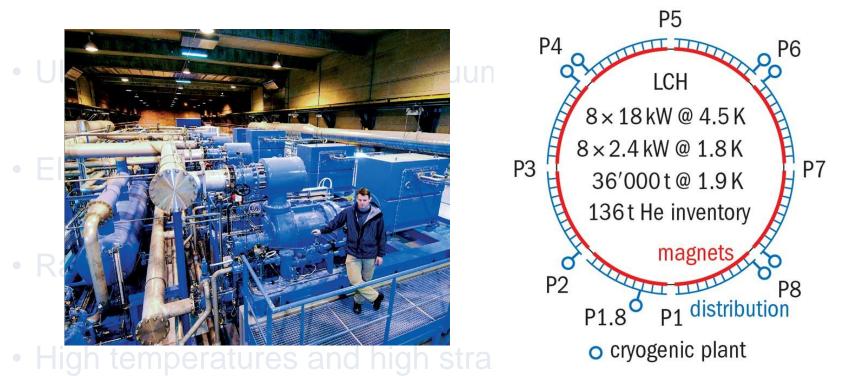
Non – ferrous materials for particle accelerators

Ignacio Avilés Santillana CERN EN / MME – MM Email: iaviles@cern.ch

Outline

- Environmental conditions of particle accelerators
- General rules for selection of materials in particle accelerators
- Families of non ferrous materials:
 - Aluminum
 - Copper
 - Titanium
 - Niobium
- Conclusions


• Cryogenic temperatures.

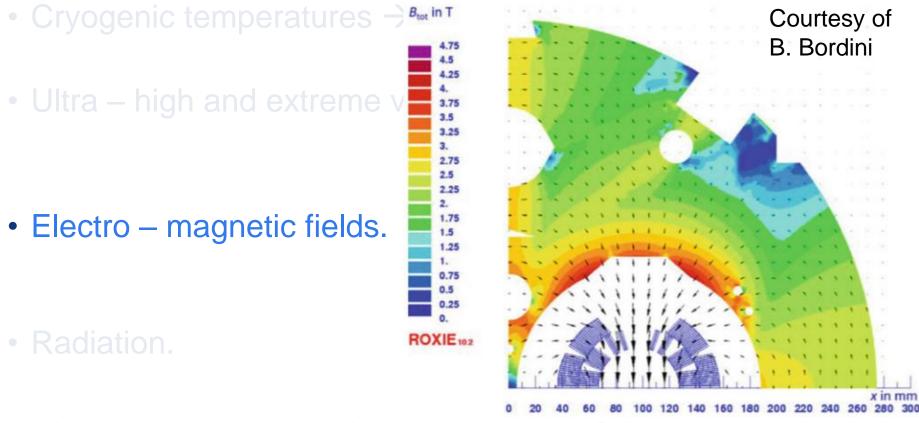
• Ultra – high and extreme vacuum.

- Electro magnetic fields.
- Radiation.
- High temperatures and high strain rate.

• Cryogenic temperatures \rightarrow down to 1.9 K (superfluid helium).

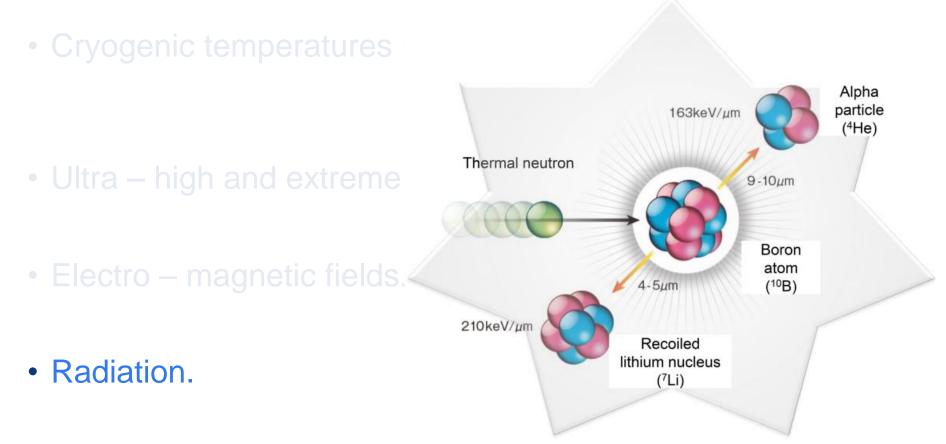
intercepting devices (dumps, collimators, targets).

• Cryogenic temperatures \rightarrow down to 1.9 K (superfluid helium).

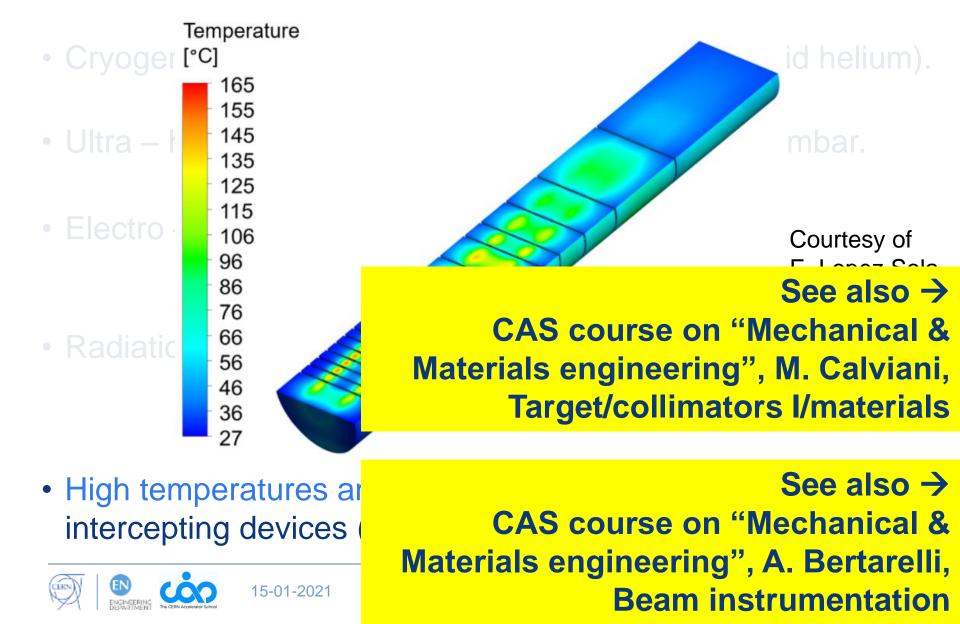

• Ultra – high and extreme vacuum \rightarrow down to 10⁻¹¹ mbar.

•	Classification	Vacuum Level [a], [b], [c], [d]	
		Ра	Torr
	Low or "Rough" Vacuum	133.3 to 1.33 x 10 ⁻¹	1 to 1 x 10 ⁻³
•	Intermediate or "Soft" Vacuum	<1.33 x 10 ⁻¹ to 1.33 x 10 ⁻³	< 1 x 10 ⁻³ to 10 ⁻⁵
	High or "HV" Vacuum	<1.33 x 10 ⁻³ to 1.33 x 10 ⁻⁶	< 1 x 10 ⁻⁵ to 10 ⁻⁸
	Ultrahigh or "UHV" Vacuum	<1 x 10 ⁻⁷ to 1 x 10 ⁻⁸	7.5×10^{-10} to 7.5×10^{-11}
•	Extreme Ultrahigh Vacuum	$< 1 \times 10^{-10}$	< 7.5 x 10 ⁻¹³
	Interstellar Space	10 ⁻¹⁷	7.5 x 10 ⁻²⁰

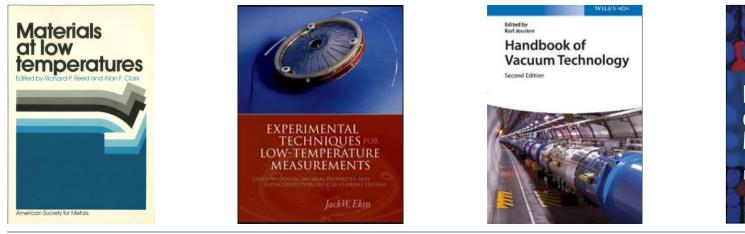
From: Herring, Daniel H., Vacuum Heat Treatment, BNP Custom Media Group, 2012.

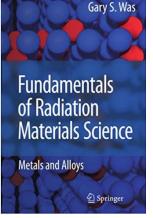


 High temperatures and high strain rate → beam intercepting devices (dumps, collimators, targets).

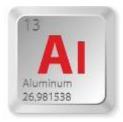


High temperatures an intercepting devices



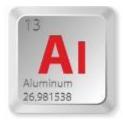

See also → CAS course on "Mechanical & Materials engineering", D. Evans, Radiation damage to materials

General rules for materials' selection in particle accelerators


- The golden rule to be remembered (from S. Sgobba in stainless steel, can be extended to any material):
 - "A material for an accelerator part is not a mere chemical composition or designation":
 - Specification. Fabrication route. Temper state
 - Controls
 - Price
 - Low / high temperature, magnetism, ultrahigh vacuum, radiation, require special care.

Aluminium

- Second-most abundant metallic element in Earth's crust after silicon.
- The name comes from its compound form, a mineral rock called 'alumen' (meaning binding) used as dyeing fixative.
- Silver from clay

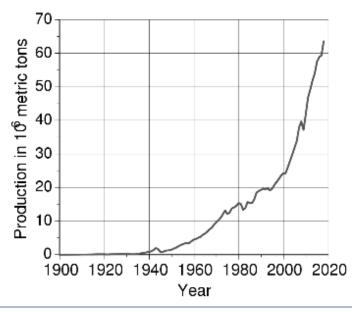


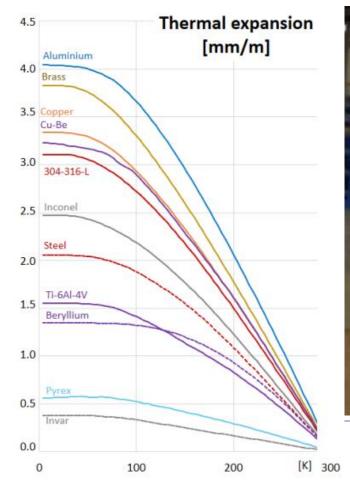
The legend sais that Tiberius beheaded a goldsmith who first crafted aluminium since it could devaluate the price of gold.

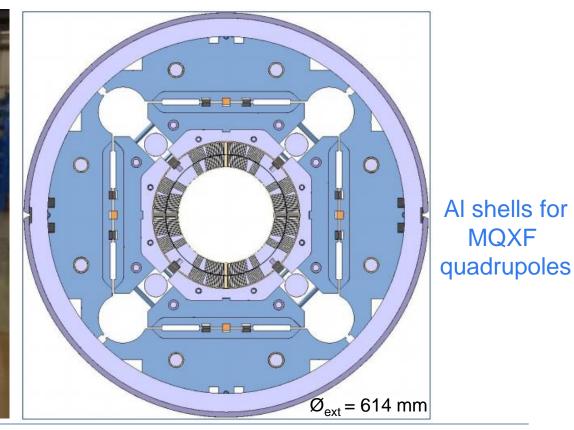
• Aluminium

 Two millennia after, the extraction of AI from bauxite was very scarce. AI was more precious than gold (as Tiberius feared).

Napoleon III had, for his most distinguished guests, Al cutlery. The rest had to settle for gold.




- Aluminium
 - Electrolysis (Hall Héroult process) of alumina (Bayer process).
 - Victim of its own success: it is produced in greater quantities than all other non-ferrous metals combined



Aluminium for particle accelerators

- Low modulus of elasticity
- High thermal contraction coefficient
- Paramagnetic

Source: DUTHIL, Patxi. Material properties at low temperature. arXiv preprint arXiv:1501.07100, 2015.

Aluminium for particle accelerators

- Very low thermal emissivity
- High thermal and electrical conductivity

MLI (AI coated Mylar) HL – LHC's cold box

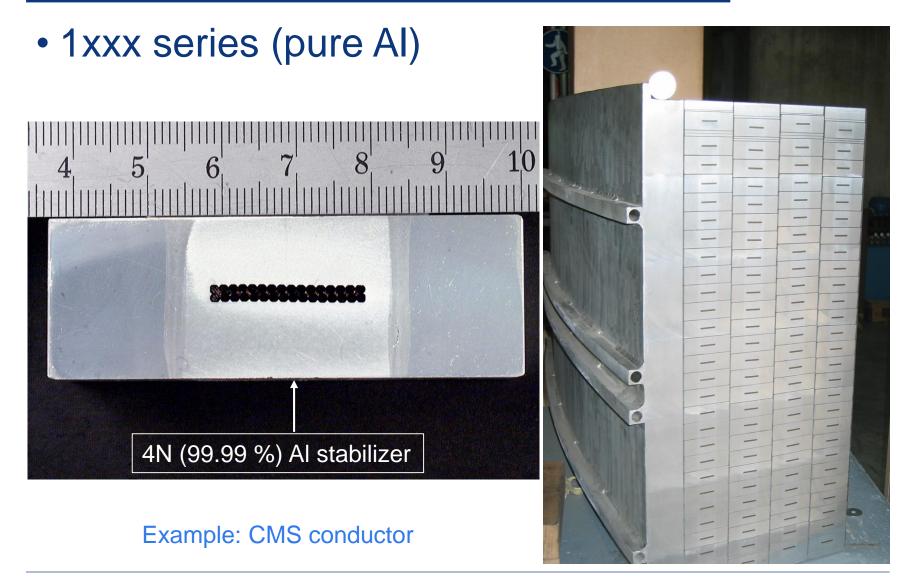
Al coil for CERN's first particle accelerator: The Synchrocyclotron

Aluminium for particle accelerators

- Feeble interaction with particle beams
 - Low density
 - Low atomic number

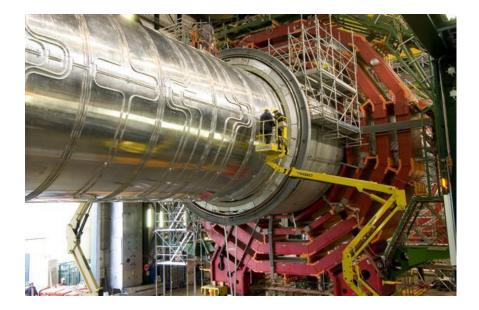
Developments of AI vacuum chambers and bellows

Wrought aluminum alloys


Designation AA	Major alloying elements	Alloy group	Heat treatable ?	Examples
1xxx	-	Pure Al	No	
2xxx	Cu	AI – Cu	Yes	2219
3xxx	Mn	Al – Mn	No	3003
4xxx	Si	AI – Si	No	Filler
5xxx	Mg	AI – Mg	No	5061
6xxx	Mg, Si	AI – Mg - Si	Yes	6082
7xxx	Zn, Mg	AI – Zn	Yes	7050
8xxx	any		(yes)	8090

Can be strengthened by a suitable thermal treatment (heat treatable)

Can only be strengthened by hot or cold working (non – heat treatable)


- 2xxx series (AI Cu)
 - Example: EN AW 2219 T6

Example: vacuum chamber bodies. (NEG coated).

- 3xxx series (Al Mn)
 - Example: EN AW 3003 H22

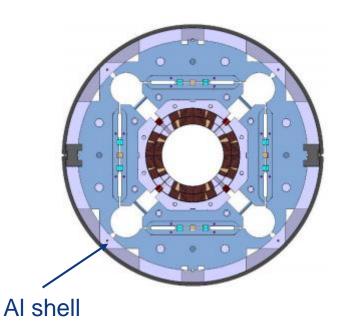
Example: CMS Solenoid thermal shield

- 4xxx series (AI Si)
 - Major alloying element of this group is silicon, added in sufficient quantities (up to 12%), cause substantial lowering of the melting point without producing brittleness.
 - AI Si alloys are used in welding wire and as brazing alloys.

• 5xxx series (AI – Mg)

• EN AW 5083 H321 & H116

Example: Mandrels for CMS coil


- 6xxx series (AI Mg Si)
 - Example: EN AW 6082 T6

Example: ICARUS neutrino detector

- 7xxx series (AI Zn Mg)
 - Example: EN AW 7075 T6

Example: AI shells MQXFBP1 magnet

15-01-2021

IAS

- 8xxx series
 - Reserved for miscellaneous compositions. Alloying elements include: iron, lithium, copper, zinc, magnesium, silicon, manganese, vanadium, zirconium, titanium, chromium & bismuth.
 - AI Li alloys, for weight reduction. AI Li alloys possess increased Modulus of Elasticity, high specific stiffness, increased fatigue strength and cryogenic strength.

Alphanumeric designations that contain information about the thermomechanical history of the material to achieve the desired properties.

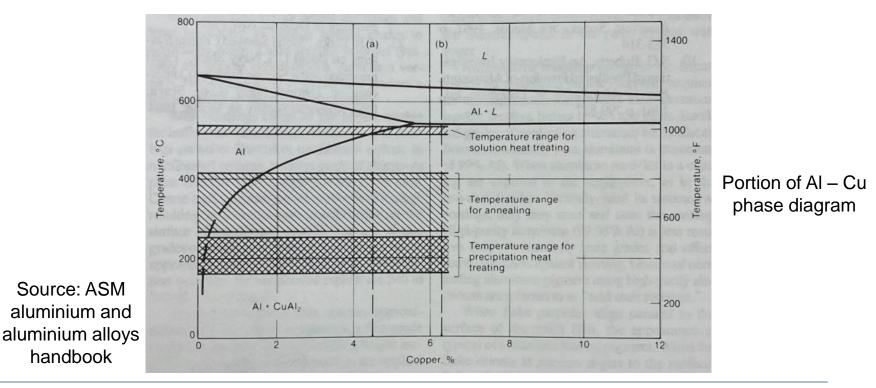
AA 7075	Min.	Max.	Approx
Plates, sheets; <mark>Annealed (O);</mark> 0.20 <= t <= 0.3 Nominal thickness			mm;
Yield stress, R _{p0,2} (MPa)	-	145	-
Tensile stress, R _m (MPa)	-	276	-
Elongation, A (%)	9	-	-
	L _o = 50.	8 mm or	4D

AA 7075	Min.	Max.	Approx
Plates; Solution heat treated and artificially aged (T651); 0.20 < t <= 0.28 mm; Nominal thickness			
Yield stress, R _{p0,2} (MPa)	434	-	-
Tensile stress, R _m (MPa)	510	-	-
Elongation, A (%)	5	-	-
	L _o = 50.8 mm		

materials "Men are like steel: if they loose their temper, they loose their worth"

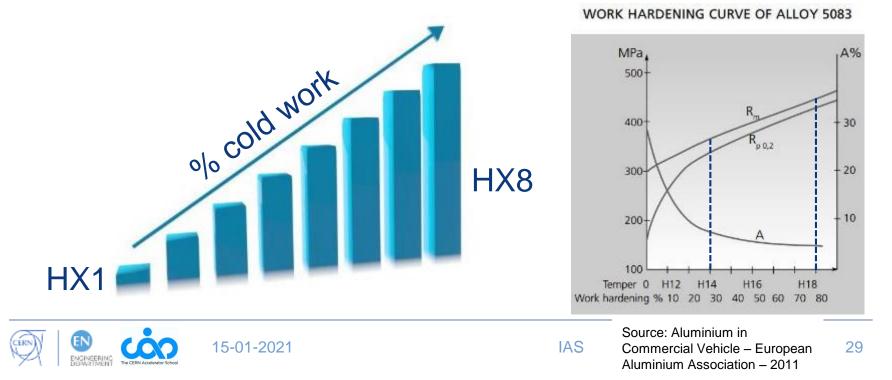
A capital letter indicating the major class of fabrication treatment(s) used + one (or more) numbers providing more specific information about how the processing was carried out.

BS EN 515:2017



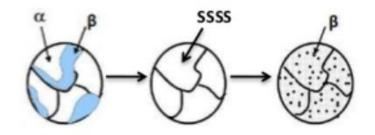
BSI Standards Publication

Aluminium and aluminium alloys — Wrought products — Temper designations


 O, annealed: given a high – temperature treatment, sufficient to remove the effects of prior working, usually resulting in complete recrystallization of the material. Lowest strength and maximum ductility and toughness.

- H, strain hardened: non-heat-treatable wrought alloys that have had their strength increased by strain hardening. H is always followed by two or more digits:
 - The first number after the H tells whether the strain-hardened alloy has been thermally treated
 - The second number indicates the approximate amount of cold work

- H, strain hardened: non-heat-treatable wrought alloys that have had their strength increased by strain hardening. H is always followed by two or more digits:
 - The first number after the H tells whether the strain-hardened alloy has been thermally treated
 - The second number indicates the approximate amount of cold work
 - Any subsequent numbers define special practices, variations of the normal indicated by the first two numbers.


Example: AA 5083 H116 (marine grade)

• **T**, thermally treated to produce stable tempers: heattreatable wrought alloys that have followed a solution heat treatment followed by a quench and either natural or artificial aging.

Heat treatment to increase the strength of AI alloys is a three step process:

- 1. Solution heat treatment: dissolution of soluble phases
- 2. Quenching: development of supersaturation
- 3. Age hardening: precipitation of finely dispersed precipitates

- T, thermally treated to produce stable tempers: heattreatable wrought alloys that have followed a solution heat treatment followed by a quench and either natural or artificial aging. T is always followed by one or more digits:
 - The first digit after the T can be any from 1 to 10. It is a combination of:
 - Cooled from elevated temperature or solution heat treatment
 - Cold worked or not cold worked
 - Naturally aging or artificial ageing

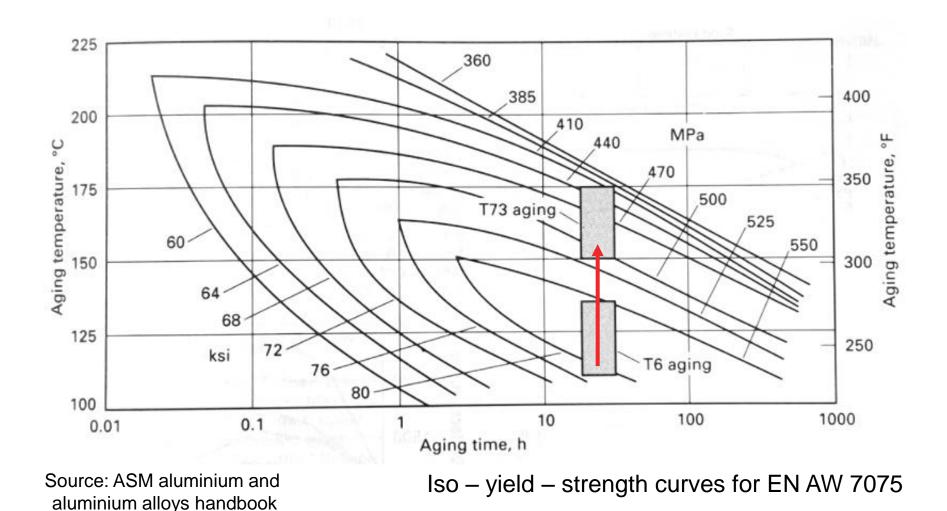
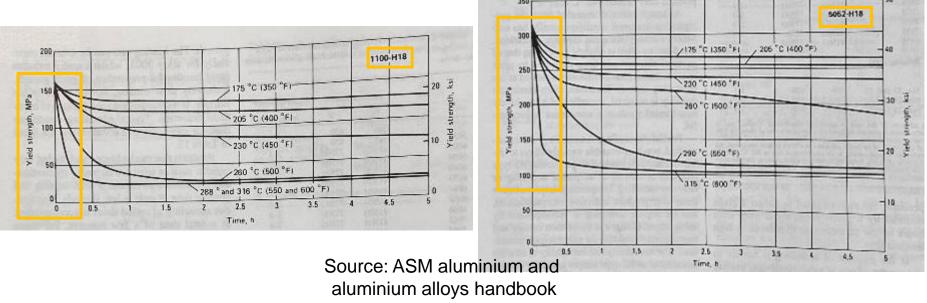

Ageing	Cold worked	Cooled from shaping process	Furnace solution heat-treated ^a	
Natural	No	T1	T4	
ivaturai	Yes	T2	Т3	
	No	Т5	T6, T7	
artificial	Yes - before ageing	T10	Т8	
	Yes - after ageing	-	Т9	
^a See footnote 4 to text in 8.1				

Table 2 — Summary of processing for achieving T tempers

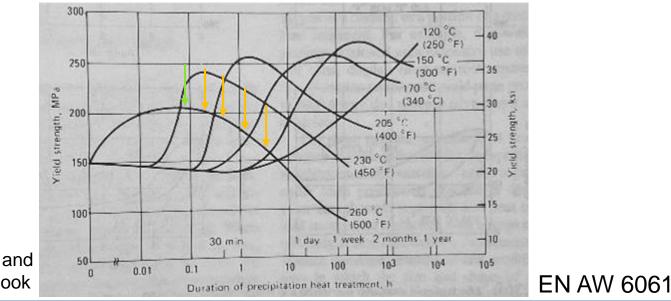
From EN 515: Al and Al alloys - Wrought products -Temper designations

EN ENCLOSE 15-01-2021

- T, thermally treated to produce stable tempers: heattreatable wrought alloys that have followed a solution heat treatment followed by a quench and either natural or artificial aging. T is always followed by one or more digits:
 - The first digit after the T can be any from 1 to 10. It is a combination of:
 - Cooled from elevated temperature or solution heat treatment
 - Cold worked or not cold worked
 - Naturally aging or artificial ageing
 - Additional numbers indicate a variation in treatment that significantly alters the product characteristics that are or would be obtained using the basic treatment. There is not a full list of all such possible variations.


BS EN 515:2017

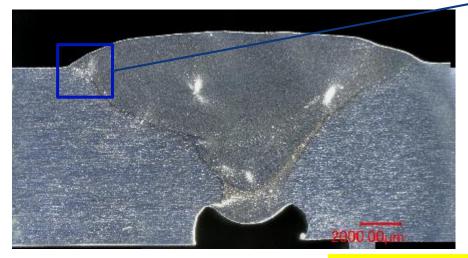
Aluminium and aluminium alloys — Wrought products — Temper designations


Wrought aluminum alloys: weldability

- Most non heat treatable alloys plus series 6xxx can be fusion welded, and precaution should be taken with heat treatable high strength alloys.
 - When non heat treatable alloys are welded, they loose the effect of an eventual work hardening → softening of HAZ.

Wrought aluminum alloys: weldability

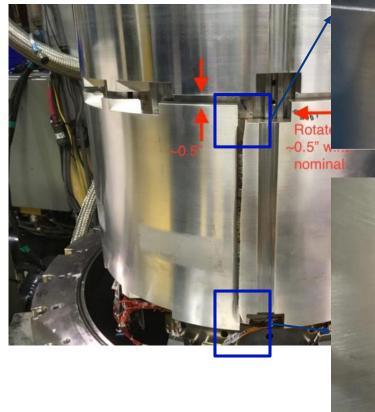
- Most non heat treatable alloys plus series 6xxx can be fusion welded, and precaution should be taken with heat treatable high strength alloys.
 - When welding heat treatable alloys → redistribution of hardening constituents → softening of HAZ. Attention to liquation cracking.


Source: ASM aluminium and aluminium alloys handbook

Wrought aluminum alloys: weldability

- Porosity:
 - Gas entrapped from poor shielding
 - Hydrogen from moisture
 - Excessive cooling rate (outgassing)
 - Endogenous (elements such as Na)

Welding qualification EN AW – 6082 T6 (ICARUS project). EDMS 1564550

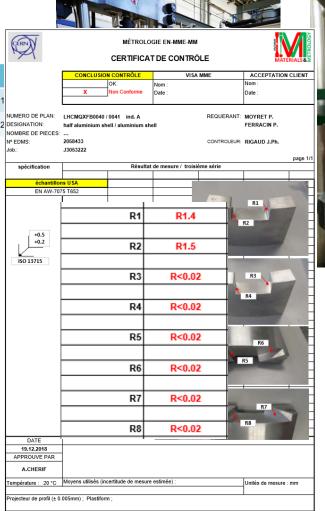

See also → CAS course on "Mechanical & Materials engineering", M. Redondas, Welding II

Wrought aluminum alloys: failure analysis

Catastrophic failure of MQXFAP2 Al shell. Failure analysis: EDMS 2088319

15-01-2021

Wrought aluminum alloys: failure analysis

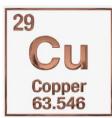

Mechanical testing at cryogenic temperature shows the material choice is correct

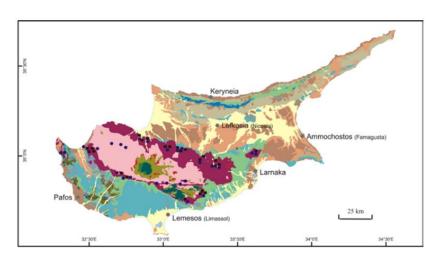
Material	Direction	E [GPa]	Rp _{0.2} [MPa]	R _m [MPa]	A [%]	Z [%]
AA 7075 T652	Circumferential	84.0 ± 1.4	634.1 ± 11.5	750.6 ± 9.8	4.1 ± 0.2	12.2 ± 1.1
AA 7075 T652	Axial	85.2 ± 1.3	539.6 ± 5.2	659.7 ± 5.8	4.5 ± 0.1	12.0 ± 0.2

Material	Direction	K _Q [MPa√m]
AA 7075 T652	R - C	15.8 – 16.5
AA 7075 T652	C - R	24.0 - 27.2
AA 7075 T6	R - C	13.6 – 16.3

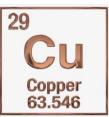
However, EN AW 7075 T651 is sensitive to the presence of sharp notches at 4 K.

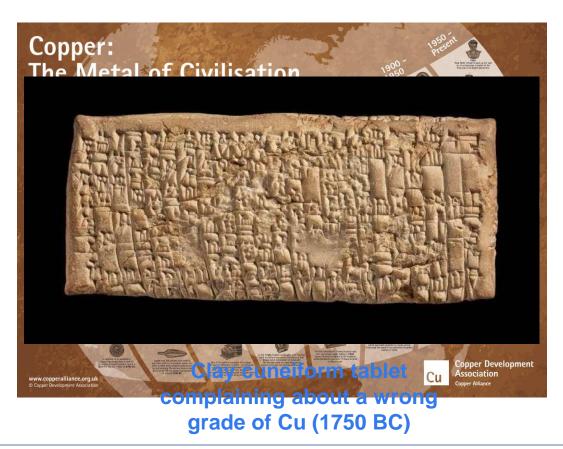
15-01-2021



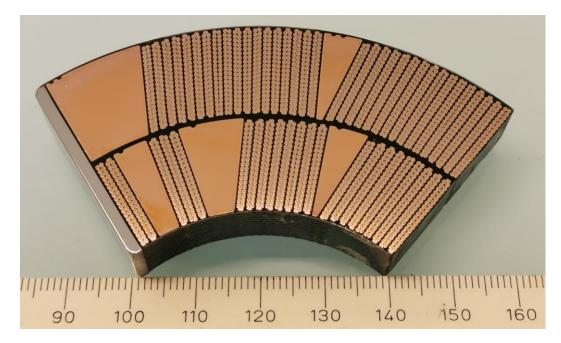

Aluminium alloy shell: failure analysis and material properties at cryogenic temperature. EDMS 2088319

Non – ferrous materials

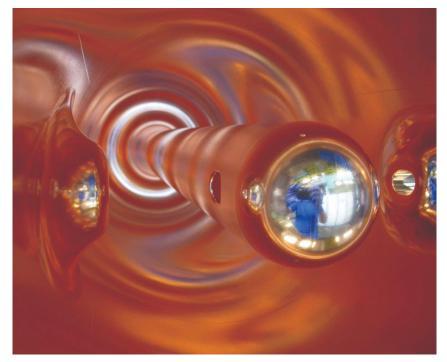

- Copper
 - Its name comes from 'cuprum', meaning "from the island of Cyprus".



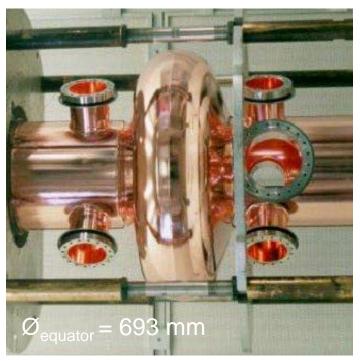
Non – ferrous materials



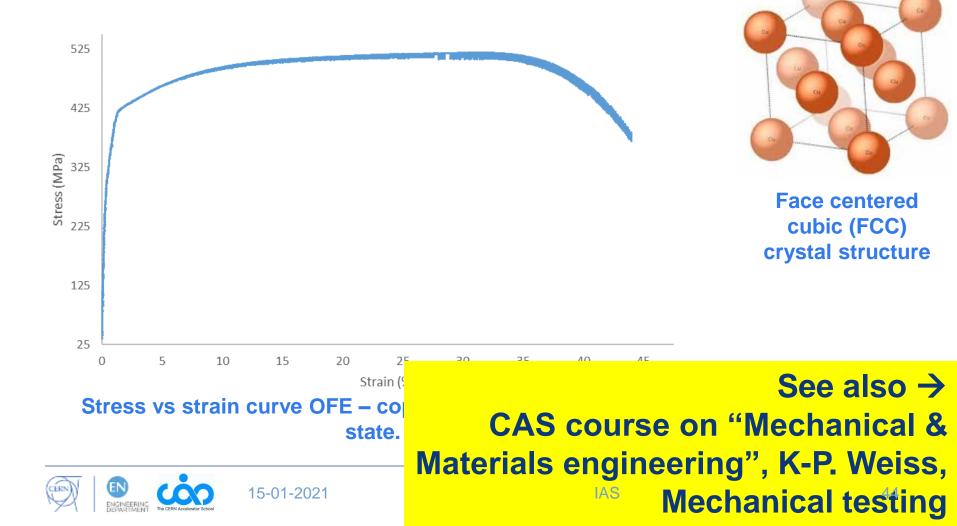
- Copper
 - One of the oldest materials known.

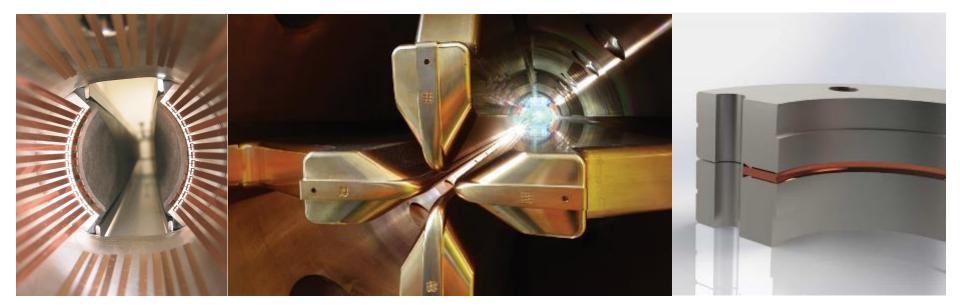

- Elastic modulus close to Nb₃Sn
- Diamagnetic

Courtesy: M. Crouvizier



Extremely high thermal and electrical conductivity


HIE ISOLDE quarter wave resonator substrate



LHC 400 MHz accelerating cavity

Ductile and tough down to 4 K

High availability, moderate price, formability, machinability.

Wrought copper alloys: temper states

Cold worked tempers

		Temper Codes	Temper Names
Annea	led tempers	H00	1/a Hard
		H01	1/4 Hard
Temper Codes	Temper Names	H01	1/2 Hard
	Temper Marines	H03	3/4 Hard
O10	Cast and Annealed (Homogenized)	H04	Hard
011	As Cast and Precipitation Heat Treated	1104	
020	Hot Forged and Annealed	H06	Extra Hard
O25	Hot Rolled and Annealed		
026	Hot Rolled and Temper Annealed	HOB	Spring
O30	Hot Extruded and Annealed		5
O31	Hot Extruded and Precipitation Heat Treated	H10	Extra Spring
032	Hot Extruded and Temper Annealed	10110	
040	Hot Pierced and Annealed	H12	Special Spring
050	Light Anneal	H13	Ultra Spring
O60	Soft Anneal	H14	Super Spring
O61	Annealed		
O65	Drawing Anneal	Temper Codes	Temper Names
O68	Deep Drawing Anneal		· · ·
070	Dead Soft Anneal	H50	Hot Extruded and Drawn
		H52	Hot Pierced and Drawn
		H55	Light Drawn, Light Cold-Worked
		H58	Drawn General Purpose
		H60	Cold Heading, Forming
		H63	Rivet
		H64	Screw
		H66	Bolt
		H70	Bending
		H80	Hard Drawn

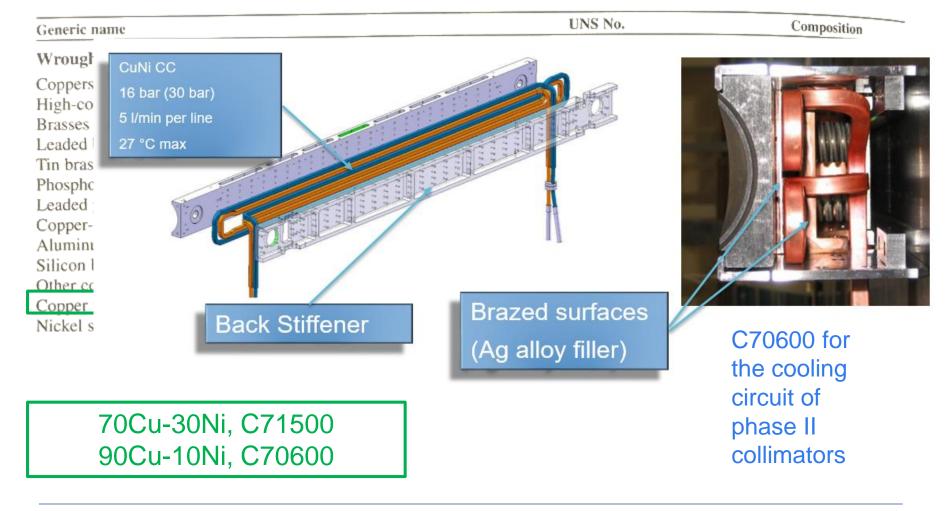
 1 2

Copper and copper alloys

Generic name	UNS No.	Composition
Wrought alloys		
Coppers(a)	C10100-C15815	>99% Cu
High-copper alloys(b)	C16200-C19900	>96% Cu
Brasses	C20100-C28000	Cu-Zn
Leaded brasses	C31200-C38500	Cu-Zn-Pb
Tin brasses	C40400-C48600	Cu-Zn-Sn-Pb
	C50100-C52480	Cu-Sn-P
"electrical coppers"	C53400-C54400	Cu-Sn-Pb-P
Cu OFE, C10100		
Cu OF, C10200		
Cu OFS, C10700		
99.8Cu-0.15Al ₂ O ₃ , C15715		
33.000-0.10		Statement and a statement of the local division of the local divis
CERN Phase II collimator.		
Glidcop© sectorized jaw		
Gilucope sectorized jaw		The Party of the P

EN

ENGINEERING



Copper and copper alloys

C

Generic name	UNS No.	Composition
Wrought alloys		
Coppers(a)	C10100-C15815	>99% Cu
High-copper alloys(b)	C16200-C19900	>96% Cu
Brasses	C20100-C28000	Cu-Zn
Leaded brasses	C31200 C38500	Cu-Zn-Pb
Lligh strongth sonper alleys		Cu-Zn-Sn-Pb Cu-Sn-P
High strength copper alloys		Cu-Sn-Pb-P
Cu-2%Be, C17200	loys	
Cu-0.3%Be-0.5%Co, C17410		
Cu 0.3/0DC 0.3/0CO, CT/4TO		
Cu-1%Cr-0.15%Zr,C18150		
		N. C
Turgeten blog C18150 f	or	J
CuCrZr block (40 cm) TIDVG		8
(40 cm)	201	
(350 cm) dump's c	ore	5 8
& cooling		
plates	· · · · ·	
plates		
(IN) IN (IN) 15-01-2021	IAS	48
ENGINEERING DEPARTMENT The CERN Accelerator School	IAO	48

Copper and copper alloys

OFE Copper

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

2.2. CHEMICAL COMPOSITION

The composition shall conform to the requirements of the UNS C10100 Grade 1 according to the standard ASTM B170.

Materials Technical Specification GS-IS & EN-MME

26.02.2015

0.0005% in mass max.

2.3. HYDROGEN EMBRITTLEMENT

02

According to ASTM B170 and F68, the material shall be free from hydrogen embrittlement.

Technical Specification

N° 2001 - Ed. 8 EDMS No: 790779

Oxygen-Free Electronic copper Bars/blanks/ingots

Cu-OFE

This document specifies the CERN technical requirements for Cu-OFE bars/blanks/ingots, equivalent to UNS C10100 Grade 1, according to

15-01-2021

ASTM B224 with a maximum oxygen content of 5 ppm.

Weldability / brazeability

2.6. MECHANICAL PROPERTIES

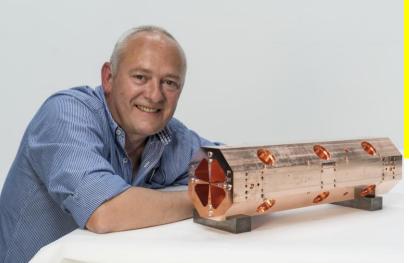
In accordance with the size, the products shall be given the necessary treatment to allow delivery as close as possible to the quarter-hard state, according to ASTM B152 and the required mechanical properties given in the following table.

Tensile testing shall be carried in accordance with ISO 6892-1. Tensile testing must be performed both longitudinal and transverse direction.

At room temperature:

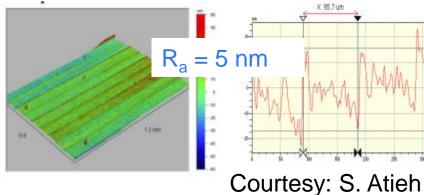
Tensile strength	Rm		240-280* N/mm ²
Yield stress	R _{p0.2%}		200-240* N/mm ²
Elongation at break	As	min.	25*%
Brinell hardness 20 kgf (2 mm ball)	HBS	min.	60*

*Any value out of these ranges shall be agreed between CERN and manufacturer prior to delivery.


Original : English

Ease of machining

OFE Copper



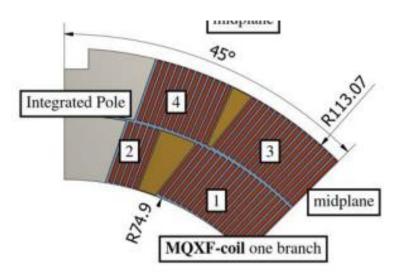
See also → Mini CAS course on "Mechanical & Materials engineering", S. Mathot, RFQs

S. Mathot with a compact RFQ

CLIC accelerating structure. Diamond turning / milling

See also → CAS course on "Mechanical & Materials engineering", M. Doerr, Machining Titanium

- The name comes from Titan, son of Gaea.
- High corrosion resistance, low density, high mechanical resistance.



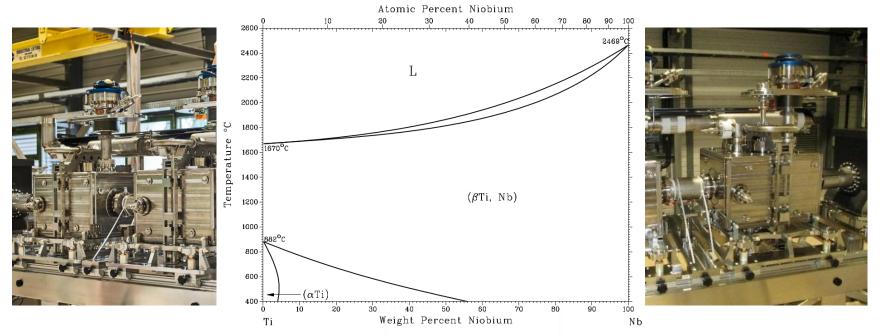
If price is not a problem, Ti overwhelms AI in many aspects

15-01-2021

Titanium in particle accelerators

- High specific strength.
- Paramagnetic
- Lower thermal expansion / contraction than stainless steel

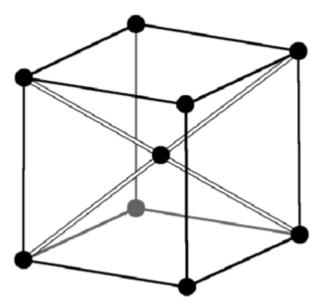
Cross section MQXF. Ti pole


Courtesy: C. Loffler

Titanium in particle accelerators

- Certain grades are ductile and moderately tough at cryogenic temperature.
- Thermal contraction close to Nb than stainless steel.
- Weldable with Nb (total solubility)

15-01-2021

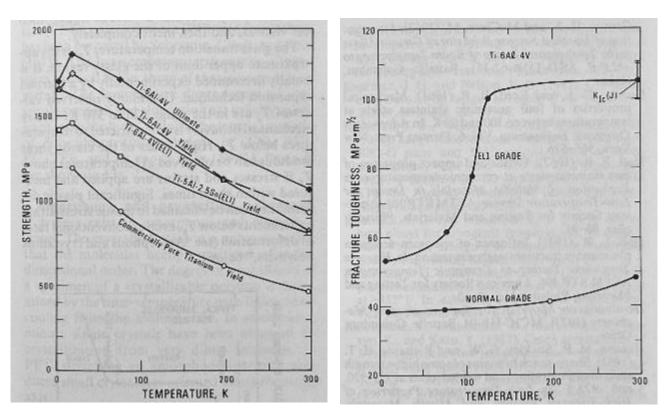


Titanium (II) He tanks of the crab cavities for HL - LHC

• Microstructures of Ti

α Ti – hexagonal closed packed (HCP)

 β Ti – body centred cubic (BCC)


We privilege compact structures $(\alpha - Ti)$ for cryogenic application

• Extra – low interstitials (ELI)

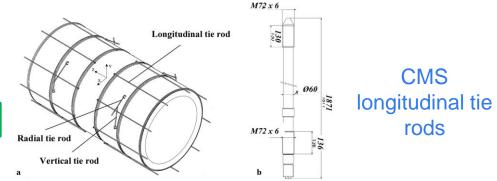
At any rate pure titanium was finally produced. But it was only by stretching the point considerably that this metal could be accepted as pure, for it still contained several tenths of a per cent of impurities. Only several tenths, but they were like a fly in the ointment. The impurities made titanium fragile and brittle and unsuitable for machining. It earned a bad fame for being a useless, good-for-nothing metal.

In 1925, the Dutch scientists van Arkel and de Boer decomposed titanium tetrachloride on a heated tungsten wire and obtained high-purity titanium. And then it became clear that Hunter's assertion concerning the brittleness of titanium could not stand up to criticism: the metal produced by van Arkel and de Boer was highly plastic, could be forged like iron and rolled into sheets, strip, wire and even the thinnest foil.

We privilege ELI grades for cryogenic application

	Tensile strength (min)	0.2% yield	strength (min)		Impurity	limits, wt	% (max)			Non	inal con	mposition, wt%		
Designation	MPa ksi	MPa	ksi	N	С	н	Fe	0	Al	Sn	Zr	Mo	Others	
nalloyed grades						-	-							
STM grade 1								He	e tan	ks	sur	rour	nding	
STM grade 2 Pure T	1 million			and the second second	T									
STM grade 3		1					1	Cr	ah c	avi	ties	: Ti	grade	
STM grade 4 STM grade 7	the second se		1				1						grade	
STM grade 11		14												
t and near-α alloys	- Training	100	-	-	The									
	100		and the second division of the	-	a hill		ALC: NOT THE OWNER OF							
'i-0.3Mo-0.8Ni 'i-5Al-2.5Sn	1000		Contractor of	1	1	mar 1	And Designed of the							
i-5Al-2.5Sn i-5Al-2.5Sn-ELI	- Sector 1	Server III	A DESCRIPTION OF	A F	1000	-	and a second							
i-8Al-1Mo-1V	3	The loss	- 10 m	200	1 1	100	ALL DE LE							
i-6Al-2Sn-4Zr-2Mo		25	No. of Lot of Lo	N	1 0									
i-6Al-2Nb-1Ta-0.8Mo	6 GM	HE CO		165	1 8	SE								
i-2.25Al-11Sn-5Zr-1Mo	Mar Bally	2415		and all	10	2.71 11								
i-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si	TA COMP	A COLORADOR		1. M.	11.77	100	1000							
-β alloys		- 15	3 PAL	17 -	1		100							
i-6Al-4V(a)	1000	- 13 -		antinere-	(TEA)	1000	100							
i-6Al-4V-ELI(a)	THE OWNER													
i-6Al-6V-2Sn(a)				· For	16	1000								
i-8Mn(a)	100	ar		10.5		403								
ï-7Al-4Mo(a) ï-6Al-2Sn-4Zr-6Mo(b)	A DOCUMENT	- ton	-		212									
i-5Al-2Sn-2Zr-4Mo-4Cr(b)(c)	S 8 5	a re-	A COLLAR	10.00	ALC: NO		5 3							
i-6Al-2Sn-2Zr-2Mo-2Cr(c)		- 21P		1	-	Dila								
'i-3Al-2.5V(d)		1215	No. Inserts	- 1918	414	*								
i-4Al-4Mo-2Sn-0.5Si	N 1.	ALL >		2.17		P	7 1							
alloys	10100	1		Jack Street			1							
i-10V-2Fe-3Al(a)(c)						10	10 m							
i-13V-11Cr-3Al(b)	1 1 1	THE ALL	- Contraction		11		and the							
i-8Mo-8V-2Fe-3Al(b)(c)	11 11	A 690.	1		Jail	-								
i-3Al-8V-6Cr-4Mo-4Zr(a)(c)	11 11	1 2 10	1	1	10		1							
"i-11.5Mo-6Zr-4.5Sn(a)	11 H 34	No. 1 A.	2 3	1	CAL	0.00	100							
'i-15V-3Cr-3Al-3Sn	HARE		in the	11	2413	Sec.	and the							
'i-15Mo-3Al-2.7Nb-0.2Si		1 Rough	10	2.	0	6	1							

(a) Mechanical properties given for the annealed condition; may be solution treated and aged to increase strength. (b) Mechanical properties given for the solution-treated-and-aged condition; alloy not normally applied in annealed condition. (c) Semicommercial alloy; mechanical properties and composition limits subject to negotiation with suppliers. (d) Primarily a tubing alloy; may be cold drawn to increase strength. (e) Combined $O_2 + 2N_2 = 0.27\%$. (f) Also solution treated and aged using an alternative aging temperature (480 °C, or 900 °F)

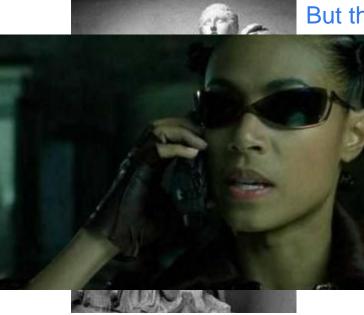

	Tensile stren	gth (min)	0.2% yield	0.2% yield strength (min)		Impurity limits, wt% (max)					Nominal composition, wt%			
Designation	MPa	ksi	MPa	ksi	N	С	н	Fe	0	AI	S	n Zr	Mo	Others
Unalloyed grades		(-			-	and the second						
ASTM grade 1	- 5					-	-		RF	F fee	edt	:hrou	Jah	flange
ASTM grade 2 ASTM grade 3	10		and the second se		1 A			1						
ASTM grade 4		_	1			-		1.1	OT	tne	Cra	ab c	avit	les.
ASTM grade 7 ASTM grade 11			100					-	Ti	grad		23		
	2	-	100	-	-	-				yra		23		
α and near-α alloys Ti-0.3Mo-0.8Ni		1000		-	6									
Ti-5Al-2.5Sn		1		Contraction of		-	1							
Ti-5Al-2.5Sn-ELI	1	-		A SEC	- All	1.								
Ti-8Al-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo				94.	N									
Ti-6Al-2Nb-1Ta-0.8Mo		10	H.C.		16	1 8	68 J							
Ti-2.25Al-11Sn-5Zr-1Mo	1	The state	142 -		The second	10	100							
Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si	3	1. 1.	-		-		1000							
α-B allovs		ALC: NO	N AGE	1124	-	the second	-							
Ti-6Al-4V(a) Ti-6Al-4V-ELI(a)	1	200		A TRACE	EPIT PROPERTY	-	1000	1000						
11-6AI-6V-2Sn(a)		A THE		9 - 6	6	16	-							
Grade 5	1	1-1			195		493	10			0		0	
	2	The second	1.12			-	-TELEP	8		1	~	7	1	-
& Grade 5 ELI	S	VE	ALL		1	-	Ph.	1 1	1	0/		10/		
(grade 23)	6	1 7	1 Parts		-	3			F	-1		1 (
	1	1		- COLORE	100		6	1		1		1 11		
β alloys		al -	1 100						1	1	-	10		17
Ti-10V-2Fe-3Al(a)(c) Ti-13V-11Cr-3Al(b)	A	121	191.00	100	0		Ser.	1	1			11	-	
Ti-8Mo-8V-2Fe-3Al(b)(c)	14	11	1 PA	1		Tall				13	C	19		
Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c)	1	11 1	1		1	10		2		-			-	
Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn		HI BY		2- 11	1	Gin	CU -	10		1	-	-		
		1115		a alla			A State				100			
Ti-15Mo-3Al-2.7Nb-0.2Si	12.4	EA TH					and the second							

(a) Mechanical properties given for the annealed condition; may be solution treated and aged to increase strength. (b) Mechanical properties given for the solution-treated-and-aged condition; alloy not normally applied in annealed condition. (c) Semicommercial alloy; mechanical properties and composition limits subject to negotiation with suppliers. (d) Primarily a tubing alloy; may be cold drawn to increase strength. (e) Combined O₂ + 2N₂ = 0.27%. (f) Also solution treated and aged using an alternative aging temperature (480 °C, or 900 °F)

	Tensile streng	th (min)	0.2% yield	ass the	
Designation	MPa	ksi	MPa	ksi	
Unalloyed grades					
ASTM grade 1					
ASTM grade 2 ASTM grade 3					
ASTM grade 4					
ASTM grade 7 ASTM grade 11					\downarrow
α and near-α alloys					X
Ti-5Al-2.5Sn					
Ti-5Al-2.5Sn-ELI					D . <i>V</i> .
TI-XAI-IM0-IV					Radial
Grade 6					a V
& Grade 6 ELI s					
ti-p anoys Ti-6 AL 4V(a)					
Ti-6Al-4V(a)					
	_			In the second	List:
Cooling Circuit		I Force		250	-
1 milli	rie l	Rods		T	A M ROOM AND
	1-11			and the second second	
				and the second	
				A REAL	24
	-1			AB	
	0.0				-
		/	A : =	for 10-	41.0
	OM		Axia	force	tie
			of	the A	TLA
Coil Modules			D	arrel to	orol
	Keystone Bor	x Module		magr	net
		80 (12 8 6) (17 8 F			

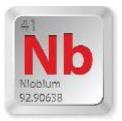
Source: S. Sgobba *et al.* (2003, July). Manufacturing, quality control and assessment of the cryogenic properties of a titanium alloy for application to he coil suspension system of the Compact Muon Solenoid (CMS). In *Proc. 10th World Conference on Titanium* (pp. 13-18).

Source: P. Jenni (CERN), ATLAS overview, status and plans. Workshop on cooperation in HEP between CERN and China. Beijing, 14 – 15 May 2005.

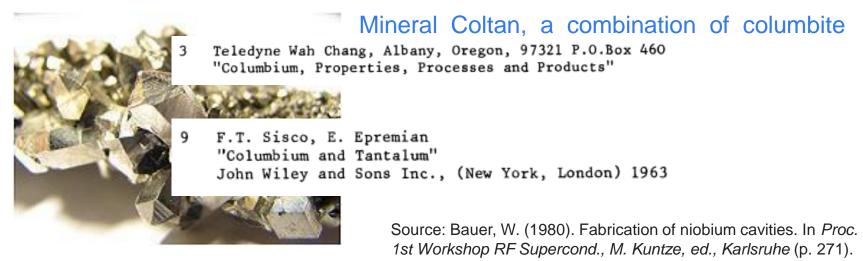


Niobium

- Element of the periodic system with the highest critical temperature.
- The name comes from Niobe, the daughter of Tantalus:



But the Greek queen


Not the one in the movie 'The Matrix'

Niobium



- Element of the periodic system with the highest critical temperature.
- The name comes from Niobe, the daughter of Tantalus:
 - Nb is found in combination with Ta (Coltan)
 - You can still find it in old texts by Cb (columbium)

Families of non – ferrous materials

Niobium

 90 % of its production is used to alloy stabilized steel grades or high temperature superalloys.

50 µm

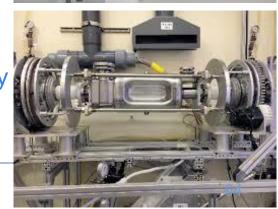
Inconel 718 for ITER magnet supports.

Niobium

- 90 % of its production is used to alloy stabilized steel grades or high temperature superalloys.
- Superconducting wires for high field magnets (NbTi, Nb₃Sn).

Niobium

- 90 % of its production is used to alloy stabilized steel grades or high temperature superalloys.
- Superconducting wires for high field magnets (NbTi, Nb₃Sn)
- Ultrahigh purity Nb



5 cell elliptical cavity

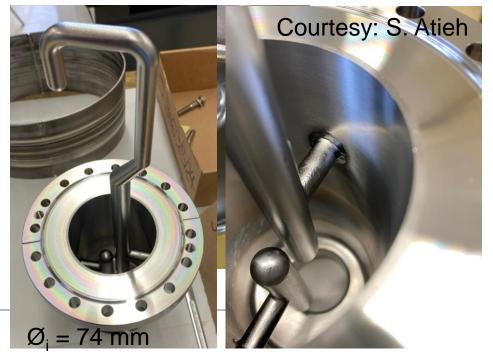
RFD crab cavity

crab

cavity

Niobium for SCRF cavities

- High critical temperature (9.2 K)
- High critical magnetic field
- High formability, 'easy' to machine and weldable.
- Available in practically any size


Spoke cavity

Source: Shepard, K. W et al, (1999). Prototype 350 MHz niobium spoke-loaded cavities.

High order mode (HOM) antenna

Niobium grades

• ASTM B392 & B393

Designation: B393 - 18

Standard Specification for Niobium and Niobium Alloy Strip, Sheet, and Plate¹

1. Scope

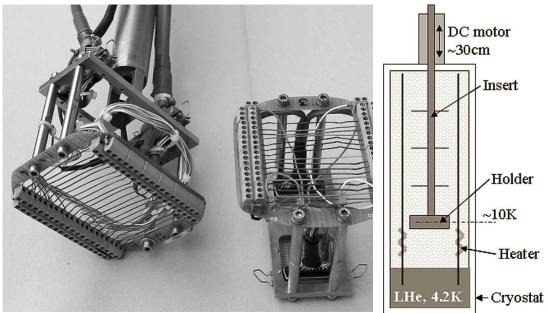
1.1 This specification covers five grades of wrought niobium and niobium alloy strip, sheet, and plate as follows:

1.1.1 R04200-Type 1-Reactor grade unalloyed niobium,

1.1.2 R04210-Type 2-Commercial grade unalloyed niobium,

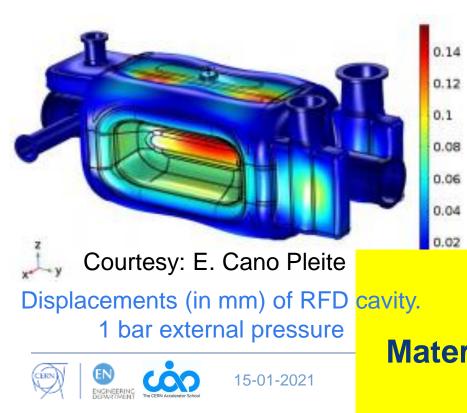
1.1.3 R04251-Type 3—Reactor grade niobium alloy containing 1 % zirconium,

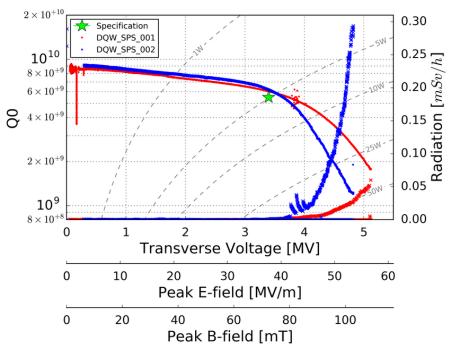
1.1.4 R04261-Type 4-Commercial grade niobium alloy containing 1 % zirconium, and.


1.1.5 R04220-Type 5-RRR grade pure niobium.

RRR = residual resistivity ratio An accurate measurement of the purity above 99.999%

15-01-2021


Standard Specification for Niobium and Niobium Alloy Bar, Rod, and Wire¹



Niobium grades & SCRF

- CERN technical specification
 - Equilibrium between:
 - RF performance
 - Mechanical robustness
 - Material soundness

RF performance DQW cavities

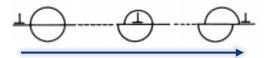
NDT of Nb technical specification

	Visual inspection	EN 13018	On final product after all metallurgical processing for every item, 100%
	Dye penetrant (optional)	Written procedure, based on EN 10228-2, following approval by CERN	
(Macro-/ micro-optical	Specimen preparation: ASTM E3 Macro-etching: ASTM E340 Micro-etching: ASTM E407	Upon demand by CERN; on witness sample of final product after all metallurgical processing for every item.
ri	Ultrasonic		On final product after all metallurgical processing for every item, 100%

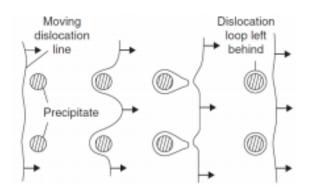
Conclusions

- The golden rule to be remembered:
 - "A material for an accelerator part is not a mere chemical composition or designation":
 - Specification. Fabrication route. Temper state
 - Controls
 - Price
 - Attention to less known properties (e.g. notch sensitivity)
- The very particular environment of particle accelerators, limits the choice.
- Time (and problems) are saved if material selection is integrated from the beginning of the conceptions.
 - Advanced non conventional materials require imply extensive prior R&D

Mechanical Materials Engineering for Particle Accelerators and Detectors


Thank you for your attention. Questions?

Additional slides



Precipitation strengthening

- Dislocations are the carriers of plastic deformation
- Precipitates hinder dislocation motion. There are 2 types: coherent and incoherent

A dislocation cuts through a coherent particle, i.e. it passes through the precipitate on the same slip plane as in the matrix

Dislocation bows out between incoherent precipitates

A loop is left around each particle

From R. E. Smallman and A. H. W. Ngan. Physical Metallurgy and Advanced Materials. Elsevier, 2007

Prices

Aluminium and alloys

- Al and Al alloys general purpose \rightarrow 5 EUR / Kg
- EN AW 2219 forged blanks → 80 EUR / Kg
- Special forgings, EN AW 6061 \rightarrow 15 EUR / Kg

Coppers

- OFE Cu \rightarrow 25 40 EUR / Kg (3D forged)
- OF Cu \rightarrow 10 EUR / Kg (basis)
- CuBe, high (low) Be \rightarrow 40 90 EUR / Kg (strips)
- Glidcop \rightarrow 55 EUR / Kg

Titanium

- Grade $2 \rightarrow 50 \text{ EUR} / \text{Kg}$ (plates)
- Ti6Al4V (ELI) \rightarrow 50 (140) EUR / Kg

Niobium

• Nb (RRR 300) → 600 EUR / Kg

