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/WI Magnet types, technological view

We can also classify magnets based on their technology

electromagnet

iron dominated

permanent magnet

coil dominated

normal conducting
(resistive)

superconducting

static

cycled / ramped
slow pulsed

fast pulsed
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In Geneva, on 06/09/2021, the (estimated) magnetic field (flux density) is
|B| =47672 nT = 0.047672 mT = 4.7672-10° T = 0.5 Gauss. Biarisanial = 22259 nT

US/UK World Magnetic Model - Epoch 2020.0
Main Field Total Intensity (F)

Miter Cyindrica Projoction Blacknut Zones Map developed by NOAA/NCEI and CIRES

10001T g 0-2000 T (Unrelstie Zone) https://ngdc.noaa.gov/
20004000 Gosen Zoo) Published December 2019
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CE/RW Maxwell equations

SZ_S
Integral form Differential form
3€ﬁde j (j_|_ a_D) dA Ampere’s law rotH = J +
4 Jt
- - a g - - a§>
jSEdS =——=-| BdA Faraday’s equation rotk = ——
ot J 4 ot
jﬁdﬁ =0 Gauss’s law for divB =
A magnetism
jAD A = jvp av Gauss’s law divD = p
With: § = u]?[) = .uO/'lrﬁ = Mo(ﬁ + [\7[))
D = =& (E + }_5)
] = E +]me
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Let’'s have a closer look at the 3 equations that describe

magnetostatics

Gauss law of (1)
magnetism

Ampere’s law with no 2)
time dependencies

Relation between
H field and the flux (3)
density B

div § =0 always holds

rotH = f holds for magnetostatics

—

B = Uol,-H  holds for linear materials
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ciE/RW Magnetic fields

SZ_S
From Ampere’s law with no time N Dy IT —
dependencies (Integral form) () Brdl = mO]encl.

If you wanted to make a B = 1.5 T magnet
with just two infinitely thin wires placed at
100 mm distance in air one needs :

| = 187500 A

« To get reasonable fields (B> 1T) one
needs large currents

* Moreover, the field homogeneity will be
poor
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With the help of an iron yoke
we can get fields with less
current

Example: C shaped dipole for

accelerators

Yoke ~

liE]

/y Iron dominated magnets

\ - =
0| Hxdl = NxI
N X ] _ Hiron X lil"Ol’l + Hairgap X lairgap ID
B B
NXI =——X iron+_xlairgap I:)
m m
r 0
NxJ = lairgap Thisisvalidas p, >>1in
m the iron : limitedtoB<2T
o)
coil
B = 15 T m EasFunctiondfBFordowRarbonEnagnet3teel
Gap - 50 mm o0 (MagnetilBC)zl
N .1 =59683A A
6000
2 x 30 turn coil " 5000 / \\
| = 994 A o0/ N
@5 Almm2, 200 mm2 | 2 [ N
14 x 14 mm Cu ° o B L
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Imagine a magnet with a 50 mm vertical gap ( horizontal width ~100 mm)
Iron magnet wrt to an air coil:
— Upto 1.5 T we get ~6 times the field
— Between 1.5 T and 2 T the gain flattens of : the iron saturates
— Above 2 T the slope is like for an air-coil: currents become too large to use
resistive coils

B[T]

These two curves are the
transfer functions — B field vs.
current — for the two cases 2

—o— with iron

1 S without iron

(55 iron, infinite permeability
0}

0 100 200 300 400 500 600 700 800 900 1000

Courtesy A. Milanese, CERNNI [kA]
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CE/RW Magnetic field quality: multipole description
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x + iy>n_1
Rref

B,(z) + iB,(z) = 107*B; Z(bn +ia,) (

n=1

with:
zZ=x+1y,
By and By, the flux density components in the x and y direction,

R,er the radius of the reference circle,

B, the dipole field component at the reference circle,

b,, the normal nt» multipole component,

a, the skew n**multipole component.

The “wanted” b,, or a,, is equal to 1

In a ring-shaped accelerator, where the beam does multiple passes, one typically
demands :

a,, b, <1lunit10~* .
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In 3D, the longitudinal dimension of the magnet is described by a magnetic length

Field or multipole component

‘ Hard edge model

True field shape B /

\
\ / \ Tten‘rrul value
B N :

- Lens ~ Y’- lmagBO = jB(Z)dZ

— 00

_Steel length

- -

Eftective magnetic length , Imag
o - T T

Courtesy A. Milanese, CERN
magnetic length L., as a first approximation:
« Fordipoles L., =Ly +d d = pole distance

For quadrupoles: L ,q = Lygke * I r = radius of the inscribed circle
between the 4 poles

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR
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Cu (or Al)

B (flux density)

cables or

busbars \

power /)@

Convertor
(current
source)

« B field stability in time: ~10-°-10°
« Typical R of a magnet ~20mQ - 60mQ
« Typical L of a magnet ~20mH — 200mH

« Powering cable (for 500A): Cu 250 mm?
(Cu: 17 nQ.m) R = 70 uQY/m, for 200m:
R=13mQ

« Take a typical rise time 1s

\

Cu or Al coil Steel yoke

Magnets in an accelerator: power convertor and
CE/RW circuit

‘‘‘‘‘‘‘‘‘‘‘

beam

Vacuum
chamber

Then the Power Convertor has to
Supply : 0-500 A with a stability of

a few ppm.

Voltage up to 40 V (resitive)
And 100 V (inductive)

13



CEfW Types of magnetic fields for accelerators
\

NS

NORMAL : vertical fleld on mid-plane

S, © a,@

Dipole Quadrupole Sextupole Octupole
|B|=Const |B|=Gr |B|=1/2-B”,Q |B|=1/6er3

Caadl)

Qe

Courtesy D. Tommasini, cErn SKEW : horizontal field on mid-plane
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Dipole Quadrupole

W,

N
=

sextupole

Ny, |

15
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In a fully symmetric magnet certain field harmonics are natural.

Magnet type Allowed harmonics b,
n=1 Dipole n=3,5,7,...

n=2 Quadrupole | n=6,10,14

n=3 Sextupole n=9,15,21

n=4 Octupole n=12,20,28

Non-symmetric designs and fabrication errors give rise to non allowed
harmonics: b, with n other than listed above and a,, with any n

NB: For “skew” magnets this logic is inverted !

16
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Magnet Pole shape Transfer function Inductance (H)
E: e gy LA
| —— e . 9
a
§ | - ;gjw%‘?hm pekae B1oN1/g A 32/ )
5}

% s ? pjfztldl oS 632(17\1?7 R A z%gfllj'}l;tz)é(l/gﬁR)
1« Bl
© 17

Courtesy D. Tommasini, CERN
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CE/RW Practical magnet design & manufacturing
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Steps in the process:

1. Specification
2. Conceptual design
3. Detailed design
1. Yoke: yoke size, pole shape, FE model optimization
2. Coils: cross-section, geometry, cooling
3. Raw material choice
4. Yoke ends, coil ends design
4. Yoke manufacturing, tolerances, alignment, structure
5. Coil manufacturing, insulation, impregnation type
6. Magnetic field measurements

18
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Before you start designing you need to get from the accelerator designers:
« B(T)or G (T/m) (higher orders: G,(T/m?), etc)
Magnet type: C-type, H-type, DC (slow ramp) or AC (fast ramp)
Aperture:
— Dipole : “good field region® = airgap height and width
— Quads and higher order: “good field region® - aperture inscribed circle
* Magnetic length and estimated real length

« Current range of the power convertor (and the voltage range: watch out for the
cables)

* Field quality:

B
dipole: 5 (ref volume), quadrupole: - (reference circle)

or b,,a, forn=1,2734,5,..
« Cooling type: air, water (P, . » APmax 8Nd Qpax (I/Min))
« Jacks and Alignment features
« Vacuum chamber to be used - fixations, bake-out specifics

These need careful negotiation and often iteration after conceptual (and detailed)
design, and will probably be a compromise. 19
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« From B and | you get NI (A) N =

* From NI (A) and the power convertor |_., you
get N

« Then you decide on a coil X-section using:
Jeoit = 5 A/mm2 for water cooled
o7 jeoir = 1 4/, > for air cooled

« This defines the coil cavity in the yoke (you
add 0.5 mm insulation around each conductor

lairgapB
Ho

Yoke

{
Wyt;ke

—NI

Wyoke

pole

SV
2

and 1 mm ground insulation around the coil)
and select the best fitting rectangular

* You can the draw the draft X-section using:

Wyore = Wpore—— With 1.5T < By < 2T

Bgsat
« Decide on the coil ends: racetrack, bedstead

* You now have the rough magnet cross section
and envelope

coil

20



CE/RW Power generated
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Power generated by coil

« DC: from the length of the conductor N-L, ., , the cross-section ¢ and the
specific resistivity p of the material one gets the spent Power in the coil

P, peu = 1.72(1 + 0.0039(T — 20))10~8Qm
P/UW/m] =<1?  with: pa = 2.65(1 + 0.0039(T — 20))10~8am

For AC: take the average |2 for the duty cycle

Power losses due to hysteresis in the yoke: (Steinmetz law upto 1.5 T)
P[W/kg] = nfBY® withn = 0.01 to 0.1, Ng;j stee; = 0.02

Power losses due to eddy currents in the yoke

f 2
P[W/kg] = 0.05 (dlaml_OBav)

with d;,,,,the lamination thickness in mm, B,,the average flux density

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR

Courtesy D. Tommasini, CERN 21



CE/RW Cooling circuit parameters
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Aim: to design d;qgjings Pwaterlbar], AP[bar], Q[l/min]

Choose a desired AT  (20°C or 30°C depending on the T ,gjing water )

« with the heat capacity of water (4.186 kJ/kg°C) we now know the required water
flow rate: Q(l/min)

« The cooling water needs to be in moderately turbulent regime (with laminar flow
the flow speed is zero on the wall !): Reynolds > 2000

dv
R, = Pl 140 d[mm] v[m/s] for T, ter~40°C

« A good approximation for the pressure drop in smooth pipes can be derived
from the Blasius law, giving:

Q [l/min] 1.75
d[mm]475

AP[bar]| = 60 L[m]

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR

Courtesy D. Tommasini, CERN 22
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The ideal poles for dipole, quadrupole, sextupole, etc. are lines of constant
scalar potential

Dipole y ==xh/2 straight line

quadrupole  2xy = +r?  hyperbola

sextupole 3x%y —y3 = 4r3

23
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» Dipole example: below a lamination

of the LEP main bending magnets, hanf
with the pole shims well visible \ S
; Fadiig i I +
] - @ | "7’{' i
- >
a5 | - L}'}MY»:’
‘ o A
e @ :S_:'

* Quadrupoles: at the edge of the pole one can
put a combination a shim and alignment feature
(examples: LHC-MQW, SESAME quads, etc)

This then also allows to measure the pole
distances : special instrumentation can be made
for this

\ //'
JE—(
\
/
/

left_final_40_40p_adjus

cﬂ Practical pole shapes: shims and alignment features

SSSSSSS

. 24




CE/RW Finite Element electromagnetic models
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* Aim of the electromagnetic FE models:
— The exact shape of the yoke needs to be designed

« Optimize field quality: adjust pole shape, minimize high saturation
zones

« Minimize the total steel amount ( magnet weight, raw material cost )
— Calculate the field: needed for the optics and dynamic aperture modelling

« transfer function B, ion(l) Bdl , magnetic length

« multipoles (in the centre of the magnet and integrated) b, and a,

 Some Electromagnetic FE software packages that are often used:
— Opera from Cobham: 2D and 3D commercial software see:

— “Good old” Poisson, 2D: now distributed by LANL-LAACG see:

— ROXIE (CERN) 2D and 3D, specialized for accelerator magnets; single fee
license for labs & universities see:

— ANSYS Maxwell: 2D and 3D commercial software
see:

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR
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http://operafea.com/)
http://laacg.lanl.gov/laacg/services/download_sf.phtml)
https://espace.cern.ch/roxie/default.aspx
http://www.ansys.com/Products/Electronics/ANSYS-Maxwell

CE/RW FE models: steel curves
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You can use a close ‘generic’ B(H) curve for a first cut design

You HAVE to use a measured, and smoothed, curve to properly calculate
Bxsection(l) | lel J bn and an,
As illustration the curves for several types of steel:

2.5

End slope is pg

B(T)

—=—Magnetil LAF 1.5 mm

—=—lron AC37
St-Petersburg 0.75 mm

‘ ISR 1.5 mm

| = slopeis p,u, ~steel Ru 21848

0.5 |} --Si 3.25%

‘ --—~Magnetil LAC 1.5 mm

0 5000 10000 15000 20000 25000 30000 35000

H (/m) 26

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR
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ctrn)Y  YOKe shape, pole shape: FE model optimization
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Use symmetry and the thus appropriate boundary ) S i
conditions to model only ¥4t (dipoles, quadrupoles ) i
or even 1/6" sextupoles.

Meshing needs attention in the detailed areas like

0 I eS S I itS etC Table 8.6: Main parameters of the MQW normal conducting quadrupole magn
p ) ) Magnet type MQWA MQWB
Magnetic length 31m
Beam separation 224 mm
Aperture diameter 46 mm
Operating temperature <65°C
Nominal gradient 35 T/'m 30 T/m
Nominal current 710 A 600 A
Inductance 28 mH
Btot| (T) Resistance 37 mQ

20.5 x 18.0 mm? inner poles
17.0 x 17.0 mm? outer poles
2.069 . . i
[ | 1.960 Cooling hole diameter 7 mm inner poles,
m 8 mm outer poles
1852 Number of turns per magnet 8x 11
1.743 Minimum water flow 28 I/min
||
[ |
[ |

Conductor X-section

1.634 Dissipated power at Inom 19 kW 14 kW
1525 Mass 11700 kg

BEMFEM % ROXIEw
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c.;{@l Yoke manufacturing

* Yokes are nearly always laminated to reduce eddy currents during ramping

« Laminations can be coated with an inorganic (oxidation, phosphating, Carlite) or
organic (epoxy) layer to increase the resistance

« Magnetic properties: depend on chemical composition + temperature and

mechanical history

* Important parameters: coercive field H, and the saturation induction.
— H. has an impact on the remnant field at low current

« H, <80 A/m typical

« H, <20 A/m for magnets ranging down also to low field B<0.05T

— low carbon steel (C content < 0.006%) is best for higher fields B> 1T

Field Strength [A/m]

40 0.20
0.50
0.95

1.4

1.5
1.62
1.71
1.81

2.00

al |-
o N
o |Oo

1200

Induction [T] Example

specification for
1.5 mm thick
oxide coated
steel for the LHC
warm separation
magnets,
Brax=1.53T

Field Strength H
[A/m]

(I
o
HI

w
o
o

ol
o
o

0.07
1.05

1.35
1.50
1.62
1.72
1.82

el Example

specification for
0.5 mm thick
epoxy coated
steel for LHC
transfer line
corrector magnet
Box=0.3T

28



Stacking an MQW quadrupole yoke stack
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Double aperture LHC quadrupole MQW
Stacking on a precision table

Welding the structural plates

el s
Finished stack




CE/RW Yokes: holding a laminated stack together
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* Yokes are either
— Glued, using epoxy coated laminations
— Welded, full length plates are welded on the outside
— Compressed by tie rods in holes
or a combination of all these

« To be able to keep the yoke (or yoke stack) stable you probably need end
plates (can range from = 1 cm to 5 cm depending on the size)

« The end plates have pole chamfers and often carry end shims

Glued yoke (MCIA LHC TL) Welded stack

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR




CE/RW Coil manufacturing, insulation, impregnation type
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« Winding Cu conductors is an well established technique
« When the Cu conductor is thick it is best to use “dead soft” Cu (T treatment)
Insulation of the coill
— Glass fibre — epoxy impregnated
* Individual conductor 0.5 mm glass fibre, 0.25 mm tape wound half
lapped

* Impregnated with radiation resistant epoxy, total glass volume ratio
>50%

— For thin conductors: Cu emanel coated, possibly epoxy impregnated
afterwards

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR
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CE/RW Coil ends
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For dipoles some main types are racetrack of bedstead

24/10/2002 10:23

Quadrupoles

33



CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR

C
\

ﬁw Coil manufacturing

NS

MQW Glass fibre tape wrapping.

Winding the hollow Cu
conductor

Glass fiber tape winding

34



c.;f@l Coil manufacturing
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Mounted coil coil electrical test (under water !)

.

Dipoles racetrack coil
' MBXW Coil winding

Finished MBXW coill

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR




CE/RW Magnetic field measurements
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Several Magnetic Measurements techniques can be applied, e.g.:
« Rotating coils: multipoles and integrated field or gradient in all magnets

« Stretched wire: magnetic centre and integrated gradient for n > 1 magnets
« Hall probes: field map

* Pickup colls: field on a current ramp

Mole Assembly
Side View

Gravity Pneumatic || Incremental Slip Rings | | Harmonic
Sensor Break Encoder Coils

T A B VT

Rotating radial coil Mole Assembly Top View

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR
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cﬁ@l Permanent magnets

\
Nt A,

Linac4 @ CERN permanent magnets , quadrupoles S

=
B

"N

;\\

a—
]

v

I

\\\\\\\(';;4’

—
— ——
.
——

— 7

—

l

////’/Ill

DTL tank

e

Permanent magnet
block (Sm,Co,;)

Non magnetic shims
(austenitic steel 316LN)

Non magnetic yoke
(austenitic steel 316LN)

Pictured : Cell-Coupled Drift Tube Linac module.

* Permanent magnet because of space between DTL tanks
* Sm,Co,, permanent magnets

* Integrated gradient of 1.3 to 1.6 Tesla
* 15 magnets

* Magnet length 0.100 m

* Field quality/amplitude tuning blocks

ig. 1. Schematic layout of the Linac4 permanent-magnet quadrupole.

(b) (

Courtesy D. Tommasini, CERN Sextupole Hallback Array 38
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CLIC final focus,

Gradient: > 530 T/m
Aperture @: 8.25 mm
Tunability: 10-100%

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR
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Examples;

Some history, some modern regular magnets and some
special cases

40



CE/RW The 184" (4.7 m) cyclotron at Berkeley (1942)
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Cyclotrons
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PSI= 590 MeV proton

1974

F& /20(3, courtesy‘:
‘w""( P.Verbruggen,l;B‘;tE

‘g
=
=
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CE/RW Some early magnets (early 1950-ies)
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Bevatron
(Berkeley)
1954, 6.2 GeV

Cosmotron
(Brookhaven)
1953, 3.3 GeV
Aperture:

20 cm x 60 cm




ctrn) PSS combined function dipole

Magneticﬁeld: Eq;autlon of hyperbolic part: {243.00+r) z=12150mm? o
at injection 147G o T\“—E |
for 24.3 GeV 12T g = il RN T
maximum 14T > ; \

Weight of one magnet unit 38t I w |

b\é‘ i . 1240 (328N '%

Gradient @1.2 T :5 T/m 7 A - a4 | ‘

< i 1900 :_ _lepo

Equipped with pole-face N ! |

WIndIngS for hlgher Order Water COOIed AI race- olerance within thi:hudnd ersa 2002mm

corrections

track coils fnom® 2884 R= 70079mm

Connection of the PFW main windings
for R type magnet

FINAL POLE PROFILE.
Dat. " Ring center Ring center Focusing downstream

Fig. 9: Final pole profile.

Connection of the PFW main windings
for magnet type S

Focusing upstream 1ing certer rng center  Defocusing downstream

0} "OPEN" BLOCK, 5)"CLOSED"BLOCK,
CPS_MAGNET BLOCKS,
(Al dimensions in mm)

Fig. 12: Final form of the magnet blocks.

Courtesy D. Tommasini, CERN 44
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c.;f@l CPS booster
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4 accelerator rings in a common yoke. (increase total beam intensity by 4 in
presence of space charge limitation at low energy): B=1.48T @ 2 GeV

Was originaly designed for 0.8 GeV !

Booster Ring Courtesy D. Tommasini, CERN

Booster to PS
LINAC to Booster ; @ P o —
- —= C ; 7—. 45
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CE/RW Quadrupole magnet : SPS quadrupole

\

type MQ

G =20.7T/m

Coll : 16 turns

| ax = 1938 A

Aperture inscribed radius = 44 mm
Leoii = 3.2 M

Weight = 8.4 t
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Cﬂ MBW LHC warm separation dipole (1)

\
Nt A,

| BN T A S SR i Aperture 52 mm

[{ Nominal field 142T

? |
! .
3 : B ‘jr“ .
& 5 Magnetic length 34m
! » 4 4 ) =
i 4! I - e Weight 18 t
.| ;J
| l Water flow 19 1/min
ik Power 29 kW
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CE/RW MQW: LHC warm double aperture quadrupole
\

NS

CAS Chavannes de Bogis, 28-Sept-2021, warm magnets, GdR

49



CE/RW Elena, anti proton decelerator

\
Nt A,

- — e

N
), 1B
\J‘z—!

\ b X ¢ > =i L ) s
. 4 =y ] z o ; S
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C
\

E{Q/ Soleil, synchrotron light-source

NS

Courtesy A. Dael, CEA
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\

CE/RW Literature on warm accelerator magnets
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1120-1227
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381-1, May 2005
— P. Campbell, Permanent Magnet Materials and their Application, ISBN-13: 978-
0521566889
— S. Russenschuck, Field computation for accelerator magnets : analytical and
numerical methods for electromagnetic design and optimization / Weinheim : Wiley,
2010. - 757 p.
« Schools

— CAS Bruges, 2009, specialized course on magnets, 2009, CERN-2010-004
— CAS Frascati 2008, Magnets (Warm) by D. Einfeld
— CAS Varna 2010, Magnets (Warm) by D. Tommasini

Papers and reports
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