
Accelerator Vacuum

Mike Seidel Paul Scherrer Institute

Switzerland

Why vacuum in accelerators ?

- maximize beam lifetime
- minimize emittance growth (hadrons)
- minimize component activation
- minimize impact on detectors, electronic components

beam-gas scattering

Vacuum - Outline

1. Vacuum Basics

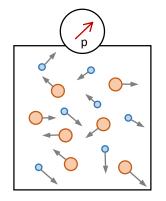
pressure, density, gas equation, pumping speed, flow regimes, conductance, pressure profile calculation

2. Accelerator Vacuum

requirements: bremsstrahlung, elastic scattering, emittance growth beam induced desorption: SR, ions examples of vacuum chambers

3. Components for Vacuum Systems

pumps: turbo, ion sputter, NEG, cryo-pump flange systems



Pressure

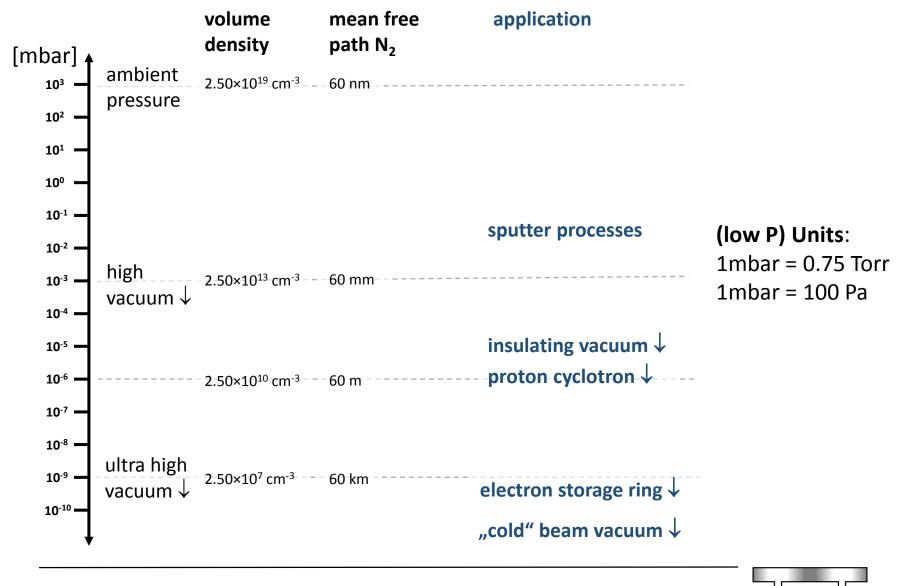
cyclotron resonator: continuous tuning required due to air pressure variation

pressure = force / area 1 Pa = $1 \text{ N/m}^2 = 0.01 \text{ mbar}$ 1 atm = 10^5 Pa $\rightarrow \text{ weight of 1kg/cm}^2$

average velocity

number of molecules impinging per time \overline{c} and area

$$\overline{v} = \sqrt{\frac{8k_b}{\pi m_0}T}$$


ules
$$rac{dN}{dA\,dt}=rac{1}{4}n\overline{v}$$

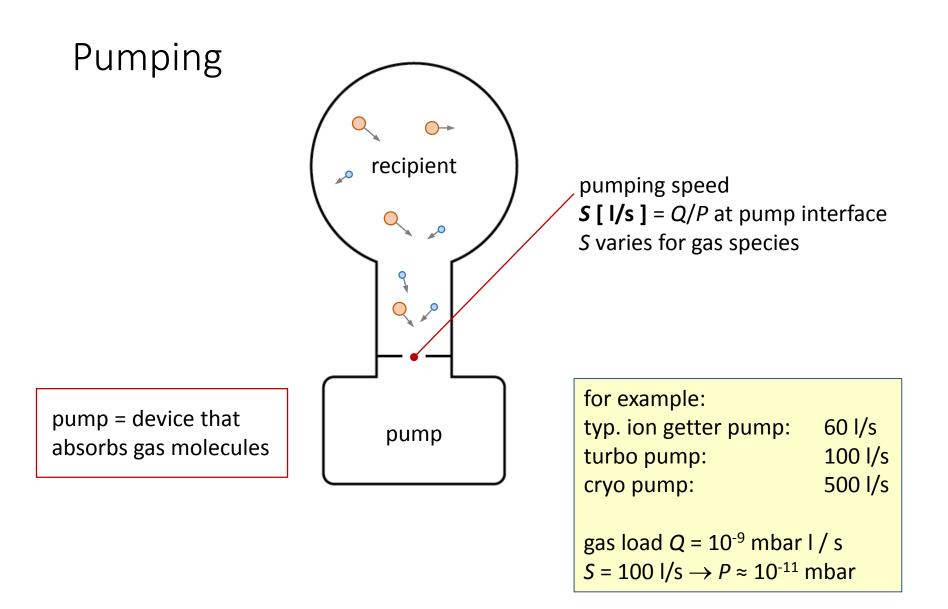
n volume density of molecules

 k_b Boltzmann constant, 1.38×10⁻²³ J/K

Vacuum Pressure – Orders of Magnitude

Gas Equation and "amount of gas"

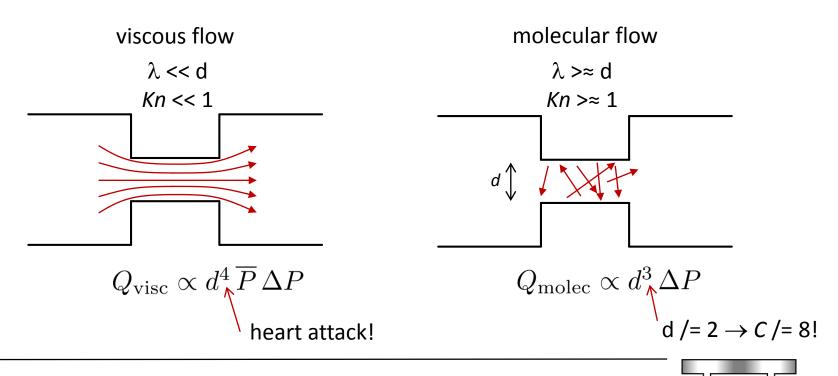
$$PV = Nk_bT = nRT$$


R = 8.314 Nm / mole K $k_b = 1.38 \times 10^{-23} \text{ J/K}$

N = number of molecules n = number of moles thus **PV** [mbar I] is a measure of the amount of gas (for a given temperature) also: molar volume = 22.4 l / mol (1atm = 101325 Pa, 273K)

to specify a leak rate: x [mbar l / s]

example bicycle tire: P = 2.5bar, V = 1l, leak $Q = 2 \times 10^{-4}$ mbar l / s after 1 Month (2.5 million sec): p = 2.0 bar accelerator section, no pumping, no outgassing: $P = 10^{-10}$ mbar, V = 1000l, leak Q = 10^{-9} mbar l / s after 1 Month (2.5 million sec): p = 2.5 10^{-6} mbar


Flow Regimes

mean free path of
$$\lambda = \frac{k_b T}{\sqrt{2}\sigma P}$$
 gas molecules:

see also Knudsen Number:

$$Kn = \frac{\lambda}{d}$$

for example: N₂, P = 10⁻⁶mbar, $\lambda \approx 60m$ \rightarrow molecular flow

Conductance

conductance is defined as the ratio of the molecular flux Q to the pressure drop ΔP along a vacuum vessel

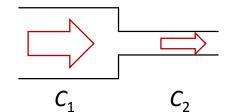
- function of the shape (eg. diam.) of the vessel ٠
- the type of the gas •
- it's temperature •

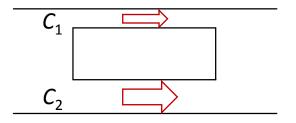
$$C = \frac{q}{\Delta P}$$

 \cap

$$P_1 \qquad Q \qquad P_2$$

orifice:
$$C = \sqrt{\frac{k_b T}{2\pi M}}A$$
, $C_{air} = 11.6[l/s] A[cm^2]$ M = molecular mass
A = area
d = diameter

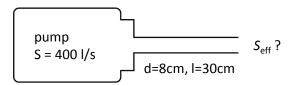

tube:


$$C = \sqrt{\frac{2\pi k_b T}{M}} \frac{d^3}{l}, \ C_{\rm air} = 12.1 [l/s] \frac{d^3[cm]}{l[cm]}$$

= length

example: tube d=8cm, l=30cm: 200I/s 0,4l/s tube d=1cm, l=30cm:

Conductance - Combining Vessels

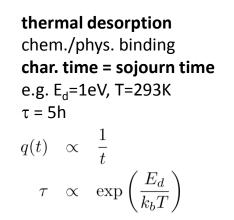


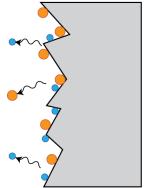
$$C_{\text{total}} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

$$C_{\text{total}} = C_1 + C_2$$

 $C_{\text{total}} \approx C_2 \text{ for } C_2 \ll C_1$

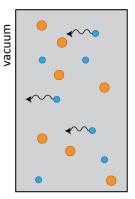
example: ion getter pump 400l/s connected by d=8cm, l=30cm tube: S_{eff} = 136 l/s

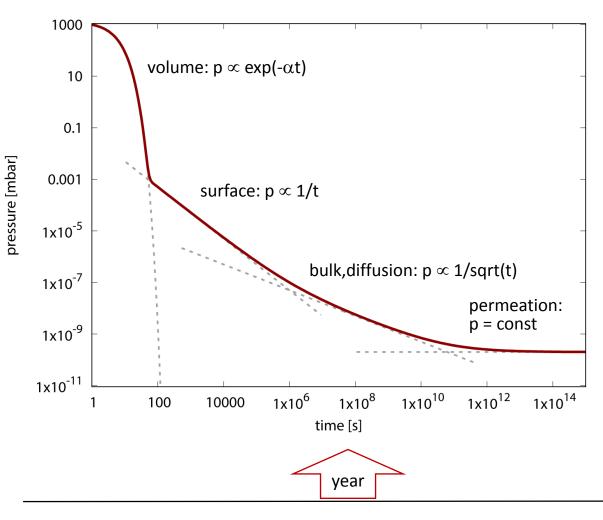



Sources of gas

main sources of gas in accelerator vacuum:

- thermal desorption
- beam induced desorption (synchrotron radiation, beam impact, electron cloud ...) → dynamic pressure, discussed later
- diffusion out of bulk materials
- permeation through materials
- virtual and real leaks

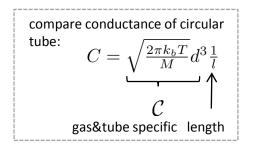

in practice, outgassing of water: q(t) $\approx 3 \times 10^{-9}$ mbar l / s cm² / t [h] baking! exponential dependence on T


bulk diffusion diffusion coefficient D mainly H₂ relevant

$$q(t) \propto \sqrt{D(T)/t}$$

 $D(T) \propto \exp\left(-\frac{E_{\text{diff}}}{k_b T}\right)$

Pump Down Processes



log. scale: different effects dominate after varying times

Pressure Computation for 1-dimensional Systems

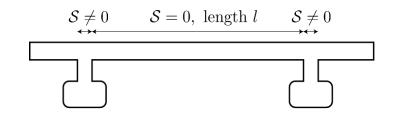
starting from definition of conductance C = Q / Δ P introduce correct sign and specific conductance:

$$Q = -C \Delta s \frac{\Delta P}{\Delta s}$$
$$Q(s) = -C \cdot \partial P(s) / \partial s$$

continuity equation, change of flow by pumping and outgassing:

$$\partial Q(s)/\partial s = q - \mathcal{S} P(s)$$

1-dim diffusion equation:

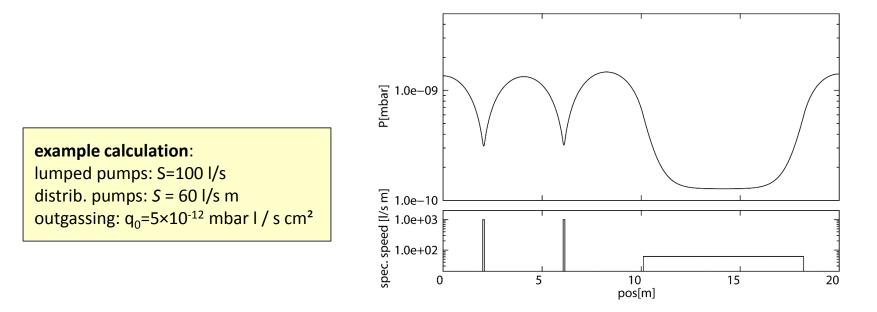

$$\frac{\partial}{\partial s} \mathcal{C} \frac{\partial}{\partial s} P(s) - \mathcal{S}P(s) + q = 0$$

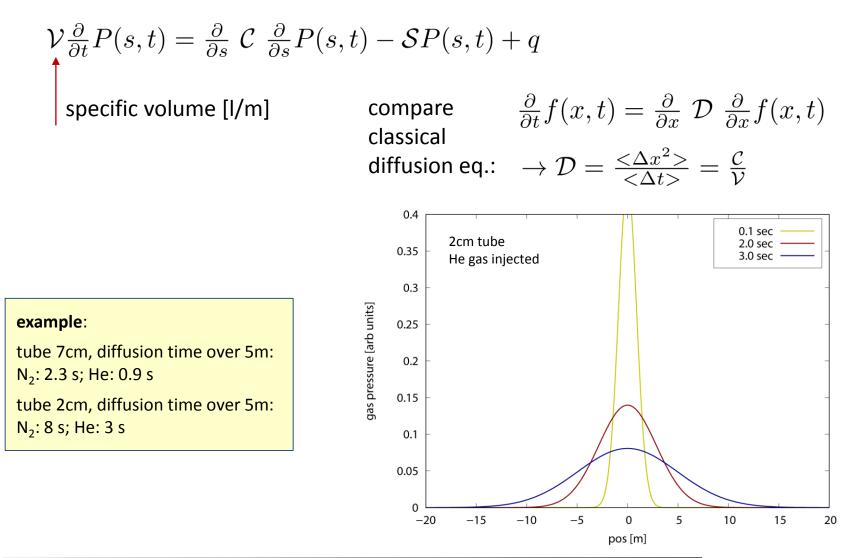
 $\mathcal{C} \qquad \begin{bmatrix} \frac{1 \, \mathrm{m}}{\mathrm{s}} \end{bmatrix} \quad \text{specific conductance} \\ \mathcal{S} \qquad \begin{bmatrix} \frac{1}{\mathrm{s} \, \mathrm{m}} \end{bmatrix} \quad \text{specific pumping speed} \\ q \qquad \begin{bmatrix} \frac{\mathrm{mbar} \, \mathrm{l}}{\mathrm{s} \, \mathrm{m}} \end{bmatrix} \quad \text{specific outgassing rate}$

Quadratic Solution for lumped Pumps

$$P(s) = \frac{ql}{S} + \frac{q}{8C} \left(l^2 - 4s^2 \right)$$

the parabolic profile results in following average and maximum pressure:

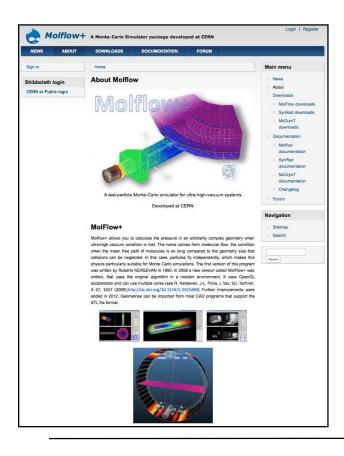

choose distance and pumping speed to achieve desired pressure and to reasonably balance both terms example: 7cm tube, $q_0=5\times10^{-12}$ mbar l / s cm², S=100l/s \rightarrow l=5m, $P_{avg} = 1\times10^{-9}$ mbar \rightarrow l=3m, $P_{avg} = 5\times10^{-10}$ mbar

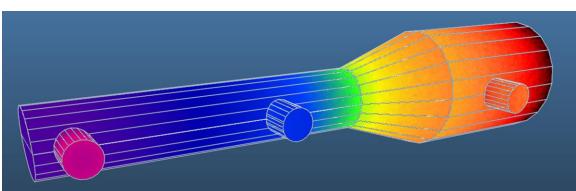

General Solution by Matrix Transport of Q, P

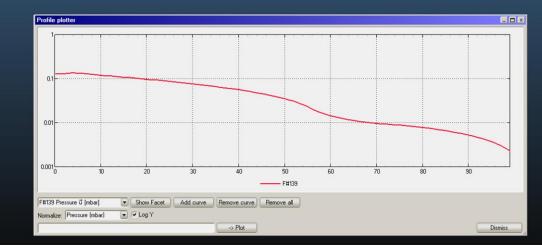
$$\begin{pmatrix} P(s) \\ Q(s) \end{pmatrix} = \begin{pmatrix} \cosh(\alpha s) & -\frac{1}{c\alpha}\sinh(\alpha s) \\ -\alpha c\sinh(\alpha s) & \cosh(\alpha s) \end{pmatrix} \begin{pmatrix} P(0) \\ Q(0) \end{pmatrix} + \frac{q}{\alpha} \begin{pmatrix} \frac{1}{\alpha c}(1-\cosh(\alpha s)) \\ \sinh(\alpha s) \end{pmatrix} \quad \alpha = \sqrt{\frac{S}{C}}$$

$$\lim_{\alpha \to 0} : \begin{pmatrix} P(s) \\ Q(s) \end{pmatrix} = \begin{pmatrix} 1 & -s/c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P(0) \\ Q(0) \end{pmatrix} + qs \begin{pmatrix} -\frac{s}{2c} \\ 1 \end{pmatrix}$$
 [V. Ziemann, SLAC/Pub/5962]

Time Dependent Diffusion Equation

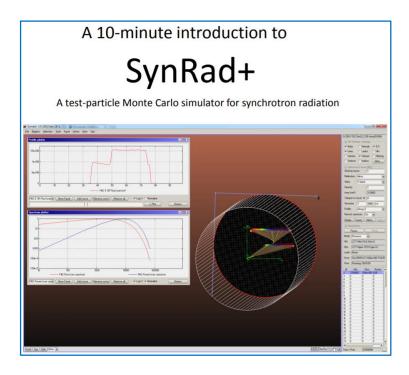





Monte Carlo Code Molflow+ (2008)

C++ code, OpenSource since 2018 J-L. Pons (ESRF), M. Ady, R.Kersevan (CERN)

Web site for info and downloads:

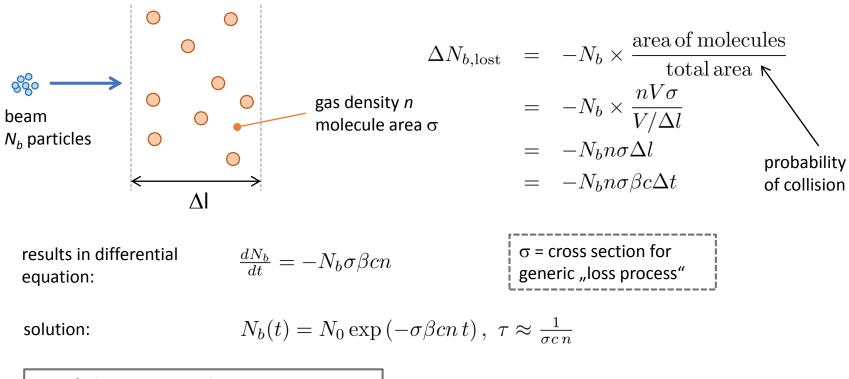


example calculation: 100k molecules tracked, computation time: few seconds, pressure profile

Synrad+ for calculation of synchrotron radiation

- Monte Carlo code computes photons generated by the beam and projects them onto the vacuum chamber surface
- in a second step the molecular outgassing is computed
- the result serves as input for Molflow+ to compute the pressure distribution

- SR spectrum + flux
- calculates beam orbit from lattice file (MAD-X)
- dipole approximation only, no undulator interference effects


https://molflow.web.cern.ch/content/syn rad-documentation

Next: Accelerator Vacuum

requirements: bremsstrahlung, elastic scattering, emittance growth beam induced desorption: SR, ions

Generic Beam Lifetime due to Beam-Gas Interaction

specific loss processes by gas scattering

- <u>bremsstrahlung</u> (electrons)
- <u>elastic scattering (Coulomb, nuclear)</u>
- inelastic scattering (nuclear)
- multiple Coulomb: <u>p-emittance growth</u>

Electrons: Bremsstrahlung Lifetime

 $\sigma_{\text{inel}} \approx -\frac{4}{3} \frac{V_n}{N_A} \frac{1}{X_0} \ln \delta_E$

Bremsstrahlung

particle loses energy in Coulomb field of gas molecule; is lost if leaving energy acceptance

$$\tau_{\text{brems}} \left[\mathbf{h} \right] = \frac{-0.695}{\ln(\delta_E)} \left(\sum_{i} \frac{P_i \left[\text{pbar} \right]}{X_{0,i} \left[\mathbf{m} \right]} \right)^{-1}$$

radiation length: (normal condition)
 H₂
 He
 CH₄
 H₂O
 CO
 Ar
 Air

 X₀[m]
 7530
 5670
 696
 477
 321
 117
 304

V_n

NA

 δ_{E}

example HERA-e: $\delta_{\rm E} = 8 \times 10^{-3}$; P_{tot} = 10⁻⁸ mbar composition: 75% H₂, 25% CO $\tau_{\rm brems}$ = 16 h [e.g. particle data booklet]

 $\frac{1}{k}$ - ΔE

ΔE

= 22.4l, molar Volume

 X_0 gas specific radiation length

= $\Delta E/E$, energy acceptance

Avogadro Number

Electrons: Elastic Coulomb Scattering

Rutherford Scatting

diff. cross section for occurrence of scattering angle $\boldsymbol{\theta}$:

$$\frac{d\sigma_i}{d\Omega} = \frac{Z_i^2 r_e^2}{4\gamma^2} \frac{1}{\sin^4(\theta/2)}$$

consider total cross-section for loss of electron, i.e. scattering beyond aperture A_v :

$$\sigma_{i,\mathrm{el}} \approx \frac{2\pi Z_i^2 r_e^2}{\gamma^2} \frac{1}{\theta_0^2}, \ \theta_0 = A_y / \overline{\beta_y}$$

resulting lifetime:
$$\tau_{el} [h] = 2839 \frac{E^2 [\text{GeV}^2] A_y^2 [\text{mm}^2]}{\overline{\beta_y}^2 [\text{m}^2]} \left(\sum_i P_i [\text{pbar}] \sum_j k_{ij} Z_j^2 \right)^{-1}$$

example HERA-e:
pressure: $P_{tot} = 10^{-8} \text{ mbar}$
composition: 75% H₂, 25% CO
 $Z_{eff} = \text{rms}(Z_i) = 3.6$
 $A_y = 20 \text{ mm}, \beta_{y,avg} = 25 \text{ m}$
 $\tau_{elastic} = 5.200 \text{ h} \rightarrow \text{insignificant}$

Hadron Beam Emittance Growth

multiple elastic scattering in the absence of radiation damping leads to diffusive emittance growth:

definition of emittance growth time:

$$\tau_{\varepsilon} = \left(\frac{1}{\varepsilon_x} \ \frac{d\varepsilon_x}{dt}\right)^{-1}$$

growth rate:

$$\frac{d\varepsilon}{dt} = \overline{\beta_y} \ \frac{d(\theta_0^2)}{dt} = \overline{\beta_y} \ \frac{(13.6)^2}{(cp)^2 \,[\text{MeV}^2]} \ \frac{c}{P_0} \ \sum_i \frac{P_i}{X_{0,i}}$$

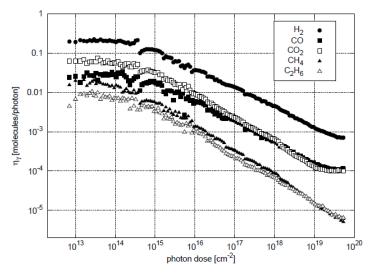
example HERA-p ε growth rate: $E_k = 920 \text{ GeV}, \beta_{y,avg} = 50 \text{ m}$ $P_{tot} = 5 \times 10^{-11} \text{ mbar } @ 4.2 \text{ Kelvin, H}_2$ emittance: $\varepsilon_x = 5 \times 10^{-9} \text{ m} \cdot \text{rad}$

 τ_{e} = 2.000 h

p

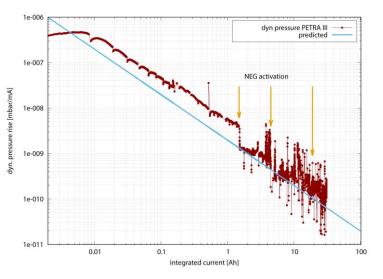
Synchrotron Radiation induced Desorption

dynamic vacuum

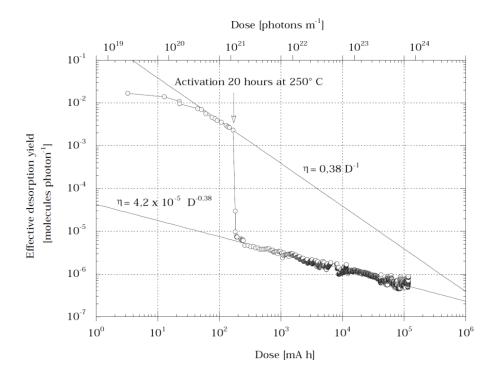

- SR photons generate photoelectrons, these desorb gas molecules from the surface
- desorption yield η per photon is reduced with integrated dose (conditioning)

SR photons per
$$rac{dN_{\gamma}}{dtds} = 1.28 \cdot 10^{17} rac{I\,[{
m mA}]\,E\,[{
m GeV}]}{
ho\,[{
m m}]}$$

outgassing:
$$q = \eta_{\gamma} \, k_b \, T \, rac{d t \gamma_{\gamma}}{d t d s}$$


... ...

measured desorption yield for different gases [G.Vorlaufer]

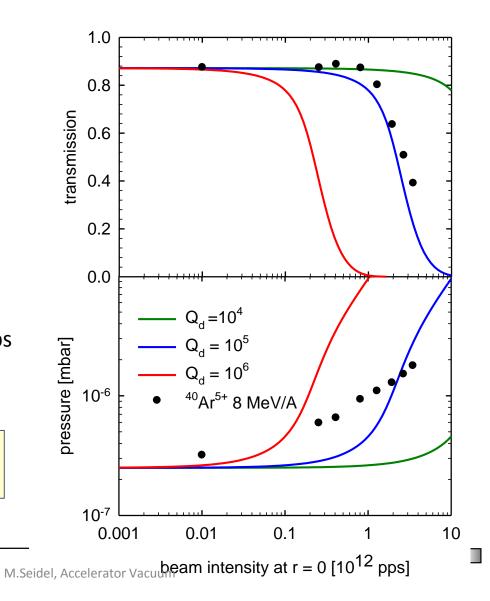

measured dynamic pressure rise as a function of integrated current [PETRA-III, DESY]

dN

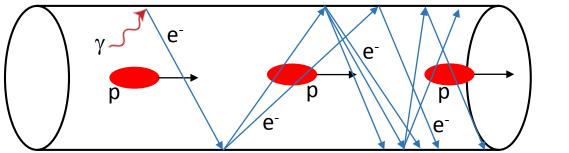
Reduced desorption by NEG Coating

Synchrotron Radiation-Induced Desorption from a NEG-Coated Vacuum Chamber, P. Chiggiato, R. Kersevan (1999)

- → NEG coating reduces SR desorption immediately
- → conditioning is slower afterwards
- → however, NEG coated chambers lead to good conditions in practice


Heavy Ion induced Gas Desorption

demonstration of transmission breakdown by gas desorption

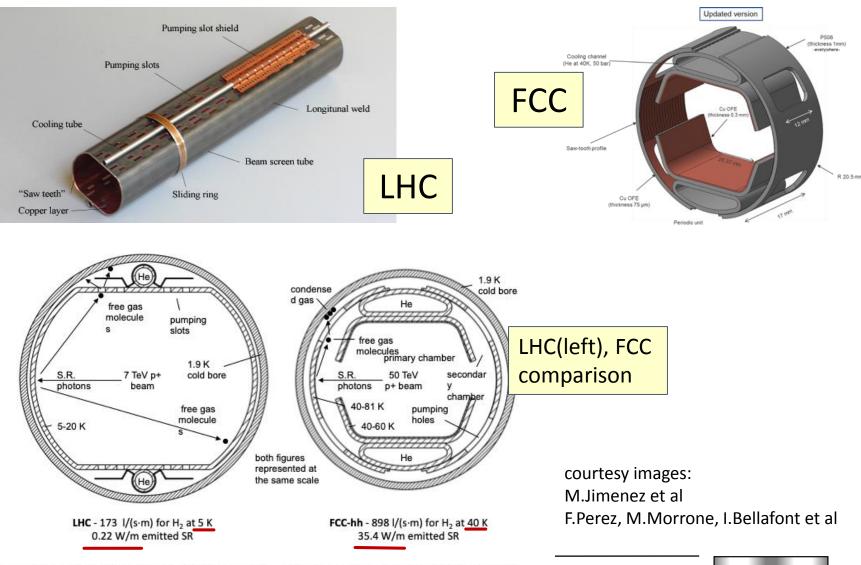

[measurements & simulations in AGOR cyclotron, KVI-Groningen, S.Brandenburg et al]

- transmission of ⁴⁰Ar⁵⁺ 8 MeV per nucleon
- base vacuum 3 x 10⁻⁷ mbar
- injected intensity up to 6 x 10¹² pps
- beampower: \leq 320 W

 \rightarrow release of 10⁵ (!) gas molecules per lost ion is compatible with data

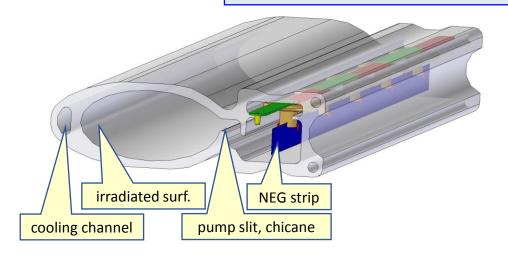
Dynamic effect in LHC: Electron Cloud Effect

E(e⁻) ≈ 1..100eV


- photoelectrons can start avalanche effect resulting in intense electron clouds
- crucial: secondary electron yield (SEY), i.e. how many e⁻ released per incoming e⁻
- results in pressure bump, heat load in cold systems (problem at LHC)
- may affect beam stability
- depends on bunch spacing and beam intensity

mitigations:

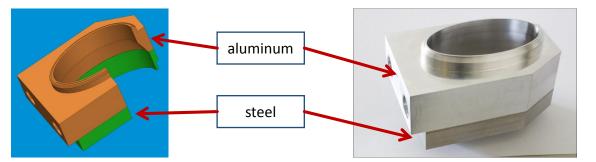
- wall coating, e.g. graphite, TiN (low SEY)
- weak magnetic solenoid field


Specialized Chambers: LHC & FCC with Beam Screens

 At the expense of a higher complexity (translated into a higher, but still affordable, cost) the beam induced vacuum effects are mitigated and the pumping speed and cooling capacity have been considerably increased

Vacuum Chambers for Electron Synchrotron

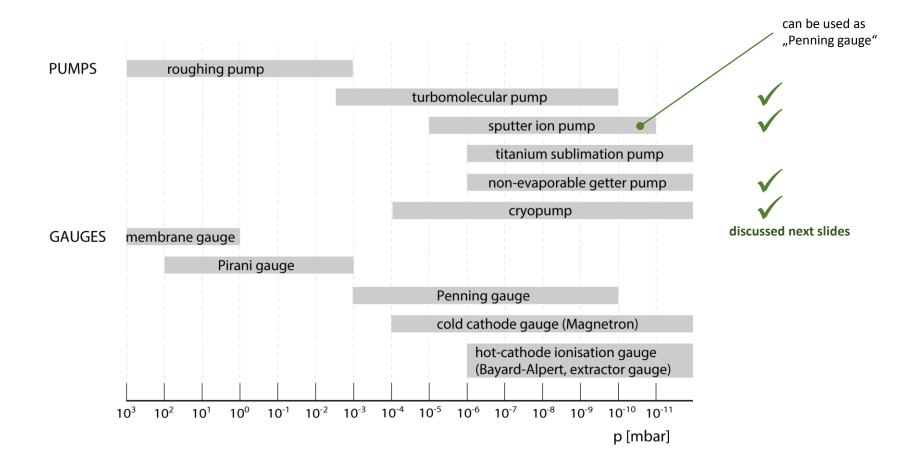
profile extruded aluminum, milled and bent (ρ=196m); NEG strip (St707) for pumping



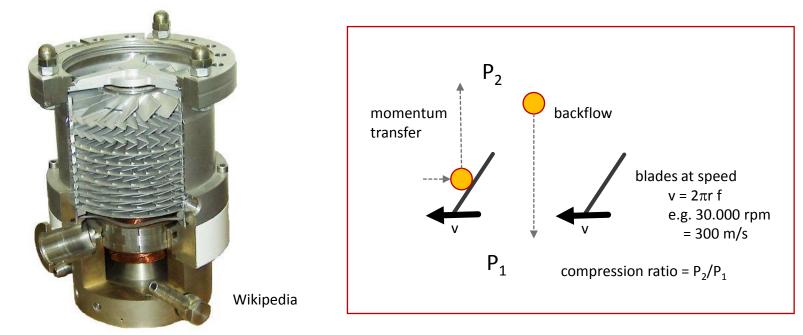
low cost per meter, however: difficult interface to stainless steel flanges

solution:

explosion bondings SS/AI with 4cm AI thickness

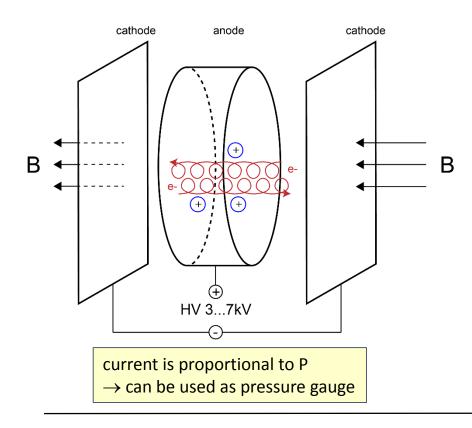


Next: Components for Vacuum Systems

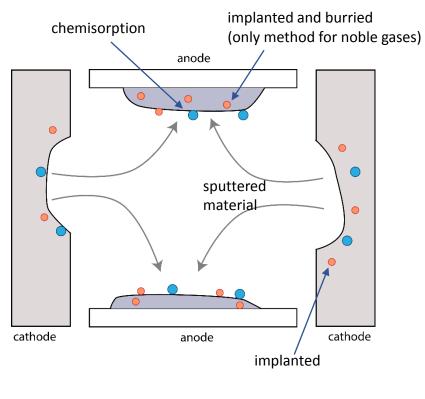

pumps: overview, turbo, ion sputter, NEG, cryo-pump flange systems, collimators, residual gas analysis (RGA)

Overview Pumps and Gauges

Turbo Molecular Pump


- pumps all gases
- blade speed similar molecule speed(!)
- 30.000 ... 60.000 RPM
- works down to 10⁻¹⁰ mbar

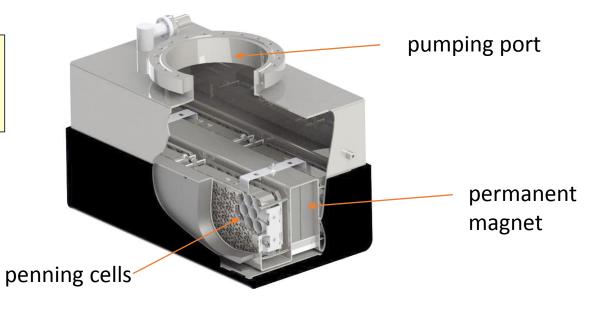
molecule	avg speed @ 293K [m/s]	compression ratio
H ₂	1800	10 ³
Не	1250	10 ⁴
CO	470	10 ⁹



Sputter Ion Pump

single penning cell electric and magnetic field gas ionization, acceleration

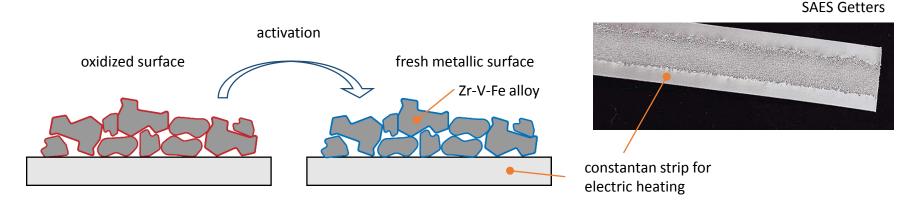
pumping mechanism implantation, chemisorption and burying of gas molecules



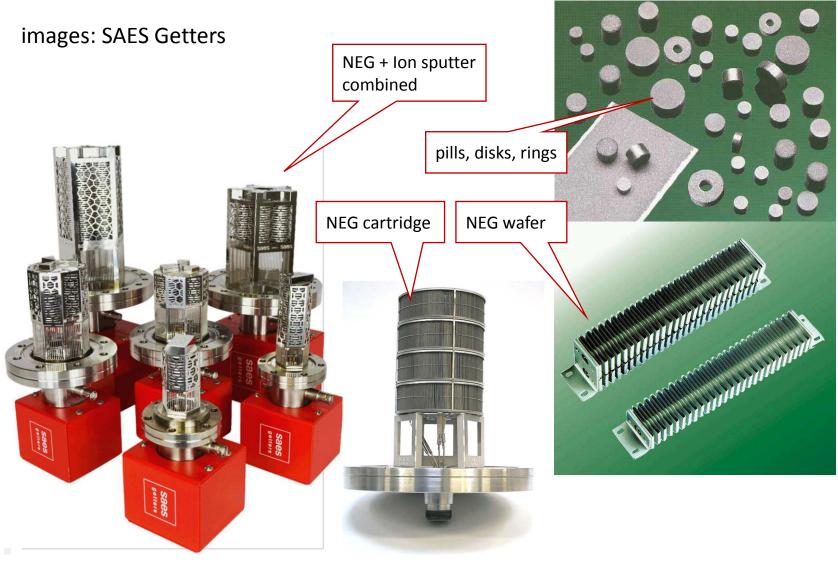
Ion Sputter Pumps

pumping speed: 2 l/s ... 500l/s weight: 0.3kg ... 120kg

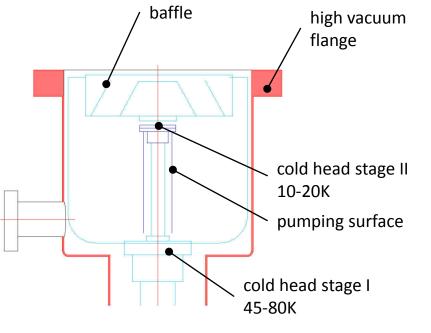
example: modern Agilent 200 pump



NEG – Non Evaporable Getter Pumps


- NEG captures gases by chemical reaction, e.g. H₂O, CO, N₂ permanently, H₂ is dissolved in bulk material
- no pumping of noble gases combination with sputter ion pumps required
- NEG must be activated by heating

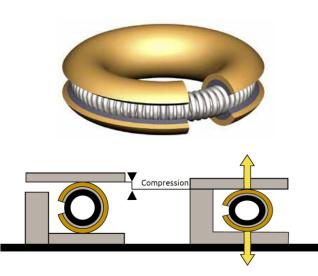
e.g. St707[™] @180°C..350°C



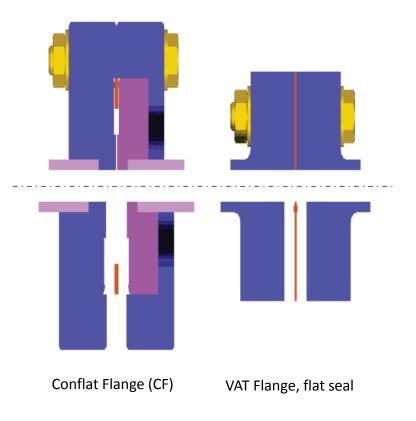
NEG Pump Designs

75	-25

Cryo Pump

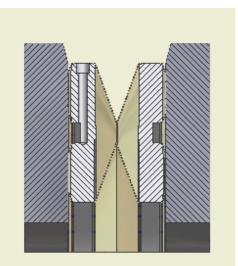

[Lothar Schulz]

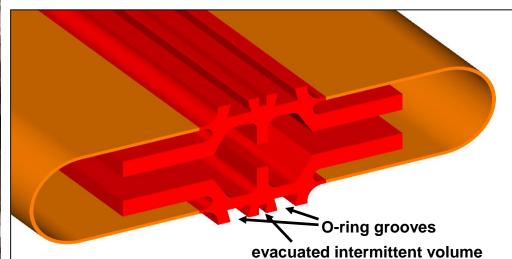
- high pumping speed for <u>all</u> gases
- cryo-condensation of N₂, O₂ and Ar on cold surface
- cold surface partly covered with charcoal: cryosorption for H₂, He, Ne
- periodic regeneration by warmup



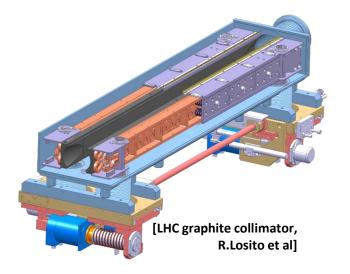
Metal sealed Flange Systems

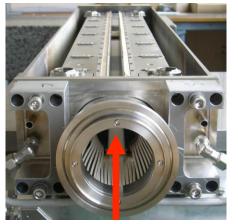
- low leak rate, UHV compatible
- radiation proof
- safe mounting
- easy leak search


Helicoflex: Technetics Group


Inflatable Seals

- leak rate $\sim 10^{-6}$ mbar l / s
- quick and simple mounting
- at positions with limited access or high activation

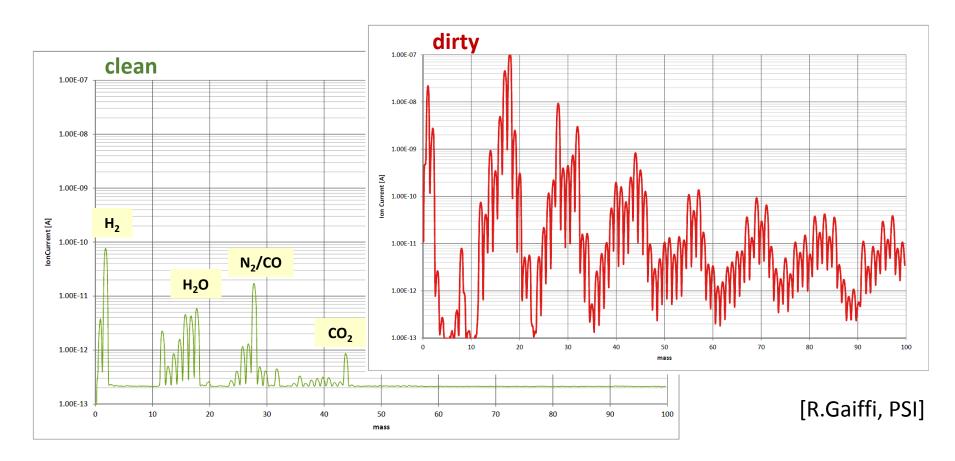




Collimators

- collimators are parts of the vacuum system with multi-physics aspects
- some materials are not optimal for vacuum, e.g. graphite or graphite with MoGr coating (porosity, outgassing, dust)
- straightness, thermal shock resistance, heat load and heat conductivity, efficient cooling, thermal outgassing, electrical conductivity, mechanical precision and reproducibility, radio-activation and handling

[LHC collimator, S.Radaelli et al]


[PSI-HIPA >100kW avg power, D.Kiselev et al]

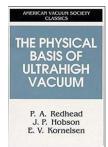
Residual Gas Analysis (RGA)

- quadrupole mass spectrometers to analyze the composition of residual gases
- allows to assess the cleanliness of components and to diagnose problems

Accelerator Vacuum - Summary

- e: breamsstrahlung
- p: emittance growth

- outgassing, permeation/leaks
- beam induced: SR, ions, electron cloud
- lumped: turbo, ion sputter, cryo
- NEG strips, NEG coating


vacuum engineering:

materials & materials preparation, mechanical stability, thermomechanical problems Pumps, Gauges, Flange Systems, Valves

References

- dedicated CERN accelerator school on vacuum: <u>https://cas.web.cern.ch/schools/glumslov-2017</u>
- The physical basis of ultra-high vacuum, P.A. Redhead, J.P. Hobson, E.V. Kornelsen. AVS.
- Particle Data Group: <u>Atomic and Nuclear Properties of</u> <u>Materials</u> (radiation length X₀, interaction length etc)

