
compute its derivative f ′(x). Easy, right? The definition of the derivative,

f ′ (x) = lim
h→0

f (x + h)− f (x)
h

practically suggests the program: Pick a small value h; evaluate f (x + h) and f (x), finally apply
the above equation.

Applied uncritically, the above procedure is almost guaranteed to produce inaccurate results.
There are two sources of error in equation: the truncation error and the round-off error.

Let’s focus on the truncation error now, we know that

f (x + h) = f (x) + hf ′ (x) +
1
2
h2f ′′ (x) + . . .

(Taylor expansion), therefore
f (x + h)− f (x)

h
= f ′ +

1
2
hf ′′ + . . .

Then, when we approximate f ′ as in the above equation, we make a truncation error:

εt =
1
2
hf ′′ + . . . = O(h)

In this case, the truncation error is linearly proportional to h. Higher-order formulations of the
first derivative give smaller error.18/38 A. Latina - Computational Tools - CAS 2021

Finite difference formulae

Abramowitz and Stegun, page 883 and following

19/38 A. Latina - Computational Tools - CAS 2021

Finite difference formulae

Abramowitz and Stegun, page 883 and following

20/38 A. Latina - Computational Tools - CAS 2021

Finite difference formulae

Abramowitz and Stegun, page 883 and following

21/38 A. Latina - Computational Tools - CAS 2021

Numerical integration

Newton-Cotes formulas of the closed type.

For {i ∈ N | 0 ≤ i ≤ n}, let xi = a + i b−a
n = a + i h, and fi = f (xi): then the integral can be approximated

with a sum ∫ b

a
f (x) dx ≈

n∑
i=0

wi f (xi)

where:

n Step size h Common name Formula Error

1 b − a Trapezoidal rule
h
2
(f0 + f1) −

1
12

h3f (2)(ξ)

2 b−a
2 Simpson’s rule

h
3
(f0 + 4f1 + f2) −

1
90

h5f (4)(ξ)

3 b−a
3 Simpson’s 3/8 rule

3h
8

(f0 + 3f1 + 3f2 + f3) −
3
80

h5f (4)(ξ)

4 b−a
4 Boole’s rule

2h
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4) −
8
945

h7f (6)(ξ)

22/38 A. Latina - Computational Tools - CAS 2021

Numerical integration

Newton-Cotes formulas of the closed type.

For {i ∈ N | 0 ≤ i ≤ n}, let xi = a + i b−a
n = a + i h, and fi = f (xi): then the integral can be approximated

with a sum ∫ b

a
f (x) dx ≈

n∑
i=0

wi f (xi)

where:

n Step size h Common name Formula Error

1 b − a Trapezoidal rule
h
2
(f0 + f1) −

1
12

h3f (2)(ξ)

2 b−a
2 Simpson’s rule

h
3
(f0 + 4f1 + f2) −

1
90

h5f (4)(ξ)

3 b−a
3 Simpson’s 3/8 rule

3h
8

(f0 + 3f1 + 3f2 + f3) −
3
80

h5f (4)(ξ)

4 b−a
4 Boole’s rule

2h
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4) −
8
945

h7f (6)(ξ)

22/38 A. Latina - Computational Tools - CAS 2021

Exact and arbitrary-precision numbers

In cases where double-, extended- or even quadruple-precision are not enough, there exist a
couple of solutions to achieve higher precision and in some cases even exact results.

• Symbolic calculation is the “holy grail” of exact calculations.

Programs such as Maxima, Mathematica©, or
Maple©, know the rules of math and represents
data as symbols rather rounded numbers. It is
free software released under the terms of the GNU
General Public License (GPL). An excellent front
end for Maxima is wxMaxima

• Arbitrary-precision arithmetic can be achieved using dedicated libraries that can handle
arbitrary, user-defined precision such as GMP, the GNU Multiple Precision Arithmetic
Library for the C and C++ programming languages.

23/38 A. Latina - Computational Tools - CAS 2021

Tools: Python vs Octave

Python is described as “A clear and powerful object-oriented programming language,
comparable to Perl, Ruby, Scheme, or Java”. Python is a general purpose programming
language created by Guido Van Rossum. Python is most praised for its elegant syntax and
readable code, if you are just beginning your programming career python suits you best.

Libraries such as numpy, matplotlib, pandas offer many functionalities that make it similar to
MATLAB and Octave.

Octave is detailed as “A programming language for scientific computing”. It is software
featuring a high-level programming language, primarily intended for numerical computations.
Octave helps in solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with MATLAB.

https://www.octave.org

https://octave.sourceforge.io

24/38 A. Latina - Computational Tools - CAS 2021

https://www.octave.org
https://octave.sourceforge.io

Tools: Python vs Octave

Python is described as “A clear and powerful object-oriented programming language,
comparable to Perl, Ruby, Scheme, or Java”. Python is a general purpose programming
language created by Guido Van Rossum. Python is most praised for its elegant syntax and
readable code, if you are just beginning your programming career python suits you best.

Libraries such as numpy, matplotlib, pandas offer many functionalities that make it similar to
MATLAB and Octave.

Octave is detailed as “A programming language for scientific computing”. It is software
featuring a high-level programming language, primarily intended for numerical computations.
Octave helps in solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with MATLAB.

https://www.octave.org

https://octave.sourceforge.io

24/38 A. Latina - Computational Tools - CAS 2021

https://www.octave.org
https://octave.sourceforge.io

Tools: Python vs Octave

Python is described as “A clear and powerful object-oriented programming language,
comparable to Perl, Ruby, Scheme, or Java”. Python is a general purpose programming
language created by Guido Van Rossum. Python is most praised for its elegant syntax and
readable code, if you are just beginning your programming career python suits you best.

Libraries such as numpy, matplotlib, pandas offer many functionalities that make it similar to
MATLAB and Octave.

Octave is detailed as “A programming language for scientific computing”. It is software
featuring a high-level programming language, primarily intended for numerical computations.
Octave helps in solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with MATLAB.

https://www.octave.org

https://octave.sourceforge.io

24/38 A. Latina - Computational Tools - CAS 2021

https://www.octave.org
https://octave.sourceforge.io

Tools: Octave

Example: impact of nonlinear elements on linear optics

25/38 A. Latina - Computational Tools - CAS 2021

Tools: Octave simulation

26/38 A. Latina - Computational Tools - CAS 2021

Tools: Symbolic computation

Maxima and wxMaxima

Maxima is a computer algebra system with a long
history. It is based on a 1982 version of Macsyma.

It is written in Common Lisp and runs on all POSIX
platforms such as macOS, Unix, BSD, and Linux, as
well as under Microsoft Windows and Android.

It is free software released under the terms of the
GNU General Public License (GPL). It is a valid al-
ternative to commercial alternatives, and offers some
advantage.

An excellent front end for Maxima is wxMaxima.

Octave and Python

Symbolic computations can also be performed within Octave and Python. Dedicated packages
add the possibility to perform basic symbolic computations, including common Computer
Algebra System tools such as algebraic operations, calculus, equation solving, Fourier and
Laplace transforms, variable precision arithmetic and other features, in scripts.

27/38 A. Latina - Computational Tools - CAS 2021

Tools: Symbolic computation

Maxima and wxMaxima

Maxima is a computer algebra system with a long
history. It is based on a 1982 version of Macsyma.

It is written in Common Lisp and runs on all POSIX
platforms such as macOS, Unix, BSD, and Linux, as
well as under Microsoft Windows and Android.

It is free software released under the terms of the
GNU General Public License (GPL). It is a valid al-
ternative to commercial alternatives, and offers some
advantage.

An excellent front end for Maxima is wxMaxima.

Octave and Python

Symbolic computations can also be performed within Octave and Python. Dedicated packages
add the possibility to perform basic symbolic computations, including common Computer
Algebra System tools such as algebraic operations, calculus, equation solving, Fourier and
Laplace transforms, variable precision arithmetic and other features, in scripts.

27/38 A. Latina - Computational Tools - CAS 2021

Tools: Symbolic computation

A 1D harmonic oscillator with wxMaxima

28/38 A. Latina - Computational Tools - CAS 2021

Tools: Symbolic computation

The Octave “symbolic” package

The Python “sympy” library

29/38 A. Latina - Computational Tools - CAS 2021

Tools: Symbolic computation

The Octave “symbolic” package

The Python “sympy” library

29/38 A. Latina - Computational Tools - CAS 2021

Shell scientific tools

units

The ability to evaluate complex expressions involving units makes many computations easy to
do, and the checking for compatibility of units guards against errors frequently made in
scientific calculations. Units is a conversion program, but also calculator with units.

• Example 1: average beam power,
bunch charge 300 pC, 15 GeV energy, 50 Hz repetition rate:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444444444444444) W

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

In bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

2

• Example 2: beam size at the interaction point of an electron collider,
σ =

√
β? · εgeometric, with β? = 1mm, εnormalized = 5 nm, E = 1.5TeV:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444) W

1 You have: sqrt(0.001m * 5nm * electronmass c^2 / 1.5 TeV)
2 You want: nm
3 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = 1.305116 nm
4 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = (1 / 0.766214) nm

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

30/38 A. Latina - Computational Tools - CAS 2021

Shell scientific tools

units

The ability to evaluate complex expressions involving units makes many computations easy to
do, and the checking for compatibility of units guards against errors frequently made in
scientific calculations. Units is a conversion program, but also calculator with units.

• Example 1: average beam power,
bunch charge 300 pC, 15 GeV energy, 50 Hz repetition rate:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444444444444444) W

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

In bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

2

• Example 2: beam size at the interaction point of an electron collider,
σ =

√
β? · εgeometric, with β? = 1mm, εnormalized = 5 nm, E = 1.5TeV:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: 300 pC * 15 GV * 50 Hz
3 You want: W
4 300 pC * 15 GV * 50 Hz = 225 W
5 300 pC * 15 GV * 50 Hz = (1 / 0.004444) W

1 You have: sqrt(0.001m * 5nm * electronmass c^2 / 1.5 TeV)
2 You want: nm
3 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = 1.305116 nm
4 sqrt(0.001 m * 5 nm * electronmass c c / 1.5 TeV) = (1 / 0.766214) nm

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

30/38 A. Latina - Computational Tools - CAS 2021

Shell scientific tools

bc

It’s a programmable shell calculator that supports arbitrary-precision numbersIn bc, the variable scale allows one to select the total number of decimal digits after the decimal
point to be used:

1 $ bc
2 bc 1.06
3 Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
4 This is free software with ABSOLUTELY NO WARRANTY.
5 For details type ‘warranty’.
6 scale=1
7 sqrt(2)
8 1.4
9 scale=40

10 sqrt(2)
11 1.4142135623730950488016887242096980785696

1 Suggested literature
There are a number of classic books that every scientist dealing with numerical calculations should know.
Here we list some of our favourites:

– Donald Knuth, “The Art of Computing programming”, is a comprehensive monograph written
by computer scientist Donald Knuth that covers many kinds of programming algorithms and their
analysis. Knuth began the project, originally conceived as a single book with twelve chapters, in
1962. The four volumes are:

Volume 1 – Fundamental Algorithms: Basic concepts, Information structures
Volume 2 - Seminumerical Algorithms: Random numbers, Arithmetic
Volume 3 – Sorting and searching: Sorting, Searching
Volume 4 - Combinatorial searching: Combinatoiral searching.

En passant, Donald Knuth is the creator of TEX, the typesetting system at the base of LATEX.
– W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical Recipes: The Art of Sci-

entific Computing”, is a complete text and reference book on scientific computing. In a self-
contained manner it proceeds from mathematical and theoretical considerations to actual practical
computer routines. Even though its routines are nowadays available in libraries such as GSL
or NAG, this book remains the most practical, comprehensive handbook of scientific computing
available today. Cambridge University Press.

– Abramowitz and Stegun, “Handbook of Mathematical Functions with Formulas”. Since it was
first published in 1964, the 1046-page Handbook has been one of the most comprehensive sources
of information on special functions, containing definitions, identities, approximations, plots, and
tables of values of numerous functions used in virtually all fields of applied mathematics.
At the time of its publication, the Handbook was an essential resource for practitioners. Nowa-
days, computer algebra systems have replaced the function tables, but the Handbook remains an
important reference source for finite difference methods, numerical integration, etc.
A high quality scan of the book is available at the University of Birmingham, UK [link].

– Olver, F. , Lozier, D. , Boisvert, R. and Clark, C. (2010), “The NIST Handbook of Mathematical
Functions”. This is a modern version of the Abramowitz-Stegun, and is comprehensive collection
of mathematical functions, from elementary trigonometric functions to the multitude of special
functions.

– Zyla, P. A., et al., “Review of Particle Physics”, Oxford University Press. s. A huse summary of
particle physics, enriched with extremely useful reviews of topics such as particle-matter interac-
tion, probability, Monte Carlo techniques, and statistics.

– George B. Arfken, “Mathematical Methods for Physicists”. This is a thorough handbook about
mathematics that is useful in physics. It is a venerable book that goes back to 1966; this seventh

3

The variable “scale” allows one to select the total number of decimal digits after the decimal

31/38 A. Latina - Computational Tools - CAS 2021

Shell scientific tools

Use of named pipes for interprocess communication (of FIFOs)

Let’s see how to create and use a named pipe:

Notice the special file type designation of "p" and the file length of zero. You can write to a named pipe by
redirecting output to it and the length will still be zero.

So far, so good, but hit return and nothing much happens. While it might not be obvious, your text has
entered into the pipe, but you’re still peeking into the input end of it. You or someone else may be sitting at
the output end and be ready to read the data that’s being poured into the pipe, now waiting for it to be read.

Once read, the contents of the pipe are gone.

32/38 A. Latina - Computational Tools - CAS 2021

Shell scientific tools

Use of named pipes for interprocess communication (of FIFOs)

Let’s see how to create and use a named pipe:

Notice the special file type designation of "p" and the file length of zero. You can write to a named pipe by
redirecting output to it and the length will still be zero.

So far, so good, but hit return and nothing much happens. While it might not be obvious, your text has
entered into the pipe, but you’re still peeking into the input end of it. You or someone else may be sitting at
the output end and be ready to read the data that’s being poured into the pipe, now waiting for it to be read.

Once read, the contents of the pipe are gone.

32/38 A. Latina - Computational Tools - CAS 2021

Shell scientific tools

Use of named pipes for interprocess communication (of FIFOs)

Let’s see how to create and use a named pipe:

Notice the special file type designation of "p" and the file length of zero. You can write to a named pipe by
redirecting output to it and the length will still be zero.

So far, so good, but hit return and nothing much happens. While it might not be obvious, your text has
entered into the pipe, but you’re still peeking into the input end of it. You or someone else may be sitting at
the output end and be ready to read the data that’s being poured into the pipe, now waiting for it to be read.

Once read, the contents of the pipe are gone.

32/38 A. Latina - Computational Tools - CAS 2021

A word about the choice of units...

The International System (SI) is not suitable for accelerator physics. The beam size isn’t of the
order of meters, the force shouldn’t be expressed in Newtons.

Example:

Let’s compute the force exerted by one of the LHC superconductive dipoles, in Newton:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: c * e * 8.5 T
3 You want: N
4 c * e * 8.5 T = 4.082724005684724e-10 N
5 c * e * 8.5 T = (1 / 2449345090.698306) N

1 You have: c * e * 8.5 T
2 You want: MeV/m
3 c * e * 8.5 T = 2548.235893 MeV/m
4 c * e * 8.5 T = (1 / 0.0003924283472919436) MeV/m

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

Example of “practical” units:

quantity units quantity units quantity units

position mm energy MeV momentum MeV/c

angles mrad time mm/c force MeV/m

In fact,

33/38 A. Latina - Computational Tools - CAS 2021

A word about the choice of units...

The International System (SI) is not suitable for accelerator physics. The beam size isn’t of the
order of meters, the force shouldn’t be expressed in Newtons.

Example:

Let’s compute the force exerted by one of the LHC superconductive dipoles, in Newton:

Contents

1 Suggested literature . 3

0.0.1 units - conversion program
Units is a great tool: it knows the value of the most important scientific constants, it performs units
conversions, and most of all it’s a calculator with units. Let’s consider an example: let’s computer the
average power of a 50 Hz, 300 pC single-bunch charge, 15-GeV beam. One inputs in units the following
quantities:

1 $ units -v
2 You have: c * e * 8.5 T
3 You want: N
4 c * e * 8.5 T = 4.082724005684724e-10 N
5 c * e * 8.5 T = (1 / 2449345090.698306) N

1 You have: c * e * 8.5 T
2 You want: MeV/m
3 c * e * 8.5 T = 2548.235893 MeV/m
4 c * e * 8.5 T = (1 / 0.0003924283472919436) MeV/m

The option -v makes the output of units more verbose and more clear.

Units it’s an excellent tool that is too often undervalued. The consistent use of it strengthen and
simplifies the writing of any physics-based code. Let’s compute for example the electric force experi-
enced by two charged particles at a distance, for example. The force can easily be written as:

F = K
Q1 · Q2

d2
[eV/m]

where Q1 and Q1 are obviously the charges of the two particles involved, and d is their relative distance;
K = 1

4⇡✏0
is the coupling constant. We choose to use eV/m as units of the force, because expressing the

force, e.g. in Newton, would certainly lead to very small numbers. As a general rule, a good choice is to
pick units that make the quantities at play be small numbers whose integer part is larger than 1. We use e
(the charge of a positron) as the units of charge, and mm as the units of distance. Units helps us compute
the numerical value of the coupling constant K, in the desired units:

1 $ units -v
2 You have: e*e / 4 pi epsilon0 mm^2
3 You want: eV/m
4 e*e / 4 pi epsilon0 mm^2 = 0.001439964547846902 eV/m
5 e*e / 4 pi epsilon0 mm^2 = (1 / 694.4615417756247) eV/m

Therefore our code will look like:

1 Q1 = -1; % the charge of an electron [e]
2 Q2 = +1; % the charge of a proton [e]
3 d = 1; % the relative distance [mm]
4 K = 0.001439964547846902; % the coupling constanct [e*e / 4 pi epsilon0 mm^2]

The result being:

1 F = K * Q1 * Q2 / (d*d) % the force [eV/m]

0.0.2 bc - An arbitrary precision calculator language
bc is a shell calculator that supports arbitrary precision numbers with interactive execution of statements.
There are some similarities in the syntax to the C programming language. A standard math library is
available by command line option. If requested, the math library is defined before processing any files.

2

Example of “practical” units:

quantity units quantity units quantity units

position mm energy MeV momentum MeV/c

angles mrad time mm/c force MeV/m

In fact,

33/38 A. Latina - Computational Tools - CAS 2021

A word about data files...

A questionable choice:

In C, use:

printf(“%.15g\n”, x);

In C++, use:

std::cout <‌< std::setprecision(15) <‌< x <‌< std::endl;

You want to look for bit-wise preservation of the information.

34/38 A. Latina - Computational Tools - CAS 2021

A word about data files...

A questionable choice:

In C, use:

printf(“%.15g\n”, x);

In C++, use:

std::cout <‌< std::setprecision(15) <‌< x <‌< std::endl;

You want to look for bit-wise preservation of the information.

34/38 A. Latina - Computational Tools - CAS 2021

A word about data files...

A questionable choice:

In C, use:

printf(“%.15g\n”, x);

In C++, use:

std::cout <‌< std::setprecision(15) <‌< x <‌< std::endl;

You want to look for bit-wise preservation of the information.

34/38 A. Latina - Computational Tools - CAS 2021

Accelerator physics codes

MAD-X

MAD-X is a CERN code used world-wide, with a long history going back to the 80’s in the field
of high energy beam physics (i.e. MAD8, MAD9, MADX). It is an all-in-one application with
its own scripting language used to design, simulate and optimise particle accelerators: lattice
description, machine survey, single particles 6D tracking, optics modelling, beam simulation &
analysis, machine optimisation, errors handling, orbit correction, aperture margin and emittance
equilibrium.

SixTrack

CERN’s single-particle 6D symplectic tracking code optimised for long term tracking in high
energy rings. Uses its own description language;.

PyHEADTAIL

Python macro-particle simulation code library developed at CERN for modelling collective
effects beam dynamics in circular accelerators. Interfaced with Python.

35/38 A. Latina - Computational Tools - CAS 2021

Accelerator physics codes /II

PLACET

The “Program for Linear Accelerator Correction and Efficiency Tests”, is a code developed at
CERN that simulates the dynamics of a beam in the main accelerating or decelerating part of a
linac (CLIC) in the presence of wakefields. In includes also the emission of incoherent and
coherent synchrotron radiation. Interfaced with Tcl, Octave, and Python.

ELEGANT

The “ELEctron Generation ANd Tracking”, it’s a code developed at the Argonne National
Laboratory (ANL, USA) that can generate particle distributions, track them, and perform
optics calculations. Uses its own description language.

36/38 A. Latina - Computational Tools - CAS 2021

Accelerator physics codes /III

ASTRA

“A Space Charge Tracking Algorithm” is a tracking code developed at DESY (Hamburg,
Germany), can simulate injectors and track in field maps. Uses its own description language.

RF-Track

RF-Track was developed at CERN, to simulate beams of particles with arbitrary energy, mass,
and charge, even mixed, in field maps and conventional elements. It can simulate space-charge,
short- and long-range wakefields, electron cooling, inverse Compton scattering. Interfaced with
Python and Octave.

There are also many others, but some aren’t maintained or they are not open-source and free..

37/38 A. Latina - Computational Tools - CAS 2021

The end.

Thank you for your attention.

Any questions?

38/38 A. Latina - Computational Tools - CAS 2021

