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Copyright statement and speaker’s release for video publishing

The author consents to the photographic, audio and video recording of this

lecture at the CERN Accelerator School. The term “lecture” includes any

material incorporated therein including but not limited to text, images and

references.

The author hereby grants CERN a royalty-free license to use his image and

name as well as the recordings mentioned above, in order to post them on

the CAS website.

The author hereby confirms that to his best knowledge the content of the

lecture does not infringe the copyright, intellectual property or privacy rights

of any third party. The author has cited and credited any third-party

contribution in accordance with applicable professional standards and

legislation in matters of attribution. Nevertheless the material represent

entirely standard teaching material known for more than ten years. Naturally

some figures will look alike those produced by other teachers.
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Disclaimer

 These lectures are largely based on the lectures of A. Wolski

(University of Liverpool) from the CAS 2016 on “Introduction to 

Accelerator Physics” at Budapest, and on the lectures of 

Y. Papaphilippou on “A first taste of Non-Linear Beam Dynamics” 

from the CAS 2019 on “Introduction to Accelerator Physics” at 

Vysoké Tatry.
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Purpose of the lecture

 Introducing aspects of non-linear dynamics

 Mathematical tools for modelling nonlinear dynamics

 Power series (Taylor) maps and symplectic maps

 Effects of nonlinear perturbations

 Resonances, tune shifts, dynamic aperture

 Analysis methods

 Normal forms, frequency map analysis

 Employ two types of accelerator systems for illustrating methods and 

tools

 Bunch compressor (single-pass system)

 Storage ring (multi-turn system)
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Aim of the 2nd Lecture

 Describe some of the phenomena associated with nonlinearities in 

periodic beamlines (such as storage rings)

 Explain significance of symplectic maps, and describe some of the 

challenges in calculating and applying symplectic maps

 Outline some of the analysis methods that can be used to 

characterise nonlinear beam dynamics in periodic beamlines.
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Example of a 

periodic system:

a simple storage ring
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A simple storage ring

 As example, consider the transverse dynamics in a simple storage 

ring, assuming:

 The storage ring is constructed from some number of identical cells 

consisting of dipoles, quadrupoles and sextupoles.

 The phase advance per cell can be tuned from close to zero, up to 

about 0.5×2π.

 There is one sextupole per cell, which is located at a point where the 

horizontal beta function is 1 m, and the alpha function is zero.

 Usually, storage rings will contain (at least) two sextupoles per cell, to 

correct horizontal and vertical chromaticity. To keep things simple, we 

will use only one sextupole per cell.
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Reminder: chromaticity correction

 Sextupoles are needed in a storage ring to compensate for the fact 

that quadrupoles have lower focusing strength for particles of 

higher energy:

 The change in focusing strength with particle energy has undesirable 

consequences, especially in storage rings: it can lead to particle 

motion becoming unstable because of resonances
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Reminder: chromaticity correction

 A sextupole can be regarded as a quadrupole with focusing 

strength that increases with horizontal offset from the axis.

 If sextupoles are located where there is non-zero dispersion, they 

can be used to control the chromaticity in a storage ring.
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Linear dynamics in a storage ring

 The chromaticity, and hence the sextupole strength, will normally be 

a function of the phase advance

 However, just to investigate the nonlinear effects of the sextupoles, 

we shall keep the sextupole strength fixed, and change only 

the phase advance

 We can assume that the map from one sextupole to the next is 

linear, and corresponds to a rotation in phase space through an 

angle equal to the phase advance:

 Again to keep things simple, we shall consider only horizontal 

motion, and assume that the vertical co-ordinate
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Nonlinear transfer map: sextupole

 Recall that the vertical field component in a sextupole magnet is: 

with         the beam rigidity and the normalized sextupole gradient is

 In the “thin lens” approximation, the deflection of a particle passing 

through the sextupole of length     is
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Nonlinear transfer map: sextupole

 The map for a particle moving through a short sextupole can be 

represented by a “kick” in the horizontal momentum:

 Let us choose a fixed value , and look at the 

effects of the maps for different phase advances.

 For each case, we construct a phase space portrait by plotting the 

values of the dynamical variables after repeated application of the 

map (rotation + sextupole) for a range of initial conditions.

 First, let us look at the phase space portraits for a range of phase 

advances from 0.2 × 2π to 0.5 × 2π
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring



16

A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

1

Example of a simple storage ring
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Example of a simple storage ring
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Some observations

 There are some interesting features in these phase space 

portraits to which it is worth drawing attention: 

 For small amplitudes (small x and px), particles trace out closed loops 

around the origin: this is what we expect for a linear map

 As the amplitude is increased, “islands” appear in phase space: the 

phase advance (for the linear map) is often close to m/p where m is an 

integer and p is the number of islands

 Sometimes, a larger number of islands appears at larger amplitude

 Usually, there is a closed curve that divides a region of stable motion 

from a region of unstable motion. Outside that curve, the amplitude of 

particles increases without limit as the map is repeatedly applied

 The area of the stable region depends strongly on the phase 

advance: for a phase advance close to 2π/3, it appears that the stable 

region almost vanishes altogether

 As the phase advance is increased towards π, the stable area 

becomes large, and distortions from the linear ellipse become small
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Effect of phase advance on 

nonlinear dynamics
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Effect of phase advance

 An important observation is that the effect of the sextupole in the 

periodic cell depends strongly on the phase advance across the 

cell

 We can start to understand the significance of the phase advance by 

considering two special cases:

 Phase advance equal to an integer times 2π

 Phase advance equal to a half integer times 2π



21

A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

1

Integer tune

 Let us consider first a phase advance equal to an integer times 2π. In that 

case, the linear part of the map is just the identity

 The combined effect of the linear map and the sextupole kick is:

 Clearly, the horizontal momentum will increase without limit

 There are no stable regions of phase space, apart from
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Half-Integer tune

 Now consider what happens if the phase advance of a cell is a half 

integer times 2π, so the linear part of the map is just a rotation 

through π

 If a particle starts at the entrance of a sextupole with and 

, then at the exit of that sextupole:

 Then, after passing to the entrance of the next sextupole, the co-

ordinates will be:
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Half-Integer tune

 Finally, on passing through the second sextupole:

 In other words, the momentum kicks from the two sextupoles

cancel each other exactly

 The resulting map is a purely linear phase space rotation by π. 

 In this situation, we expect the motion to be stable (and periodic), no 

matter what the amplitude
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Impact of phase advance

 The effect of the phase advance on the sextupole “kicks” is similar to 

the effect on perturbations arising from dipole and quadrupole

errors in a storage ring

 In the case of dipole errors, the kicks add up if the phase advance 

is an integer, and cancel if the phase advance is a half integer

Effect of t he phase advance on t he nonlinear dynam ics

T he effect of t he phase advance on t he sext upole “ kicks” is

sim ilar t o t he effect on pert urbat ions arising from dipole and

quadrupole errors in a st orage ring.

In t he case of dipole errors, t he kicks add up if t he phase

advance is an int eger, and cancel if t he phase advance is a half

int eger.

CAS, B udapest , 2016 20 Nonlinear D ynamics: Part 2
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Impact of phase advance

 In the case of quadrupole errors, the kicks add up if the phase 

advance is a half integer times 2π

 Higher-order multipoles drive higher-order resonances but the 

effects are less easily illustrated on a phase space diagram

Effect of t he phase advance on t he nonlinear dynam ics

In t he case of quadrupole errors, t he kicks add up if t he phase

advance is a half int eger.

Higher-order mult ipoles drive higher-order resonances... but t he

effect s are less easily illust rat ed on a phase space diagram.

CAS, B udapest , 2016 21 Nonlinear D ynamics: Part 2
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Resonances
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Resonances

 If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 2
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Resonances

 If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 3
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Resonances

 If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 4
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Resonances

 If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even ny)

skew resonances

(= odd ny)

Resonances up to order 5
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Resonances

 Resonances are associated with chaotic motion for particles in 

storage rings

 However, the number of resonance lines in tune space is infinite: 

any point in tune space will be close to a resonance of some order

 This observation raises two questions:

 How do we know what the real effect of any given resonance line will be?

 How can we design a storage ring to minimise the adverse effects of 

resonances?
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Resonance cancellation by periodicity

 By imposing a periodicity P in the lattice (i.e. building a machine 

from P identical cells) the resonance condition becomes

 Resonances for which l is integer  systematic

 If l is NOT integer the resonance cancels  non-systematic

periodicity P=1 periodicity P=2 periodicity P=3

solid lines: normal resonances 

dashed lines: skew resonances
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Real life example for periodicity: ALS 

D. Robin, C. Steier, J. Safranek, W. Decking, “Enhanced performance of the ALS 

through periodicity restoration of the lattice,” proc. EPAC 2000. 

Uncorrected optics Corrected optics

Synchrotron light beam spot

Simulated phase space

Measurement of beam 

loss as function of tune

Beta beating

Before optics correction: ~30%

After optics correction: <1%

Advanced Light Source, design lattice periodicity: 12
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Real life example for periodicity: SPS 

 SPS (hadron machine) has design lattice periodicity of 6

 Sextupole resonances can be clearly identified although they 

should be suppressed by lattice periodicity … because SPS has no 

individual quadrupoles to restore optics functions distortions

Measured loss rate
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Non-linear map 

representation
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Taylor maps

 For any dynamical variable    the Taylor map up to 3rd order can be 

written as

 Taylor series provide a convenient way of systematically 

representing transfer maps for beamline components, or sections 

of beamline

 The main drawback of Taylor series is that in general, transfer maps 

can only be represented exactly by series with an infinite number of 

terms

 In practice, we have to truncate a Taylor map at some order, and 

we then lose certain desirable properties of the map

 In particular, a truncated map will be usually be non-symplectic
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Symplectic maps

 Consider two sets of canonical variables     ,       which can be 

considered as the evolution of the system between two points in 

phase space

 A transformation from the one to the other set can be constructed 

through a map 

 The Jacobian matrix of the map is composed by the elements

 The map is symplectic if  , where 

is the antisymmetric matrix with block diagonals 

 Physically, a symplectic transfer map conserves phase space 

volumes when the map is applied

 This is Liouville’s theorem, and is a property of charged particles 

moving in electromagnetic fields, in the absence of radiation
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Symplectic maps

 The effect of losing symplecticity becomes apparent if we compare 

phase space portraits constructed using symplectic (below, left) and 

non-symplectic (below, right) transfer maps.

 Modelled a storage ring using non-symplectic maps can lead to an 

inaccurate estimate of the dynamic aperture and the beam lifetime
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Symplectic integration

 Consider a sextupole with equations of motion:

 Exact solutions using some elementary functions do not exist

 By splitting integration into three steps, it is possible to write an 

explicit and symplectic approximate solution

 This an example of a symplectic integrator known as a “drift–kick–

drift” approximation.

Symplect ic int egrat ors

T he solut ion ( 27) –( 28) is an example of a symplect ic

int egrat or . For obvious reasons, t his part icular int egrat or is

known as a “ drif t –kick–drif t ” approximat ion.

B y split t ing t he int egrat ion int o smaller st eps, it is possible t o

obt ain bet t er approximat ions.

Using special t echniques ( e.g. f rom classical mechanics) it can

be shown t hat by split t ing a mult ipole in part icular ways, it is

possible t o m inim ise t he error for a given number of int egrat ion

st eps.

CAS, B udapest , 2016 30 Nonlinear D ynamics: Part 2
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Analytical methods for 

nonlinear dynamics



41

A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

1

Analytical methods for NLD

 There are two approaches widely used in accelerator physics: 

perturbation theory and normal form analysis.

 In both these techniques, the goal is to construct a quantity that is 

invariant under application of the single-turn transfer map. 

Unfortunately, in both cases the mathematics is complicated and 

fairly cumbersome

 In the case of a single sextupole in a storage ring, we find from 

normal form analysis the following expression for the betatron action 

as a function of the betatron phase (angle variable):

where      is a constant (an invariant of the motion),      is the angle 

variable, and      is the phase advance per cell

 The second term becomes very large when      is close to third 

integer
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Normal form for sextupole
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Normal form for sextupole
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Normal form for sextupole
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Tune-shift with amplitude

 Close inspection of the plots on the previous slides reveals another 

effect, in addition to the obvious distortion of the phase space 

ellipses: the phase advance per turn (i.e. the tune) varies with 

increasing betatron amplitude

 Normal form analysis (and perturbation theory) can be used to obtain 

estimates for the tune shift with amplitude

 In the case of a sextupole, the tune shift is higher-order in the 

sextupole strength

 An octupole, however, does have a first-order in the octupole 

strength tune shift with amplitude, given by:
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Tune-shift with amplitude

 The tune shift with amplitude becomes obvious if we track a small 

number of turns (30) in a lattice with a single octupole. 
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Resonant islands of 4th order resonance

 Simulation of simple storage ring with a single octupole close to 4th

order resonance

 Detuning with amplitude (linear in action) 

 Particles in the stable islands have tune locked to the resonance
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Resonant islands of 3rd order resonance

 Simulation of simple storage ring with a sextupole and an octupole

close to 3rd order resonance

 The amplitude detuning induced by the octupole can create stable 

islands even for the 3rd order resonance (recall the phase-space 

plot for the case of a single sextupole)
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Onset of chaos and loss of stability

 Perturbation theory and normal form analysis depend on the existence 

of constants of motion in the presence of nonlinear perturbations

 Constants of motion can exist in the presence of nonlinear perturbations 

as a consequence of the Kolmogorov–Arnold–Moser (KAM) theorem

 The KAM theorem expresses the general conditions for the existence of 

constants of motion in nonlinear Hamiltonian systems 

 Resonances do not invariably result in loss of stability 

 Resonances will usually tend to drive the amplitudes of particles with a 

particular tune to large amplitudes

 However, if the tune-shift with amplitude is sufficiently large, it is possible 

for there to be a stable region at amplitudes significantly larger than that 

at which resonance occurs

 The overlap of two resonances is associated with a transition from 

regular to chaotic motion: the Chirikov criterion describes the 

parameter range over which the particle motion becomes chaotic

 The boundary of the stable region in co-ordinate space is known as 

dynamic aperture
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Numerical methods: 

Dynamic aperture from 

particle tracking
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Dynamic aperture

 The most direct way to evaluate the non-linear dynamics 

performance of a ring is the computation of Dynamic Aperture 

(short: DA) 

 Particle motion due to multipole errors is generally non-bounded, so 

chaotic particles can escape to infinity. This is not true for all non-

linearities (e.g. the beam-beam force)

 Need a symplectic tracking code to follow particle trajectories (a lot 

of initial conditions) for a number of turns (depending on the given 

problem) until the particles start getting lost. This boundary defines 

the Dynamic aperture

 As multi-pole errors may not be completely known, one has to track 

through several machine models built by random distribution of 

these errors

 One could start with 4D (only transverse) tracking but certainly 

needs to simulate 5D (constant energy deviation) and finally 6D 

(synchrotron motion included)
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Dynamic Aperture plots

 Dynamic aperture plots show the maximum initial values of stable 

trajectories in x-y coordinate space at a particular point in the lattice, 

for a range of energy errors

 The beam size can be shown on the same plot

 Generally, the goal is to allow some significant margin in the design 

(the measured dynamic aperture is often smaller than the predicted 

dynamic aperture)
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Numerical methods: 

Frequency map analysis 

(FMA)
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Building the frequency map

 Choose coordinates (xi, yi) with px=py=0

 Numerically integrate the phase space trajectories through the lattice 

for sufficient number of turns (i.e. perform particle tracking)

 Compute through advanced Fourier methods (NAFF algorithm) Qx

and Qy after sufficient number of turns

 Plot them in the tune diagram



55

A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

1

Frequency Map for the ALS storage ring

 Dynamics represented in two plots

 Regular motion corresponds to small tune diffusion

 Resonances appear as distorted lines in frequency space (or 

curves in initial condition space)

 Chaotic motion associated with large tune diffusion, occurs at the 

dynamic aperture of the machine

 FMA shows also nicely the detuning with amplitude

J. Laskar, “Frequency map analysis and 

particle accelerators”, PAC 2003
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Experimental frequency map

 Frequency analysis of turn-by-turn data of beam oscillations 

produced by a fast kicker magnet and recorded on a Beam Position 

Monitor at the ALS storage ring 

 Reproduction of the non-linear model of the ALS storage ring and 

working point optimization for increasing beam lifetime

D. Robin, C. Steier, J. Laskar, and L. Nadolski, “Global Dynamics of the Advanced 

Light Source Revealed through Experimental Frequency Map Analysis”, PRL 2000

experiment simulation
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Conclusions and Summary
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Summary

 Nonlinear dynamics appear in a wide variety of accelerator 

systems, including single-pass systems (such as bunch 

compressors) and multi-turn systems (such as storage rings)

 It is possible to model nonlinear dynamics in a given component or 

section of beamline by representing the transfer map as a power 

series

 Conservation of phase space volumes is an important feature of 

the beam dynamics in many systems. To conserve phase space 

volumes, transfer maps must be symplectic

 In general, (truncated) power series maps are not symplectic

 To construct a symplectic transfer map, the equations of motion in 

a given accelerator component must be solved using a symplectic

integrator (e.g. the “drift–kick–drift” approximation for a multipole

magnet)
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Summary

 Common features of nonlinear dynamics in accelerators include 

phase space distortion, tune shifts with amplitude, resonances, 

and chaotic particle trajectories at large amplitudes (dynamic 

aperture limits)

 Analytical methods such as perturbation theory and normal form 

analysis can be used to estimate the impact of nonlinear 

perturbations in terms of quantities such as resonance strengths 

and tune shifts with amplitude

 Frequency map analysis provides a useful numerical tool for 

characterising tune shifts and resonance strengths from tracking data

 This can give some insight into limitations on the dynamic 

aperture


