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• Introduction 

• Linear and non-linear longitudinal dynamics
• Equations of motion, Hamiltonian, RF potential

• Longitudinal manipulations
• Bunch length and distance control by multiple RF systems

• Bunch rotation

• Synchrotron frequency distribution
• Effect on longitudinal beam stability

• Summary

Outline
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Introduction
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• Signals generated by radio-frequency systems in 
particle accelerators are of the form 

 Resonance effect: large voltage with little effort

 Inherently non-linear

 Linear longitudinal beam dynamics only an 

approximation

Introduction

Effect of non-linearity on beam? 

Tools to describe and analyse non-linearity

Use non-linearity to improve beam conditions
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Non-linear longitudinal 
dynamics 
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Triple splitting at Ekin = 2.5 GeV Split in four at flat top energy
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• Non-linear RF allows to control all longitudinal parameters

 Number of bunches, bunch length and emittance, longitudinal stability

h = 7

Eject 72 
bunches

Inject 4+2 bunches

gtr
Controlled blow-ups

h
=

 8
4

h = 21

Example: LHC-type beam in the CERN PS
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Compression, merging and spitting Split in four at flat top energy
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• Non-linear RF allows to control all longitudinal parameters

 Number of bunches, bunch length and emittance, longitudinal stability

h = 9

Eject 48 
bunches

Inject 4+4 bunches

gtr
Controlled blow-ups

h
=

 8
4

h = 21

Example: LHC-type beam in the CERN PS
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Inject 4+4 bunches

gtr
Controlled blow-ups

Where profit from non-linear RF?

 Transition crossing

 RF voltage reduction during acceleration

 RF manipulation from 8 bunches in h = 9 to 12 in h = 21  

 Splitting at the flat-top

 Bunch shortening (rotation) before extraction

h = 9

Eject 48 
bunches

h
=

 8
4

h = 21
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Inject 4+4 bunches

gtr
Controlled blow-ups

Where profit from non-linear RF?

 Transition crossing

 RF voltage reduction during acceleration

 RF manipulation from 8 bunches in h = 9 to 12 in h = 21  

 Splitting at the flat-top

 Bunch shortening (rotation) before extraction

h = 9

Eject 48 
bunches

h
=

 8
4

h = 21
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Applications

• Introduce extra non-linearity

• Bunch lengthening in double-harmonic RF system to 
reduce peak current (space charge)

• Short and long bunches with multi-harmonic RF systems

• Adapt bunch-to-bunch distance

• Profit from non-linearity for beam stabilization

• Stabilize beam using higher-harmonic RF

• Controlled longitudinal emittance blow-up
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Linear longitudinal
beam dynamics
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Interaction between particles and RF

Energy dependent phase advance, f:

Phase dependent energy gain, DE:

Simple accelerator model:

Works for arbitrary shape of acceleration amplitude g(f)
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• Usual longitudinal beam dynamics already non-linear, since 
RF system usually provides sinusoidal amplitude 

• Linear longitudinal beam dynamics?

Linear longitudinal beam dynamics

same structure



14

• Construct Hamiltonian from equations of motion

• Hamiltonian constant on trajectory

 ‘Energy conservation’

Linear longitudinal beam dynamics

same structure
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The Hamiltonian from the equations can be written as

Linear longitudinal beam dynamics
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 Particles move on circular trajectories in f- ሶf/wS phase space

 RF potential is parabolic, W(f) ~ f

 Hamiltonian is constant on these trajectories

Linear longitudinal beam dynamics

ሶf/wS

f

H = const.

f

U
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Linear longitudinal phase space

• Simple model

• Circular trajectories

• All particles have 
same synchrotron 
frequency

• Normalized bucket 
area: Ab = pr2 = p3

 Harmonic oscillator
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Non-linear longitudinal
beam dynamics
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with                               this becomes 

Introduce most simple non-linearity

RF amplitude function

 Standard longitudinal beam dynamics  Lectures F. Tecker
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Introduce most simple non-linearity

using

this Hamiltonian simplifies to
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• In the centre of the bucket, particles move on elliptical 
trajectories in Df-DE phase space

• Hamiltonian is constant on these trajectories

• In the bucket centre, particles oscillate with the synchrotron 
frequency, wS = 2pfS

Linear part of non-linear bucket

DE

Df

H = const.
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• Compare two particles on the same trajectory

1. No phase deviation 2. No energy deviation

Longitudinal emittance

1.

2.
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Longitudinal emittance, el

~ Surface occupied by particles in 
longitudinal phase space

Preserved in physical [pDt DE] = eVs

• Compare two particles on the same trajectory

1. No phase deviation 2. No energy deviation

Longitudinal emittance

1.

2.
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More non-linearity: multi-harmonic RF

RF amplitude

• Example case n = 2 and r = 0.5

Both RF systems in counter-phase Both RF systems in phase at bunch

 Local voltage gradient 
decreased

 Bunch is stretched

 Lower peak current

 Local voltage gradient 
increased

 Bunch is compressed

 Higher peak current
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Example application: space charge in PSB

RF amplitude

 Space charge ∝ instantaneous current

• Inverted gradient at bucket
centre

• Flattened bunch with
reduced peak current  Space charge reduction at low energy

t [ns]
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Time projection

Energy 
projection

Vh=1 = 8 kV, Vh=2 = 6 kV, counter-phase
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 Do   long and short   bunches 

simultaneously!

• Example BESSY VSR

Depending on user of 

synchrotron radiation:

need long or short bunches

• 4  0.5 GHz NC (existing)

• 4  1.5 GHz supercond.

• 4  1.75 GHz supercond.

Long and short bunches simultaneously
Markus Ries et al.
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Bunch length modulation
• Future 3-harmonic RF system for BESSY VSR

Markus Ries et al.

RF voltage sum

RF Potential

Longitudinal phase space

Short deep or bathtub 
potential well

RF voltages sum up 
or cancel

Short or stretched 
bucket
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• 300 mA average current

High-current single bunches

 short (0.8 mA) & long (10 mA)

 Special high-current density bunches

Filling pattern
Markus Ries et al.

 Two electron storage ring in one

 Thanks to longitudinal beam dynamics trick
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2. 1.

2.1.

1. Add h1 component such that 
bunches approach to 245 ns (small 
spacing) → big spacing becomes 
327 ns

2. Synchronize on h1 to the PS

3. Trigger extraction kicker in-
between the small spacing

4. Eject two bunches per ring at a 
distance of 327 ns

Example: adjust bunch spacing

• Was used at CERN PSB-to-PS to transfer 2 bunches at once

• Circumference ratio CPS/CPSB = 4

 Ratio virtually moved to 2/7: use hRF = 2 + 1

Next bunch 
ejected Short gap for 

ejection kicker

Christian Carli

Spacing larger than 
CPSB/2  hPS = 7, CPS/7
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The Hamiltonian describing the system becomes 

Introduce general non-linearity

Equations of motion

same structure

Replace                                           arbitrary amplitude
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Using

The Hamiltonian can be rewritten, with RF potential W(f)

Arbitrary RF waveform
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Longitudinal beam 
manipulations

using non-linearity
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 Calculate aspect ratio of bucket trajectories

Equating both sides gives

with emittance as

 Not efficient at all

 16 times more RF voltage needed to cut bunch length in half

Change RF voltage to change bunch length?



1.

2.
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 Individual particles in matched bunch oscillate but no 
macroscopic motion

 Abruptly changing the RF voltage flips particles to new 
trajectories

 The bunch distribution seems to rotate

 Exchange of bunch length and momentum spread

Abrupt change of RF voltage

Matched Mismatched
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Introduce sudden change: bunch rotation 

 Quickly exchange longitudinal phase space behind bunch

 Increase RF voltage much faster than period of fS
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 Quickly exchange longitudinal phase space behind bunch

 Increase RF voltage much faster than period of fS

Introduce sudden change: bunch rotation 
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 Switch RF voltage much faster than period of fS

Introduce sudden change: bunch rotation 
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• Fit 14 ns long bunches into 5 ns long buckets in the SPS

 Double-step bunch rotation

Example: PS to SPS transfer at CERN

80 MHz (h = 168)

40 MHz (h = 84)

4s = 14 ns

11 ns

4 ns

Adiabatic 
shortening

Bunch 
rotation

Bunch 
splittings

Extraction
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 Bunch length now proportional to 𝑽 and not 
𝟒
𝑽

 Can save enormous RF voltage

 Bunch shortening from 14 ns to 4 ns (ratio ~3.5)

 Starting from 100 kV at 40 MHz

 Slow shortening would require 𝟏𝟎𝟎 𝐤𝐕 ∙ 𝟑. 𝟓𝟒 ~ 𝟏𝟓𝐌𝐕

 Installed RF voltage is only about 1.2 MV

Example: rotation at PS-SPS transfer

Simulation

Extraction

-30 300

4 ns

t [ns]

RF voltage Measurement
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Need large momentum spread for slow extraction

1. Jump RF phase such that bunch at unstable fixed point

2. Jump back

3. Let bunch rotate, switch RF off at large momentum spread

 Non-linearly of bunch rotation helps

Profiting from the non-linear rotation

Bunch profile evolution Longitudinal phase space

M
e

a
su

re
m

e
n

t

S
im

u
la

ti
o

n



41

Need large momentum spread for slow extraction

1. Jump RF phase such that bunch at unstable fixed point

2. Jump back

3. Let bunch rotate, switch RF off at large momentum spread

 Almost constant momentum distribution after rotation 

Example: using the non-linearity

Time projection

Energy 
projection
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Synchrotron frequency 
distribution
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General synchrotron frequency

• Synchrotron frequency depends on trajectory

 Calculate average velocity for given trajectories in 
longitudinal phase space  Action angle, J

General expression for wS

The angular frequency becomes

(for bucket
boundaries fl  fu)
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Distribution for stationary bucket

• Single-harmonic RF in stationary bucket

K(x): 1st kind elliptical 
integral function

wS versus trajectory duration wS vs. surface encircled by trajectory

Exact
Approx.

Exact
Approx.
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Distribution for stationary bucket

• Single-harmonic RF in stationary bucket

 Different synchrotron frequencies of particles in bunch

 Total spread Dw/wS depends on filling factor of bucket

K(x): 1st kind elliptical 
integral function

wS versus trajectory duration

Exact
Approx.

Exact
Approx.

Dw/wS Dw/wS

wS vs. surface encircled by trajectory
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Example: Emittance control with noise

Current
emittance

Target 
emittance

𝒇𝒔𝟎

𝒇𝒔

• Noise excitation of bunch by band-width limited noise

 Controlled longitudinal blow-up in the PSB

1. Choose upper frequency to cover synchrotron frequency at 
bunch centre

2. Choose lower frequency to match target emittance

3. Excite

D. Quartullo
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Analogy: pendulums mounted on a bar

• All particles have the same resonance frequency

 Easy to excite macroscopic oscillation

• Resonance frequencies of individual particles varies

 Difficult to excite macroscopic oscillation

 Large synchrotron frequency spread increases stability

E
x
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n
E

x
ci
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o
n
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Bucket filling ratio

?

• Easy to excite

 Prone to instability

Smaller or larger bunch or bucket? What is more stable?

• Large fS spread

 More stable
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 Acceleration of protons in the CERN PS (Etotal = 3.4  26 GeV) 

Plateau
Arrival at 
flat-top

gtr

Example: stabilization with lower voltage

Constant 
RF voltage

Bucket area 
grows

 Risk of 
Instability

Energy

Voltage

Area
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 Acceleration of protons in the CERN PS (3.4  26 GeV total) 

Plateau
Arrival at 
flat-top

Example: stabilization with lower voltage

Constant 
RF voltage

Bucket area 
constant
 Instability

Energy

Voltage

Area

gtr

• Same principle also applied in SPS and LHC

 Prevent bucket filling to decrease
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Additional non-linearity by double RF

V2/V1 = 1/2, h2/h1 = 2 Synchrotron frequency

 RF system at twice the main frequency and at half amplitude

• Both RF systems in phase

 Important increase in 
synchrotron frequency 
spread

 Improves stability
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Additional non-linearity by double RF

V2/V1 = 1/3, h2/h1 = 3 Synchrotron frequency

 RF system at twice the main frequency and at half amplitude

• Both RF systems in phase

 Important increase in 
synchrotron frequency 
spread

 Improves stability
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Additional non-linearity by double RF

V2/V1 = 1/4, h2/h1 = 4

 RF system at twice the main frequency and at half amplitude

• Local regions of bunch with 
no fS gradient

 Again prone to instability

 Reduce voltage of 2nd

harmonic RF system

 Improving stability depends 
on appropriate voltage ratio

Synchrotron frequency
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Two RF systems in counter-phase?

Dferr = 5°

V2/V1 = 1/2, h2/h1 = 2 Synchrotron frequency

• Large frequency spread at 
bunch centre with perfectly 
adjusted phases

 Minor phase offset causes 
locally unstable regions

 Works only for very short 
bunches

 Electron accelerators

 2nd RF twice frequency, half amplitude in counter-phase
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• Quadrupolar coupled-bunch oscillations at flat-top

• Main RF system: h1 = 21, 10 MHz, 4 out of 18 bunches

• Higher-harmonic RF system: h2 = 84, 40 MHz

Both RF systems in phase:

 Highest peak current, but most stable

Double RF, in phase(Imperfect) counter-phase

Example: damping observations in the PS

Single-harmonic RF
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Summary

• Longitudinal beam dynamics

Everything non-linear

• Longitudinal manipulations

Tricks to adjust length and distance of bunches

Do more with less RF

• Synchrotron frequency spread

More RF voltage may result in less stability

Higher peak density may be more stable

 Improve stability and control emittance
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to all colleagues providing support, material and feedback

Wolfgang Höfle, Andreas Jankowiak, Erk Jensen, 
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Frank Tecker
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Thank you very much            
for your attention!
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Spare slides
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Stationary bucket in normalized coordinates 

 RF bucket properties become independent from accelerator 
parameters

 Significant simplification of equations, easy to use

 Exception: conservation of longitudinal phase space

Example of stationary bucket

 Bucket height

 Bucket area


