Plasma accelerators driven by exotic light beams

Jorge Vieira

GoLP / IPFN, Instituto Superior Técnico, Lisbon, Portugal

Work in collaboration with:

```
M. Pardal, J.T. Mendonça, R.A. Fonseca, L.O. Silva (IST); E.P.Alves (SLAC)
F. Quéré (CEA); R. Bingham, R. Trines (RAL, STFC), Y. Shi, R. Kingham (Imperial College)
```

Simulation results obtained at the SuperMUC supercomputer in Garching, Germany.

Committed to open science

Open-access model

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
 - Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

- The code can be used freely by research institutions after signing an MoU
- Find out more at:

http://epp.tecnico.ulisboa.pt/osiris

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended simulation/physics models

representation of a plane wave

TÉCNICO LISBOA

ſſ

representation of a plane wave

TÉCNICO LISBOA

ſſ

representation of a *twisted* wave

TÉCNICO LISBOA

representation of a *twisted* wave

representation of a *twisted* wave

TÉCNICO LISBOA

ſſ

representation of a *twisted* wave

TÉCNICO LISBOA

ſĴ

representation of a twisted wave I helix - OAM (ℓ) is I

The orbital angular momentum of light

representation of a *twisted* wave **2 helixes - OAM** (ℓ) is **2**

The orbital angular momentum of light

representation of a *twisted* wave **3 helixes - OAM (** ℓ **) is 3**

The orbital angular momentum of light

representation of a *twisted* wave **2 helixes - OAM (** ℓ **) is 2**

adapted from M. Padgett et al.

adapted from M. Padgett et al.

Interesting examples of double helixes

adapted from M. Padgett et al.

Jorge Vieira | CAS advanced accelerators Sesimbra Portugal | March 20, 2019

Applications of twisted light

Super-resolution microscopy is a notable example where OAM beams revolutionised science and technology [S. Hell et al. Optics Lett. 19, 780-782 (1994)]

- Optical communications TB/s data transfer in free space []. Wang et al. Nat. Ph. 6 488 (2012)]
- Quantum computing Very large base of entangled states [A. Mair et al., Nature 412, 313 (2001)]

Generation of twisted light

Ultra-fast spatiotemporal beam shaping

Producing these beams at ultra-high intensity is the goal of several experimental teams

J. Vieira et al PRL 117, 265001 (2016); Nat. Comms 7:10371 (2016).

What are the key properties of **plasma wakefields driven by twisted lasers**? Can we address major open challenges with this new approach?

Is it possible to **transfer light's orbital angular momentum to** a new type of **plasma waves** carrying angular momentum themselves?

Is it possible to **transfer the angular momentum** of these plasma waves **to** relativistic vortex electron (positron) bunches?

Conclusions and future directions

What are the key properties of **plasma wakefields driven by twisted lasers**? Can we address major open challenges with this new approach?

Is it possible to **transfer light's orbital angular momentum to** a new type of **plasma waves** carrying angular momentum themselves?

Is it possible to **transfer the angular momentum** of these plasma waves **to** relativistic vortex electron (positron) bunches?

Conclusions and future directions

OAM lasers can drive doughnut-shaped plasma waves

OAM lasers can drive doughnut-shaped plasma waves

Non-linear doughnut blowout

conventional blowout regime

doughnut plasma wave

- laser expels electrons outwards
- pure ion channel focuses electrons
- positron acceleration *not possible*

- laser pushes electrons inwards
- electron filament focuses positrons
- positron acceleration *is possible*

3D simulations show positron acceleration in strongly non-linear regimes

3D simulations show positron acceleration in strongly non-linear regimes

J.Vieira and J.T. Mendonça PRL 112, 215001 (2014)

3D simulations show positron acceleration in strongly non-linear regimes

3D simulations show positron acceleration in strongly non-linear regimes

On-axis filament

Doughnut laser

Proof-of-concept simulations

balance laser ponderomotive force with positron attraction

J.Vieira et al to be submitted (2019).

On-axis filament

Doughnut laser

Proof-of-concept simulations

balance laser ponderomotive force with positron attraction

J.Vieira et al to be submitted (2019).

What are the key properties of **plasma wakefields driven by twisted lasers**? Can we address major open challenges with this new approach?

Is it possible to **transfer light's orbital angular momentum to** a new type of **plasma waves** carrying angular momentum themselves?

Is it possible to **transfer the angular momentum** of these plasma waves **to** relativistic vortex electron (positron) bunches?

Conclusions and future directions

Experimental realisation*

angular dependent group velocity dispersion

*G. Pariente, F. Quéré, Optics Letters 40 2037 (2015)

Transfer optical angular momentum to plasma

Experimental realisation*

Light spring forms when thickness \approx laser duration

angular dependent group velocity dispersion

Mathematical model for simulations and theory

Beating two Laguerre-Gaussian modes

 $a^{2} \propto a_{r,\ell}^{2} + a_{r,\ell+\Delta\ell}^{2} + \\ + 2a_{r,\ell}a_{r,\ell+\Delta\ell} \cos\left[\Delta k(ct-x) + \Delta\ell\theta + \Delta\varphi(x)\right]$

 Δ I is the OAM difference between the two modes Δ k is the wavenumber difference $\Delta \phi$ is a phase difference

*G. Pariente, F. Quéré, Optics Letters 40 2037 (2015)

Twisted wakefield structure

Panofksy-Wenzel theorem

Transverse force acting on relativistic particle

$$\nabla_{\perp} E_x = \frac{\partial \mathbf{W}_{\perp}}{\partial \xi}$$

Transverse wakefield

$$\mathbf{W}_{\perp} = \mathbf{E}_{\perp} + (\mathbf{e}_x \times \mathbf{B})_{\perp}$$

OAM wakefield

Radial focusing (betatron motion)

$$\frac{\partial E_x}{\partial r} = \frac{\partial W_r}{\partial \xi} \propto \frac{\partial \phi}{\partial r}$$

Azimuthal force **new!** $\frac{1}{r} \frac{\partial E_x}{\partial \theta} = \frac{\partial W_{\theta}}{\partial \xi} \propto \frac{\ell_p}{r} \phi$

Simulations confirm new field components

Longitudinal B fields

A new longitudinal B fields appear when wakefields become nonlinear

Y. Shi et al PRL 121, 145002 (2018).

What are the key properties of **plasma wakefields driven by twisted lasers**? Can we address major open challenges with this new approach?

Is it possible to **transfer light's orbital angular momentum to** a new type of **plasma waves** carrying angular momentum themselves?

Is it possible to transfer the angular momentum of these plasma waves to relativistic vortex electron (positron) bunches?

Conclusions and future directions

Relativistic beams accelerated in OAM wakes

Hamiltonian formulation

Hamiltonian of a charged particle

$$\mathcal{H} = m_e c^2 \gamma + e\phi(r,\theta,\xi)$$

Twisted wakefield structure $\phi = \phi(v_{\phi}t - x + \ell_{p}\theta) = \phi(u)$

Hamilton's equations

$$\frac{\mathrm{d}\mathcal{P}_x}{\mathrm{d}t} \simeq \frac{\mathrm{d}p_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial x} = \phi'(u)$$

$$\frac{\mathrm{d}\mathcal{P}_{\theta}}{\mathrm{d}t} \simeq \frac{\mathrm{d}L_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\theta} = -\ell_p \phi'$$
$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial t} = v_g \phi'$$

J.Vieira et al PRL 121,054801 (2018)

Hamiltonian formulation

Hamiltonian of a charged particle

$$\mathcal{H} = m_e c^2 \gamma + e\phi(r,\theta,\xi)$$

Twisted wakefield structure

$$\phi = \phi(v_{\phi}t - x + \ell_p\theta) = \phi(u)$$

Hamilton's equations

$$\frac{\mathrm{d}\mathcal{P}_x}{\mathrm{d}t} \simeq \frac{\mathrm{d}p_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial x} = \phi'(u)$$
$$\frac{\mathrm{d}\mathcal{P}_\theta}{\mathrm{d}t} \simeq \frac{\mathrm{d}L_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\theta} = -\ell_p\phi'$$
$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial t} = v_g\phi'$$

J.Vieira et al PRL 121,054801 (2018)

Constants of motion

Energy
$$\gamma \left(1 - v_{\phi} v_x / c^2\right) = 1 + \Delta \phi / m_e c^2$$

Ratio of angular momentum flux to energy

$$\frac{\Delta L_x}{\Delta p_x} = \frac{\ell_p}{k_p} \Rightarrow \frac{\Delta L_x}{E} = \frac{\ell_p}{\omega_p}$$

Hamiltonian formulation

Hamiltonian of a charged particle

$$\mathcal{H} = m_e c^2 \gamma + e\phi(r,\theta,\xi)$$

Twisted wakefield structure

$$\phi = \phi(v_{\phi}t - x + \ell_p\theta) = \phi(u)$$

Hamilton's equations

$$\frac{\mathrm{d}\mathcal{P}_x}{\mathrm{d}t} \simeq \frac{\mathrm{d}p_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial x} = \phi'(u)$$
$$\frac{\mathrm{d}\mathcal{P}_\theta}{\mathrm{d}t} \simeq \frac{\mathrm{d}L_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\theta} = -\ell_p\phi'$$
$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial t} = v_g\phi'$$

J.Vieira et al PRL 121,054801 (2018)

Constants of motion

Energy
$$\gamma \left(1 - v_{\phi} v_x / c^2\right) = 1 + \Delta \phi / m_e c^2$$

Ratio of angular momentum flux to energy

$$\frac{\Delta L_x}{\Delta p_x} = \frac{\ell_p}{k_p} \Rightarrow \frac{\Delta L_x}{E} = \frac{\ell_p}{\omega_p}$$

Angular momentum is quantised.

Hamiltonian formulation

Hamiltonian of a charged particle

$$\mathcal{H} = m_e c^2 \gamma + e\phi(r,\theta,\xi)$$

Twisted wakefield structure

$$\phi = \phi(v_{\phi}t - x + \ell_p\theta) = \phi(u)$$

Hamilton's equations

$$\frac{\mathrm{d}\mathcal{P}_x}{\mathrm{d}t} \simeq \frac{\mathrm{d}p_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial x} = \phi'(u)$$
$$\frac{\mathrm{d}\mathcal{P}_\theta}{\mathrm{d}t} \simeq \frac{\mathrm{d}L_x}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\theta} = -\ell_p\phi'$$
$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial t} = v_g\phi'$$

J.Vieira et al PRL 121,054801 (2018)

Constants of motion

Energy
$$\gamma \left(1 - v_{\phi} v_x / c^2\right) = 1 + \Delta \phi / m_e c^2$$

Ratio of angular momentum flux to energy

$$\frac{\Delta L_x}{\Delta p_x} = \frac{\ell_p}{k_p} \Rightarrow \frac{\Delta L_x}{E} = \frac{\ell_p}{\omega_p}$$

Angular momentum is quantised.

Simulations confirm OAM quantisation

Relativistic bunches have a vortex spatial structure U LISBOA

Beams have a vortex density structure

Beams have a vortex density structure

Beams have a vortex density structure

What are the key properties of **plasma wakefields driven by twisted lasers**? Can we address major open challenges with this new approach?

Is it possible to **transfer light's orbital angular momentum to** a new type of **plasma waves** carrying angular momentum themselves?

Is it possible to **transfer the angular momentum** of these plasma waves **to** relativistic vortex electron (positron) bunches?

Conclusions and future directions

Twisted light provides new degrees of freedom to control plasma acceleration

positron acceleration and beam phase space manipulation

Positron acceleration in the non-linear blowout regime

on-axis positron focusing force in doughnut shaped plasma waves

Generation of vortex electron bunches

electrons with quantised orbital angular momentum levels in twisted plasma waves