

Instabilities Part I: Introduction – multiparticle systems and dynamics

Giovanni Rumolo and Kevin Li

Outline

In this introductory part, we will provide a qualitative description of **collective effects** and their **impact on particle beams**.

We will introduce **multiparticle systems** and investigate **multiparticle effects**. This will be the first step towards a more involved understanding of collective effects and their effect (next lectures).

- Part 1: Introduction dynamics of multiparticle systems
 - Introduction to beam instabilities
 - Instabilities examples
 - Basic concepts
 - Beam matching
 - Multiparticle effects filamentation and decoherence

 We will study the dynamics of charged particle beams in a particle accelerator environment, taking into account the beam self-induced electromagnetic fields, i.e. not only the impact of the machine onto the beam but also the impact of the beam onto the machine.

- We will study the dynamics of charged particle beams in a particle accelerator environment, taking into account the beam self-induced electromagnetic fields, i.e. not only the impact of the machine onto the beam but also the impact of the beam onto the machine.
- First step -> Coordinates system we will use throughout this set of lectures
 - The origin O is moving along with the "synchronous particle", i.e. a reference particle that has the design momentum and follows the design orbit
 - Transverse coordinates x (Horizontal) and y (Vertical) relative to reference particle $(x,y \ll R)$, typically x is in the plane of the bending
 - Longitudinal coordinate z relative to reference particle
 - Position along accelerator is described by independent variable s = vt

- A charged particle beam is generally described as a multiparticle system via the
 coordinates and the canonically conjugate momenta of all of its particles this
 makes up a distribution in the 6-dimensional phase space which can be described
 by a particle distribution function.
- Hence, we will study the **evolution of the phase space** occupied by this particle distribution (and described by its particle distribution function):

$$\frac{\partial}{\partial s} \boldsymbol{\psi} (x, x', y, y', z, \delta, s)$$

- A charged particle beam is generally described as a multiparticle system via the coordinates and the canonically conjugate momenta of all of its particles — this makes up a distribution in the 6-dimensional phase space which can be described by a particle distribution function.
- Hence, we will study the **evolution of the phase space** occupied by this particle distribution (and described by its particle distribution function):
 - Optics defined by the machine lattice provides the external force fields (magnets, electrostatic fields, RF fields), e.g. for guidance and focusing
 - Collective effects add to this distribution dependent force fields (space charge, wake fields)

$$\frac{\partial}{\partial s} \psi(x, x', y, y', z, \delta, s) \propto f(F_{\text{extern}} + F_{\text{coll}}(\psi))$$

this

cribed

article

agnets,

wake

dB(may V(m)

- Hence. distribu
 - o Opt elec
 - o Coll field

Obtaining the multiparticle dynamics very often requires computer simulation codes

$$\frac{\partial}{\partial s} \psi (x, x', y, y', z, \delta, s) \propto f \left(F_{\text{extern}} + F_{\text{coll}} (\psi) \right)$$

What is a beam instability?

• A beam becomes unstable when a **moment of its distribution** exhibits an **exponential growth** (e.g. mean positions, standard deviations, etc.), resulting into beam loss or emittance growth!

$$N = \int \psi(x, x', y, y', z, \delta) \, dx dx' dy dy' dz d\delta$$

$$\langle x \rangle = \frac{1}{N} \int x \cdot \psi(x, x', y, y', z, \delta) \, dx dx' dy dy' dz d\delta$$

$$\sigma_x^2 = \frac{1}{N} \int (x - \langle x \rangle)^2 \cdot \psi(x, x', y, y', z, \delta) \, dx dx' dy dy' dz d\delta$$

and similar definitions for $\langle y \rangle, \sigma_y, \langle z \rangle, \sigma_z$

When the loop closes, either the beam will find a new stable equilibrium configuration ...

... or it might develop an instability along the bunch train ...

... or also an instability affecting different bunches independently of each other

• Formally, instead of investigating the full set of equations for a multiparticle system, we typically instead describe the latter by a **particle distribution function**:

$$\psi = \psi(x, x', y, y', z, \delta, s)$$

where

$$dN(s) = \psi(x, x', y, y', z, \delta, s) dxdx'dydy'dzd\delta$$

• The accelerator environment together with the multiparticle system forms a **Hamiltonian system** for which the **Hamilton equations of motion** hold:

$$\frac{\partial x}{\partial s} = \frac{\partial H}{\partial x'}, \quad \frac{\partial x'}{\partial s} = -\frac{\partial H}{\partial x}$$

We can now derive the **Vlasov equation** which forms the **foundation of the theoretical treatment** of beam dynamics with collective effects:

- Consider an infinitesimal volume element $d\Omega$ containing a finite number of particles dN in phase space which evolve in time
 - dN is conserved as no particles can enter or leave the area (Picard-Lindelöf)
 - $d\Omega$ is conserved by means of the Hamilton equations of motion
- It follows that:

$$\frac{d}{ds}\psi = \frac{\partial \psi}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial \psi}{\partial x'} \frac{\partial x'}{\partial s} + \frac{\partial}{\partial s}\psi$$

$$= \underbrace{\frac{\partial \psi}{\partial x} \frac{\partial H}{\partial x'} - \frac{\partial \psi}{\partial x'} \frac{\partial H}{\partial x}}_{[\psi, H]: \text{ Poisson bracket}} + \frac{\partial}{\partial s}\psi = 0$$

• The accelerator environment together with the multiparticle system forms a **Hamiltonian system** for which the **Hamilton equations of motion** hold:

$$\frac{\partial x}{\partial s} = \frac{\partial H}{\partial x'}, \quad \frac{\partial x'}{\partial s} = -\frac{\partial H}{\partial x}$$

• The evolution of a multiparticle system is given by the evolution of its particle distribution function

$$rac{\partial}{\partial s} oldsymbol{\psi} = [oldsymbol{H}, oldsymbol{\psi}]$$

 With the Hamiltonian composed of an external and a collective part, and the particle distribution function decomposed into an unperturbed part and a small perturbation one can write

$$rac{\partial}{\partial s} oldsymbol{\psi} = \left[oldsymbol{H_0} + oldsymbol{H_1}, oldsymbol{\psi_0} + oldsymbol{\psi_1}
ight]$$

This becomes to first order

$$\frac{\partial}{\partial s} \psi_1 = [H_0, \psi_1] + [H_1(\psi_0 + \psi_1), \psi_0]$$
Linearization in ψ_1 : ... $\propto \widehat{\Lambda} \psi_1$

Spatial component Temporal component

$$\implies \psi_1 = \sum_k a_k v_k \exp\left(\frac{i\Omega_k}{\beta c}s\right)$$

We are looking for the EV of the evolution
→ becomes an EV problem!

 The evolution of a multiparticle system is given by the evolution of its particle distribution function

$$\frac{\partial}{\partial s} \boldsymbol{\psi} = [\boldsymbol{H}, \boldsymbol{\psi}]$$

With the Hamiltonian composed of **an external** and **a collective part**, and the

We call these distinct eigenvalues ψ_k the coherent k-mode.

The mode and thus for example also an instability is fully characterized by a single number:

the complex tune shift $\Omega_{\mathbf{k}}$

Spatial component Tempora omponent

$$\implies \psi_1 = \sum_k a_k v_k \exp\left(\frac{i\Omega_k}{\beta c}s\right)$$

We are looking for the EV of the evolution
→ becomes an EV problem!

 The evolution of a multiparticle system is given by the evolution of its particle distribution function

$$\frac{\partial}{\partial s} \boldsymbol{\psi} = [\boldsymbol{H}, \boldsymbol{\psi}]$$

Remark:

ullet The stationary distribution ψ_0 is the distribution where

$$\frac{\partial}{\partial s} \psi_0 = [\boldsymbol{H_0}, \psi_0] = 0$$

• In particular, a distribution is always stationary if

$$\psi_0 = \psi_0(H_0), \text{ as } [H_0, \psi_0(H_0)] = 0$$

Solving for or finding the stationary solution for a given H_0 (which in fact represents the machine ,potential') will be later referred to as **matching**.

ution

- We have seen the difference between **external forces** and **self-induced forces** and how these lead to **collective effects**.
- We have seen schematically how these collective effects can induce coherent beam instabilities and some knobs to avoid them.
- We have briefly sketched the **theoretical framework** within which the beam dynamics of collective effects is usually treated we have encountered the Vlasov equation, bunch / beam eigenmodes and the complex tune shift.
- Part 1: Introduction dynamics of multiparticle systems
 - Introduction to beam instabilities
 - Instabilities examples
 - Basic concepts
 - Beam matching
 - Multiparticle effects filamentation and decoherence

Why worry about beam instabilities?

- Why study beam instabilities?
 - The onset of a beam instability usually determines the maximum beam intensity that a machine can store/accelerate (performance limitation)
 - Understanding the type of instability limiting the performance, and its underlying mechanism, is essential because it:
 - Allows identifying the source and possible measures to mitigate/suppress the effect
 - Allows dimensioning an active feedback system to prevent the instability

The CERN accelerator complex

Coupled bunch instability in the SPS

25 ns slot

0.5

0.0

25 ns slot

Coupled bunch instability in the SPS

Coupled bunch instability in the SPS

Single bunch instability in the SPS

Loss of more than 30% of the bunch intensity due to a **slow transverse mode coupling instability (TMCI)**.

14/06/2019

Single bunch instability in the SPS

Signpost

- We now understand that collective effects can have a **huge detrimental impact** on the machine performance and why, therefore, the study and the understanding of instabilities is important.
- We have encountered some real world examples of instabilities observed throughout the CERN accelerator chain.
- Before moving on to a more detail view of collective effects, we will have a quick look at some **distinct characteristics of multi-particle beam dynamics**.
- Part 1: Introduction dynamics of multiparticle systems
 - Introduction to beam instabilities
 - Instabilities examples
 - Basic concepts
 - Beam matching
 - Multiparticle effects filamentation and decoherence

Beam matching

• As seen earlier, given a particle distribution function and a machine (described by a Hamiltonian H) the stationary solution is given by:

$$\frac{\partial}{\partial s} \boldsymbol{\psi} = [\boldsymbol{H}, \boldsymbol{\psi}] = 0$$

and can be constructed via matching:

- In real life, an injected beam ought to be **matched to the machine** for best performance.
- Given a particle distribution function and a machine optics locally described by a Hamiltonian we ensure matching by targeting for:

Matching examples

We take the example of Gaussian distribution functions

$$\psi(H) = \exp\left(\frac{H}{H_0}\right)$$

Betatron motion

$$H = \frac{1}{2} x'^2 + \left(\frac{Q_x}{R}\right)^2 x^2$$

$$H_0 = \sigma_{x'}^2 = \left(\frac{Q_x}{R}\right)^2 \sigma_x^2 \implies \boxed{\frac{\sigma_x}{\sigma_{x'}} = \frac{R}{Q_x} = \beta_x}$$

• Synchrotron motion - linear

$$H(z,\delta) = -\frac{1}{2}\eta\beta c\,\delta^2 + \frac{eVh}{4\pi R^2 p_0}\,z^2$$

$$H_0 = \eta\beta c\,\sigma_\delta^2 = \frac{eVh}{2\pi R^2 p_0}\,\sigma_z^2 \implies \frac{\sigma_z}{\sigma_\delta} = R\eta\,\sqrt{\frac{2\pi\beta^2 E_0}{eV\eta h}} = \frac{R\eta}{Q_s}\,\sigma_\delta = \beta_z$$

Matching examples

We take the example of Gaussian distribution functions

$$\psi(H) = \exp\left(\frac{H}{H_0}\right)$$

In reality the synchrotron motion is described by the Hamiltonian:

$$H(z,\delta) = -\frac{1}{2}\eta\beta c\,\delta^2 + \frac{eV}{2\pi h p_0} \left(\cos\left(\frac{hz}{R}\right) - \cos\left(\frac{hz_c}{R}\right) + \frac{\Delta E}{eV} \left(\frac{hz}{R} - \frac{hz_c}{R}\right)\right)$$

This leads to **nonlinear equations** and the matching procedure becomes more involved.

Matching illustration – matched beams

- Betatron motion
 - linear

$$\frac{\sigma_x}{\sigma_{x'}} = \beta_x$$

Matched beams
maintain their beam
moments and their
shape in phase space

Matching illustration – mismatched beams

- Betatron motion
 - linear

$$\frac{\sigma_x}{\sigma_{x'}} = \beta_x$$

Mismatched beams show oscillations in their beam moments and may change their shape due to filamentation

Matching illustration – linear vs. nonlinear

- Betatron motion
 - linear

$$\frac{\sigma_x}{\sigma_{x'}} = \beta_x$$

Nonlinearities lead to detuning with amplitude. This is visible as the characteristic spiraling of larger amplitude particles.

Signpost =

- We have learned about the meaning of matching a beam to the machine optics.
- We have seen how to formally match a beam to a given description of a machine.
- We have seen **examples of matched and mismatched beams** and have seen the difference between **linear and non-linear motion**.
- Part 1: Introduction dynamics of multiparticle systems
 - Introduction to beam instabilities
 - Instabilities examples
 - Basic concepts
 - Beam matching
 - Multiparticle effects filamentation and decoherence

Sources and impact of transverse nonlinearities

 We have learned or we may know from operational experience that there are a set of crucial machine parameters to influence beam stability – among them chromaticity and amplitude detuning

Chromaticity

- Controlled with sextupoles provides chromatic shift of bunch spectrum wrt. impedance
- Changes interaction of beam with impedance
- Damping or excitation of headtail modes
- Amplitude detuning
 - Controlled with octupoles provides (incoherent) tune spread
 - Leads to absorption of coherent power into the incoherent spectrum → Landau damping

Example: filamentation as result of detuning

14/06/2019

Example: filamentation as result of detuning

Example: chromaticity – de- & recoherence

Chromatic detuning:

$$\Delta Q_x = Q_x' \, \delta$$

$$\delta = \hat{\delta} \, \sin(\varphi)$$

- Consider a particle in 6d phase space performing both betatron and synchrotron oscillations
- The accumulated betatron detuning after one half, resp. one full synchrotron period reads

$$\Delta Q_{x, \text{ acc}} \Big|_{T_s/2} = \hat{\delta} \int_0^{\pi} \sin(\varphi) \, d\varphi = 2\hat{\delta}$$
$$\Delta Q_{x, \text{ acc}} \Big|_{T_s} = \hat{\delta} \int_0^{2\pi} \sin(\varphi) \, d\varphi = 0$$

 After one full synchrotron period all tune shifts have vanished (i.e., also the tune spread has vanished – the beam has recohered)

Example: chromaticity – de- & recoherence

Chromatic detuning:

spread has vanished — the **beam has re-**cohered)

- Sources for transverse nonlinearities are, e.g., chromaticity and detuning with amplitude from octupoles.
- Transverse nonlinearities can lead to decoherence and emittance blow-up.
- The effects seen so far are chacteristics for multiparticle systems but are not collective effects.

- Part 1: Introduction dynamics of multiparticle systems
 - Introduction to beam instabilities
 - Instabilities examples
 - Basic concepts
 - Beam matching
 - Multiparticle effects filamentation and decoherence

Signpost =

- We have learned about some of the peculiarities of collective effects. We have also introduced multi-particle systems and have seen how these can be described and treated theoretically.
- We have seen some **real-world example of collective effects** manifesting themselves as coherent beam instabilities.
- We have looked at some specific **features of multi-particle beam dynamics** such as matching, decoherence and emittance blow-up due to filamentation. These are not to be confused with collective effects.
- Part 1: Introduction dynamics of multiparticle systems
 - Introduction to beam instabilities
 - Instabilities examples
 - Basic concepts
 - Beam matching
 - Multiparticle effects filamentation and decoherence

End part 1

Backup

- We have learned about the **particle description** of a beam.
- We have seen macroparticles and macroparticle models.
- We have seen how macroparticle models are mapped and represented in a computational environment.

- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - · Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

The particle description

- As seen earlier, and especially for the analytical treatment, we can represent a charged particle beam via a particle distribution function.
- In computer simulations, a charged particle beam is still represented as a multiparticle system. However, to be compatible with computational resources, we need to rely on macroparticle models.
- A macroparticle is a numerical representation of a cluster of neighbouring physical particles.
- Thus, instead of solving the system for the N ($^{\sim}10^{11}$) physical particles one can significantly reduce the number of degrees of freedom to N_{MP} ($^{\sim}10^{6}$). At the same time one must be aware that this increases of the granularity of the system which gives rise to numerical noise.

Macroparticle representation of the beam

 Macroparticle models permit a seamless mapping of realistic systems into a computational environment – they are fairly easy to implement

Beam:

$$\begin{pmatrix} x_i \\ x_i' \end{pmatrix} \qquad \begin{pmatrix} q_i \\ m_i \end{pmatrix} \;, \qquad i = 1, \dots, N$$

$$\text{Macroparticle number}$$

$$\begin{pmatrix} y_i \\ \end{pmatrix}$$

 $egin{pmatrix} z_i' \ y_i' \end{pmatrix}$ Canonically conjugate coordinates and momenta $egin{pmatrix} z_i \ \delta_i \end{pmatrix}$

$$\Psi\left(x,x',y,y',z,\delta\right)$$

In [6]:	<pre>df = pd.DataFrame(bunch.get_coords_n_momenta_dict()) df</pre>
---------	--

Out[6]:

	dp	x	хр	у	ур	z	
0	0.001590	0.000566	-2.285393e-05	-0.001980	4.283152e-06	0.353427	
1	0.001978	0.000370	1.954404e-05	-0.000359	5.543904e-05	0.159670	
2	0.003492	-0.000829	-2.773707e-05	0.000291	6.627340e-05	-0.251489	
3	0.002195	-0.001668	-2.317633e-05	0.001878	-1.870926e-05	-0.038597	
4	0.000572	0.000990	5.493907e-05	0.000152	-1.951051e-05	0.492968	
5	-0.000418	0.001088	4.778027e-05	0.003320	-7.716856e-06	0.415582	
6	-0.000114	-0.000194	1.065400e-05	0.001798	-4.984276e-07	-0.349064	
7	0.001100	-0.001257	-6.873217e-05	-0.002374	5.657645e-06	-0.023157	
8	0.002706	0.005351	-1.867898e-07	-0.000765	3.012523e-05	-0.291095	
9	0.003508	0.000499	1.865768e-05	-0.001032	-5.363820e-05	0.211726	
10	-0.001711	-0.003168	4.372560e-05	-0.001933)1933 -2.151020e-05		
11	-0.002150	-0.000565	-1.853825e-05	-0.003895	-6.192450e-06	0.072499	
12	0.002059	0.003453	-3.808703e-05	0.000118	3.179588e-05	-0.001816	
13	0.002709	0.000241	-3.457535e-05	0.000474	5.057865e-05	-0.005464	
14	-0.001593	0.000711	-1.667091e-05	-0.002523	-3.804168e-05 -0.08		
15	-0.000830	-0.000393	-7.473946e-05				
16	-0.001743	-0.003ng.4					

Macroparticle representation of the beam

In [6]: df = pd.DataFrame(bunch.get_coords_n_momenta_dict())
 df

Out[6]:

	dp	x	хр	у	ур	2
0	0.001590	0.000566	-2.285393e-05	-0.001980	4.283 152e-06	
1	0.001978	0.000370	1.954404e-05	-0.000359	5.543904	
2	0.003492	-0.000829	-2.773707e-05	0.000291	6.627	
3	0.002195	-0.001668	-2.317633e-05	0.001878		
4	0.000570	0.000000	E 400007- 05	0.000450		

Initial conditions of the beam/particles

Profile	Size	Matching
Gaussian	Emittance	Optics
Parabolic		
Flat		

- We use random number generators to obtain random distributions of coordinates and momenta
- Example transverse Gaussian beam in the SPS with normalized emittance of 2 um (0.35 eVs longitudinal)

$$\varepsilon_{\perp} = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

$$= \beta \gamma \sigma_x \sigma_{x'}$$

$$\varepsilon_{\parallel} = 4\pi \sigma_z \sigma_{\delta} \frac{p_0}{e}$$

Wake fields illustrative examples

- Resonator wake: fr = 200 MHz, Q = 20 Gaussian bunch charge profile
- The plots show how the bunch moments and the wake function convolve into an integrated deflecting kick at the different positions along the bunch

E-cloud instabilities in the LHC

Scrubbing run in 2015 – early stage

Head of batch

- Injection of multiple bunch batches from the SPS into the LHC.
- Violent instabilities during initial stages
 of scrubbing clear e-cloud signature
- Very hard to control in the beginning slow and staged ramp-up of intensity $(24 \rightarrow 36 \rightarrow 48 \rightarrow 60 \rightarrow 72 \rightarrow 144 \text{ bpi})$

Tail of batch

every 4th bunch just after injection

E-cloud instabilities in the LHC

Scrubbing run in 2015 – second stage

- At later stages dumps under control but still **emittance blow-up and serious beam quality degradation**.
- Beam and e-cloud induced heating of kickers and collimators.

zoom rect. x=347.852 v=11.4057

zoom rect. x=63.3781 v=17.838

Headtail instabilities in the LHC

- The impedance in the LHC can give rise to coupled and single bunch instabilities which, when left untreated, can lead to beam degradation and beam loss.
- As an example, headtail instabilities are predicted from macroparticle simulations using the LHC impedance model.
- These simulations help to understand and to predict unstable modes which are observed in the real machine.

Headtail instabilities in the LHC

$$m = 0$$
 $m = -1$

Macroparticle simulations (PyHEADTAIL)

• These simulations help to understand and to **predict instabilities** which are **observed in the real machine**.

Wakefields as sources of collective effects

- The wake function is the electromagnetic response of an object to a charge pulse. It is an intrinsic property of any such object.
- The wake function **couples two charge distributions** as a function of the distance between them.
- The response depends on the boundary conditions and can occur e.g. due to **finite conductivity** (resistive wall) or more or less sudden **changes in the geometry** (e.g. resonator) of a structure.

Wake functions in general

Definition as the **integrated force** associated to a change in energy:

• In general, for two point-like particles, we have

$$\Delta E_2 = \int F(x_1, x_2, z, s) ds = -q_1 q_2 \mathbf{w}(x_1, x_2, z)$$

w is typically expanded in the transverse offsets of source and witness particles. This yields the different types of wake fields (dipole, quadrupole, coupling wakes)

Wake potential for a distribution of particles

Definition as the **integrated force** associated to a change in energy:

For an extended particle distribution this becomes

$$\Delta E_2(z) \propto \int \lambda_1(x_1, z_1) \boldsymbol{w(x_1, x_2, z - z_1)} dx_1 dz_1$$

Forces become dependent on the particle distribution function

Wake fields – impact on the equations of motion

$$\Delta E_2(z) \propto \int \lambda_1(x_1, z_1) \boldsymbol{w(x_1, x_2, z - z_1)} dx_1 dz_1$$

• We include the impact of wake field into the standard Hamiltonian for linear betatron (or synchrotron motion):

$$H = \frac{1}{2}x' + \frac{1}{2}\left(\frac{Q_x}{R}\right)^2 x^2 + \frac{e^2}{\beta^2 EC} \int \lambda_1(x_1, z_1) w(x_1, x, z - z_1) dx_1 dz_1 dx$$

• The equations of motion become:

$$x'' + \left(\frac{Q_x}{R}\right)^2 x + \frac{e^2}{\beta^2 EC} \int \lambda_1(x_1, z_1) \frac{w(x_1, x, z - z_1)}{w(x_1, x, z_1)} dx_1 dz_1 = 0$$

The presence of wake fields adds an additional excitation which depends on

- 1. The moments of the beam distribution
- 2. The **shape and the order** of the wake function

How are wakes and impedances computed?

- Analytical or semi-analytical approach, when geometry is simple (or simplified)
 - Solve Maxwell's equations with the correct source terms, geometries and boundary conditions up to an advanced stage (e.g. resistive wall for axisymmetric chambers)
 - Find closed expressions or execute the last steps numerically to derive wakes and impedances

Numerical approach

- Different codes have been developed over the years to solve numerically Maxwell's equations in arbitrarily complicated structures
- Examples are CST Studio Suite (Particle Studio, Microwave Studio), ABCI, GdFidL, HFSS, ECHO2(3)D. Exhaustive list can be found from the program of the ICFA mini-Workshop on "Electromagnetic wake fields and impedances in particle accelerators", Erice, Sicily, 23-28 April, 2014
- Bench measurements based on transmission/reflection measurements with stretched wires
 - Seldom used independently to assess impedances, usefulness mainly lies in that they can be used for validating 3D EM models for simulations

