



#### PLANS FOR A SHORT INTENSE NEUTRON SOURCE (SHINES)

Abel, Cesare, Josu, Mamad

#### WHY A NEUTRON SOURCE? AND WHERE?

- To promote science in the developing countries.
- Focus world funding for a science lab in a developing country
- Where to built it?
  - Attractive for the scientists in developed countries
  - Ecologically and economically sustainable
  - Close to Green energy sources
  - Easy to travel to, specially for scientists from developing countries













## REQUIREMENTS

- Power: I.5 MW
- Energy: I-8 GeV
- Repetition rate: 50-60 Hz
- Particle: p or H<sup>-</sup>
- Pulse length at target: I µs



# DESIGN

Optimal Energy: Neutron production is best between 0.5-3GeV. Use lowest possible energy to decrease costs for LINAC, ring and target

Currents:  $P = E \times I_{ave}$ :  $I.5MVV = I.5mA \times I \text{ GeV}$  (after LINAC/on Target) (1.5 mA = 50 mA x 50 Hz x 0.6 ms)

 $N = I_{ave}/q = 1.5 \text{mA}/1.6 \times 10^{-19} \sim 10^{16} \text{ / sec}$   $N_t = N \text{ / } f = 2 \times 10^{14} \text{ particles in the RCS stored,}$ it is achievable!

Multi-turn injection (>100 turns)  $\Rightarrow$  H<sup>-</sup>

| Parameters                    | Value  |  |  |
|-------------------------------|--------|--|--|
| Beam power on target          | I.5 MW |  |  |
| Beam energy on target         | l GeV  |  |  |
| proton pulse length on target | 900 ns |  |  |
| LINAC peak current            | 60 mA  |  |  |
| Pulse rep. rate               | 600 µs |  |  |
| Beam availability             | >98%   |  |  |
| LINAC length                  | 236 m  |  |  |
| RCS circumference             | 260 m  |  |  |
|                               |        |  |  |
|                               | Λ      |  |  |

# ACCELERATOR Source LEBT RFQ MEBT DTL LOW Beta High Beta HEBTI RES HEBT2 Target

|           | E (MeV) | F(MHz) | Temp (K) | # Modules | Cavities  | L (m) | I (mA) |
|-----------|---------|--------|----------|-----------|-----------|-------|--------|
| Source    | 0.045   |        | 300      |           | -         | 2.5   | 60     |
| LEBT      | 0.045   |        | 300      |           | -         | 1.5   | 60     |
| RFQ       | 3       | 352.21 | 300      |           |           | 3     | 56.65  |
| MEBT      | 3       | 352.21 | 300      |           | 3         | 2.5   | 56.65  |
| DTL       | 100     | 352.21 | 300      | 6         | 6         | 40    | 51.5   |
| Low Beta  | 288     | 704.42 | 2        | 19        | 38 (0.51) | 77    | 51.5   |
| High Beta | 1000    | 704.42 | 2        | 12        | 72 (0.78) | 114   | 51.5   |
| RCS       | 1000    | 1&2&4  | 300      |           | 2         | 260   | eq. 50 |



## MEBT & CHOPPER

- To match the beam out of RFQ to DTL a Medium Energy Beam Transport is designed.
- MEBT is equipped with a Chopper to remove 36 bunches out of 352 bunches (10%)











# TARGET STATION





# TARGET STATION

```
• Lead @ E=1.0 GeV L<sub>min</sub>= 550 mm
```

E=1.5 GeV L<sub>min</sub>=950 mm

Safety factor L<sub>s</sub>=L x 2 therefore target radius R<sub>t</sub>=Ls/2=L At 50 Hz revolution frequency of target, $\omega \ge 300 \text{ min}^{-1}$ En density peak (at equal material and beam radius)  $e^* \sim E/L ==> e^*_{1.5GeV} \approx 0.75 e^*_{1.0GeV}$  $\Delta T^* = f(\alpha, e^*, \tau)$  (in 1<sup>st</sup> approx  $\Delta T^* \sim c_p^{-1}, \rho^m, \sigma^4, k^{-1}, \tau^{-1})$ Stresses/thermal/radiation fatigue Target material Liquid to Supercritical He cooling

A Target designed for short pulse can be used for long pulses



# LOCATION? A POSSIBLE SOLUTION?



#### SUMMARY

• A 1.5 MW neutron source using available science/expertise is proposed

• The LINAC is designed to use the energy in the most efficient way

• Proposed lab is based on green energies only



#### THANK YOU FOR YOUR ATTENTION

