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Lecture 1 summary

In Lecture 1, we:

• discussed the effects of synchrotron radiation on the

(linear) motion of particles in storage rings;

• derived expressions for the damping times of the

longitudinal, vertical and horizontal emittances;

• discussed the effects of quantum excitation;

• derived expressions for the equilibrium horizontal and

longitudinal emittances in an electron storage ring in terms

of the lattice functions and beam energy.
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Lecture 2 objectives: emittance and lattice design

In this lecture, we shall:

• derive expressions for the natural (horizontal) emittance in
four types of lattice:

– FODO;

– double-bend achromat (DBA);

– multi-bend achromats (MBA);

– theoretical minimum emittance (TME).

• discuss some aspects of the vertical emittance, including:

– the fundamental lower limit;

– generation of vertical emittance from betatron coupling
and vertical dispersion;

– calculation of the emittance in the presence of machine
errors;

– low-emittance tuning.
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Calculating the natural emittance in a lattice

Our first goal is to calculate the natural emittance in a lattice

with magnets of given strengths, lengths and positions.

In Lecture 1, we showed that the natural emittance in a

storage ring is given by:

ε0 = Cqγ
2 I5
jxI2

, (1)

where Cq is the quantum radiation constant, γ is the relativistic

factor, jx is the horizontal damping partition number, and I2
and I5 are the second and fifth synchrotron radiation integrals.

Note that jx, I2 and I5 are all functions of the lattice, and are

independent of the beam energy.
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Calculating the natural emittance in a lattice

In most storage rings, if the bends have no quadrupole
component, the horizontal damping partition number jx ≈ 1.

In this case, to find the natural emittance we just need to
evaluate the two synchrotron radiation integrals:

I2 =
∮ 1

ρ2
ds, I5 =

∮ Hx
|ρ|3

ds. (2)

If we know the strength and length of all the dipoles in the
lattice, it is straightforward to calculate I2.

For example, if all the bends are identical, then in a complete
ring (total bending angle = 2π):

I2 =
∮ 1

ρ2
ds =

∮
B

(Bρ)

ds

ρ
= 2π

B

(Bρ)
≈ 2π

cB

E/e
, (3)

where E is the beam energy.

I5 is more complicated: it depends on the lattice functions...
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Case 1: natural emittance in a FODO lattice
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Case 1: natural emittance in a FODO lattice

Let us consider the case of a FODO lattice. To simplify the

system, we use the following approximations:

• the quadrupoles are represented as thin lenses;

• the space between the quadrupoles is completely filled by

the dipoles.

With these approximations, the lattice functions

(Courant–Snyder parameters and dispersion) are completely

determined by the following parameters:

• the focal length f of a quadrupole;

• the bending radius ρ of a dipole;

• the length L of a dipole.
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Case 1: natural emittance in a FODO lattice

From the evolution of the lattice functions through a given

FODO cell, we can find an (approximate) expression for I5/I2:

the details are given in Appendix A.

For small θ, and if ρ� 2f (which is often the case) we find:

I5
I2
≈
(

1−
L2

16f2

)
8f3

ρ3
. (4)

This result can be further simplified if 4f � L (which is not

always the case):

I5
I2
≈

8f3

ρ3
. (5)
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Case 1: natural emittance in a FODO lattice

Making the approximation jx ≈ 1 (if there is no quadrupole

component in the dipole), and writing ρ = L/θ, we have:

ε0 ≈ Cqγ2
(

2f

L

)3
θ3. (6)

Notice how the emittance scales with the beam and lattice

parameters. The emittance:

• is proportional to the square of the energy;

• is proportional to the cube of the bending angle –

increasing the number of cells in a storage ring reduces the

dipole bending angle, and reduces the emittance;

• is proportional to the cube of the quadrupole focal length:

stronger quads means lower emittance.

• is inversely proportional to the cube of the cell length.
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Case 1: natural emittance in a FODO lattice

The phase advance in a FODO cell is given by:

cos(µx) = 1−
L2

2f2
. (7)

This means that a stable lattice must have:

f

L
≥

1

2
. (8)

In the limiting case, µx = 180◦, and f has the minimum value

f = L/2. Using the approximation (6):

ε0 ≈ Cqγ2
(

2f

L

)3
θ3,

the minimum emittance in a FODO lattice is expected to be:

ε0 ≈ Cqγ2θ3. (9)

However, as we increase the focusing strength, the

approximations we used to obtain the simple expression for ε0

start to break down...
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Case 1: natural emittance in a FODO lattice

Plotting the exact formula for I5/I2 as a function of the phase
advance, we find that there is a minimum in the natural
emittance, at µx ≈ 137◦.

Black line:

exact formula.

Red line:

approximation,

I5
I2
≈
(

1− L2

16f2

)
8f3

ρ3 .

It turns out that the minimum value of the natural emittance in
a FODO lattice is given by:

ε0,FODO,min ≈ 1.2Cqγ
2θ3. (10)
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Case 1: natural emittance in a FODO lattice

Using Eq. (6), we estimate that a storage ring constructed

from 16 FODO cells (32 dipoles) with 90◦ phase advance per

cell (f = L/
√

2), and storing beam at 2 GeV would have a

natural emittance of around 125 nm.

Many modern applications (including synchrotron light sources)

demand emittances smaller by one or two orders of magnitude.

How can we design a lattice with a smaller natural emittance?

Looking at the function Hx (“curly-H”) in a FODO cell

provides a clue...
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Case 1: natural emittance in a FODO lattice
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Case 1: natural emittance in a FODO lattice

The function Hx remains at a relatively constant value

throughout the lattice:

Low Emittance Machines 13 Part 2: Emittance and Lattice Design



Case 2: natural emittance in a DBA lattice

As a first attempt at reducing the natural emittance, we can
try reducing the function Hx in the dipoles, by designing a
lattice that has zero dispersion at either end of a dipole pair.

The result is a double bend achromat (DBA) cell:
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Case 2: natural emittance in a DBA lattice

To calculate the natural emittance in a DBA, let us begin by

considering the conditions for zero dispersion at the start and

the exit of the cell.

Assume that the dispersion is zero at the start of the cell.

Place a quadrupole midway between the dipoles, to reverse the

gradient of the dispersion.

By symmetry, the dispersion at the exit of the cell will be zero.
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Case 2: natural emittance in a DBA lattice

In the thin lens approximation, the focal length of the
quadrupole can be found from:(

1 0
−1/f 1

)(
ηx
ηpx

)
=

(
ηx

ηpx − ηx
f

)
=

(
ηx
−ηpx

)
, (11)

where ηx and ηpx are the dispersion and gradient of the
dispersion at the quadrupole.

Hence the central quadrupole must have focal length:

f =
ηx

2ηpx
. (12)

The dispersion is determined by the dipole bending angle θ, the
bending radius ρ, and the drift length L:

ηx = ρ(1− cos(θ)) + L sin(θ), ηpx = sin(θ). (13)

Is this style of lattice likely to have a lower natural emittance
than a FODO lattice? We can get some idea by looking at the
function Hx...
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Case 2: natural emittance in a DBA lattice

The function Hx is much smaller in the DBA lattice (right)

than in the FODO lattice (left).

Note that we use the same dipoles (bending angle and length)

in both cases.
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Case 2: natural emittance in a DBA lattice

Let us calculate the minimum natural emittance of a DBA

lattice, for given bending radius ρ and bending angle θ in the

dipoles.

To do this, we need to calculate the minimum value of:

I5 =
∫ Hx
ρ3

ds (14)

in one dipole, subject to the constraints:

ηx,0 = ηpx,0 = 0, (15)

where ηx,0 and ηpx,0 are the dispersion and gradient of the

dispersion at the entrance of a dipole.
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Case 2: natural emittance in a DBA lattice

We know how the dispersion and the Courant–Snyder

parameters evolve through the dipole, so we can calculate I5
for one dipole, for given initial values of the Courant–Snyder

parameters αx,0 and βx,0.

Then, we simply have to minimise the value of I5 with respect

to αx,0 and βx,0.

Again, the algebra is rather formidable, and the full expression

for I5 is not especially enlightening.

Therefore, we just quote the significant results...
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Case 2: natural emittance in a DBA lattice

We find that, for given ρ and θ and with the constraints:

ηx,0 = ηpx,0 = 0, (16)

the minimum value of I5 is given by:

I5,min =
1

4
√

15

θ4

ρ
+O(θ6). (17)

This minimum occurs for values of the Courant–Snyder

parameters at the entrance to the dipole given by:

βx,0 =

√
12

5
L+O(θ3), αx,0 =

√
15 +O(θ2), (18)

where L = ρθ is the length of a dipole.
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Case 2: natural emittance in a DBA lattice

Since we know that I2 in a single dipole is given by:

I2 =
∫ 1

ρ2
ds =

θ

ρ
, (19)

we can now write down an expression for the minimum

emittance in a DBA lattice:

ε0,DBA,min = Cqγ
2I5,min

jxI2
≈

1

4
√

15
Cqγ

2θ3. (20)

The approximation is valid for small θ. Note that we have again

assumed that there is no quadrupole component in the dipole,

so jx ≈ 1.

Compare the above expression with that for the minimum

emittance in a FODO lattice (10):

ε0,FODO,min ≈ 1.2Cqγ
2θ3. (21)
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Case 2: natural emittance in a DBA lattice

We see that in both cases (FODO and DBA), the emittance

scales with the square of the beam energy, and with the cube

of the bending angle.

However, the emittance in a DBA lattice is smaller than that in

a FODO lattice (for given energy and dipole bending angle) by

a factor of roughly 4
√

15 ≈ 15.5.

This is a significant improvement... but can we do even better?
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Case 3: natural emittance in a TME lattice

For a DBA lattice, we imposed the constraints:

ηx,0 = ηpx,0 = 0. (22)

To get a lower emittance, we can consider relaxing these

constraints.

To derive the conditions for a “theoretical minimum

emittance” (TME) lattice, we write down an expression for:

I5 =
∫ Hx

ρ
ds, (23)

with arbitrary dispersion ηx,0, ηpx,0 and Courant–Snyder

parameters αx,0 and βx,0 in a dipole with given bending radius ρ

and angle θ.

Then, we minimise I5 with respect to ηx,0, ηpx,0, αx,0 and βx,0...
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Case 3: natural emittance in a TME lattice

The result is:

ε0,TME,min ≈
1

12
√

15
Cqγ

2θ3. (24)

The minimum emittance is obtained with dispersion at the

entrance to the dipole given by:

ηx,0 =
1

6
Lθ +O(θ3), ηpx,0 = −

θ

2
+O(θ3), (25)

and with Courant–Snyder functions at the entrance:

βx,0 =
8√
15
L+O(θ2), αx,0 =

√
15 +O(θ2). (26)

The dispersion and beta function reach minimum values in the

centre of the dipole:

ηx,min = ρ

(
1−

2

θ
sin

(
θ

2

))
=
Lθ

24
+O(θ3), βx,min =

L

2
√

15
+O(θ2).

(27)
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Case 3: natural emittance in a TME lattice

By symmetry, we can consider a single TME cell to contain a

single dipole, rather than a pair of dipoles as was necessary for

the FODO and DBA cells.

Outside the dipole, the

dispersion is relatively

large.

This is not ideal for a

light source, since

insertion devices at

locations with large

dispersion will blow up

the emittance.

Note that the cell shown here does not achieve the exact conditions for a
TME lattice: a more complicated design would be needed for this.
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Summary: natural emittance in FODO, DBA and TME lattices

Lattice style Minimum emittance Conditions/comments

90◦ FODO ε0 ≈ 2
√

2Cqγ2θ3 f
L = 1√

2

137◦ FODO ε0 ≈ 1.2Cqγ2θ3 minimum emittance FODO

DBA ε0 ≈ 1
4
√

15
Cqγ2θ3

ηx,0 = ηpx,0 = 0

βx,0 ≈
√

12/5L αx,0 ≈
√

15

TME ε0 ≈ 1
12
√

15
Cqγ2θ3 ηx,min ≈ Lθ

24 βx,min ≈ L
2
√

15
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Comments on lattice design for low emittance

The results we have derived have been for “ideal” lattices that

perfectly achieve the stated conditions in each case.

Practical lattice designs rarely achieve the ideal conditions. In

particular, the beta function in an achromat is usually not

optimal for low emittance; and it is difficult to tune the

dispersion for the ideal TME conditions.

The main reasons for this are:

• Beam dynamics phenomena (nonlinearities, collective

effects...) generally impose a number of strong constraints

on the design.

• Optimizing the lattice functions while meeting all the

various constraints can require complex configurations of

quadrupoles.
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Comments on lattice design for low emittance

A particularly challenging constraint on design of a

low-emittance lattice is the dynamic aperture.

Storage rings require a large dynamic aperture in order to

achieve good injection efficiency and good beam lifetime.

However, low emittance lattices generally need low dispersion

and beta functions, and hence require strong quadrupoles. As a

result, the chromaticity can be large, and must be corrected by

strong sextupoles.

Strong sextupoles lead to strongly nonlinear motion, and limit

the dynamic aperture (the trajectories of particles at large

betatron amplitudes or large energy deviations become

unstable).
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Further options and issues

There are many other options besides FODO, DBA and TME

for the style of the lattice.

Here, we will discuss (briefly):

• the use of the DBA lattice in third-generation synchrotron

light sources;

• “detuning” a DBA lattice to reduce the emittance;

• the use of multi-bend achromats.
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Further options and issues

Lattices composed of DBA cells have been a popular choice for

third generation synchrotron light sources, e.g. the ESRF.

The DBA structure provides a lower natural emittance than a

FODO lattice with the same number of dipoles.

The long, dispersion-free straight sections provide ideal

locations for insertion devices such as undulators and wigglers.
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“Detuning” a DBA

If an insertion device (undulator or wiggler) is placed in a
storage ring at a location with large dispersion, then the dipole
fields in the device can make a significant contribution to the
quantum excitation (I5).

The insertion device can then increase the natural emittance of
the storage ring.

A DBA lattice provides dispersion-free straights in which
undulators and wigglers can be placed without blowing up the
natural emittance.

However, there is some tolerance. It is often possible to
“detune” a lattice from the strict DBA conditions, allowing
some reduction in natural emittance at the cost of some
dispersion in the straights.

The insertion devices will then contribute to the quantum
excitation; but depending on the lattice and the insertion
devices, there can still be a net benefit.
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“Detuning” a DBA

Some light sources that were originally designed with
zero-dispersion straights take advantage of tuning flexibility to
operate with non-zero dispersion in the straights.

This provides a lower natural emittance, and better output for
users. For example, the ESRF:
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Multiple-bend achromats

In principle, it is possible to combine the DBA and TME lattices

by having an arc cell consisting of more than two dipoles.

The dispersion is zero at the entrance and exit of each cell,

thus satisfying the “achromat” condition.

In the dipoles within the body of the cell, the Courant–Snyder

parameters and dispersion satisfy the TME conditions.

This kind of lattice is known as a “multi-bend achromat”

(MBA).
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Multiple-bend achromats

Suppose that the dipoles all have the same bending radius

(i.e. the same field strength), but can have different lengths.

In this case, we find (see Appendix B) that the minimum

natural emittance in an M-bend achromat is given by:

ε0 ≈ Cqγ2 1

12
√

15

(
M + 1

M − 1

)
θ3, 2 < M <∞, (28)

where θ is the average bending angle per dipole.

The minimum emittance is achieved when the central dipoles

are longer than the outer dipoles by a factor 3√3.
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Example of a triple-bend achromat: the Swiss Light Source

The Swiss Light Source storage ring consists of 12 triple-bend

achromat (TBA) cells.

The circumference is 288 m, and the beam energy is 2.4 GeV.

In the “zero-dispersion” mode, the natural emittance is

4.8 nm-rad.
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Example of a triple-bend achromat: the Swiss Light Source

Detuning the achromat to allow dispersion in the straights

reduces the natural emittance by about 20% (to 3.9 nm-rad).

Low Emittance Machines 36 Part 2: Emittance and Lattice Design



A 7-bend achromat: MAX IV

Note: vertical focusing is provided by a gradient in the bending magnets.

S.C. Leeman et al, “Beam dynamics and expected performance of Sweden’s
new storage-ring light source: MAX IV,” PRST-AB 12, 120701 (2009).
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A 7-bend achromat: MAX IV

Beam energy 3 GeV

Circumference 528 m

Number of cells 20

Horizontal emittance (no IDs) 0.326 nm

Horizontal emittance (with IDs) 0.263 nm
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Variational (longitudinal gradient) bends

B. Riemann and A. Streun, PRAB 22,

021601 (2019).

Allowing the magnetic field

in a dipole to vary along the

length of the magnet

provides another degree of

freedom in reducing the

emittance.

We expect an optimised

design to have the strongest

field at the centre of the

dipole, where the dispersion

can be minimised.
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Vertical emittance

Recall that the natural (horizontal) emittance in a storage ring

is given by:

ε0 = Cqγ
2 I5
jxI2

. (29)

If the vertical motion is independent of the horizontal motion

(i.e. if there is no betatron coupling) then we can apply the

same analysis to the vertical motion as we did to the horizontal.

Then, if we build a ring that is completely flat (i.e. no vertical

bending), then there is no vertical dispersion:

ηy = ηpy = 0 ∴ Hy = 0 ∴ I5y = 0. (30)

This implies that the vertical emittance will damp to zero.
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Fundamental lower limit on the vertical emittance

However, in deriving equation (29) for the natural emittance,

we assumed that all photons were emitted directly along the

instantaneous direction of motion of the electron.

In fact, emitted photons have a

distribution with angular width

1/γ about the direction of

motion of the electron.

This leads to some vertical “recoil” that excites vertical

betatron motion, resulting in a non-zero vertical emittance.
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Fundamental lower limit on the vertical emittance

Detailed analysis∗ leads to the following formula for the

fundamental lower limit on the vertical emittance:

εy,min =
13

55

Cq

jyI2

∮
βy

|ρ|3
ds. (31)

Making some approximations, this can be written:

εy,min ≈
Cq〈βy〉
4jyI2

∮ 1

|ρ|3
ds =

〈βy〉
4

jz

jy

σ2
δ

γ2
. (32)

Using some typical values (〈βy〉 = 20 m, jz = 2, jy = 1,

σδ = 10−3, γ = 6000), we find:

εy,min ≈ 0.3 pm. (33)

The lowest vertical emittance achieved so far in a storage ring

is around a picometer, several times larger than the

fundamental lower limit.

∗T. Raubenheimer, SLAC Report 387 (1992)
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Practical limits on the vertical emittance

In practice, vertical emittance in a (nominally flat) storage ring

is dominated by two effects:

• residual vertical dispersion, which couples longitudinal and

vertical motion;

• betatron coupling, which couples horizontal and vertical

motion.

The dominant causes of residual vertical dispersion and

betatron coupling are magnet alignment errors, in particular:

• tilts of the dipoles around the beam axis;

• vertical alignment errors on the quadrupoles;

• tilts of the quadrupoles around the beam axis;

• vertical alignment errors of the sextupoles.
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Betatron coupling

Betatron coupling describes the dependence of the vertical

motion of a particle on its horizontal motion (and vice-versa).

In a storage ring, betatron coupling

often comes from skew quadrupole

fields generated by rotation (tilt)

errors on quadrupoles and vertical

alignment errors on sextupoles.

A rigorous treatment of coupling can be complex; but it is

possible to use simplified models to derive approximate

expressions for the equilibrium emittances in the presence of

coupling.
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Betatron coupling: example

One approach to analysis of betatron coupling is described in Appendix C.

As an illustration, we can plot the vertical emittance in a model of the ILC
damping rings, as a function of the “tune split” ∆ν, with a single skew
quadrupole (located at a point of zero dispersion...)

The tunes are controlled by adjusting the regular (normal) quadrupoles:

Note: the “simulation” results are based on emittance calculation using
Chao’s method, which we shall discuss later.
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Vertical dispersion and vertical emittance

Vertical emittance can also be generated by vertical dispersion,

in the same way that horizontal emittance can be generated by

horizontal dispersion.

If we know the vertical dispersion all around the ring, then to

calculate the vertical emittance we can simply modify the

formula for the natural emittance (see Lecture 1).

Further details are given in Appendix D, where we show that, if

the vertical dispersion comes from random errors in the lattice,

the contribution to the vertical emittance is given by:

εy ≈ 2
jz

jy

〈
η2
y

βy

〉
σ2
δ . (34)

Since the energy spread, beta function and damping partition

numbers are usually well known, this gives a convenient

expression for the relationship between the rms vertical

dispersion and the vertical emittance.
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Accurate methods of emittance computation

The formulae we have derived so far are useful for making
rough estimates of the sensitivity to particular types of error.

For detailed studies, including modelling and simulations, we
need more accurate formulae for computing the vertical
emittance in a storage ring with a given set of alignment errors.

Methods for computing the equilibrium emittances in complex
lattices (including lattices with errors), include:

• radiation integrals generalised to the normal modes;

• Chao’s method: A. Chao, “Evaluation of beam distribution
parameters in an electron storage ring,” J. Appl. Phys. 50,
595-598 (1979);

• the ‘envelope’ method (Appendix E): K. Ohmi, K. Hirata,
K. Oide, “From the beam-envelope matrix to the
synchrotron radiation integrals,” Phys. Rev. E 49, 751-765
(1994).
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Ultra-low emittance tuning

In practice, tuning a storage ring to achieve a vertical emittance

of no more than a few picometres is a considerable challenge.

This cannot be done just by survey alignment of the magnets:

beam-based methods are also required. However, precise

alignment of the magnets is always the first step.

A variety of beam-based methods for tuning storage rings have

been developed over the years.

A typical procedure might look as follows...
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Ultra-low emittance tuning

Step 1: Align the magnets by a survey of the ring.

Typically, quadrupoles need to be aligned to better than a few

tens of microns, and sextupoles to better than a couple of

hundred microns.
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Ultra-low emittance tuning

Step 2: Determine the positions of the BPMs relative to the

quadrupoles.

This is known as “beam-based alignment” (BBA): the beam is

steered to a position in each quadrupole such that changing

the quadrupole strength has no effect on the orbit.
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Ultra-low emittance tuning

Step 3: Correct the orbit (using steering magnets) so that it is

as close as possible to the centres of the quadrupoles.

Step 4: Correct the vertical dispersion (using steering magnets

and/or skew quadrupoles, and measuring at the BPMs) as

close to zero as possible.

Step 5: Correct the coupling, by adjusting skew quadrupoles so

that an orbit “kick” in one plane (from any orbit corrector) has

no effect on the orbit in the other plane.

Usually, these last three steps need to be iterated several (or

even many) times.
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Ultra-low emittance tuning: ORM analysis

Results from the tuning procedure described above can be
limited by errors on the BPMs, which can affect dispersion and
coupling measurements.

A useful technique for overcoming such limitations is to apply
Orbit Response Matrix (ORM) analysis. This can be used to
determine a wide range of magnet and diagnostics parameters,
including coupling errors and BPM tilts.

ORM analysis in
KEK ATF.

Left: measured
orbit response
matrix.

Right: residuals
between measured
ORM and machine
model.
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Summary (1)

The natural emittance in a storage ring is determined by the

balance between the radiation damping (given by I2) and the

quantum excitation (given by I5).

The quantum excitation depends on the lattice functions.

Different “styles” of lattice can be used, depending on the

emittance specification for the storage ring.

In general, for small bending angle θ the natural emittance can

be written as:

ε0 ≈ FCqγ2θ3, (35)

where θ is the bending angle of a single dipole, and the

numerical factor F is determined by the lattice style...
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Summary (2)

ε0 ≈ FCqγ2θ3

Lattice style F

90◦ FODO 2
√

2

137◦ FODO 1.2

Double-bend achromat (DBA) 1
4
√

15

Multi-bend achromat 1
12
√

15

(
M+1
M−1

)
TME 1

12
√

15
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Summary (3)

Achromats have been popular choices for storage ring lattices

in third-generation synchrotron light sources for two reasons:

• they provide lower natural emittance than FODO lattices;

• they provide zero-dispersion locations appropriate for

insertion devices (wigglers and undulators).

Light sources have been built using double-bend achromats

(e.g. ESRF, APS, SPring-8, DIAMOND, SOLEIL. . . ) and

triple-bend achromats (e.g. ALS, SLS).

Increasing the number of bends in an achromat cell

(“multiple-bend achromats”) and “detuning” an achromat (to

allow some dispersion in the straights) can help to achieve a

lower emittance.
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Summary (4)

The opening angle of the synchrotron radiation places a lower

limit (typically, a fraction of a picometre) on the vertical

emittance.

In practice, the vertical emittance is dominated by alignment

and tuning errors (betatron coupling and vertical dispersion).

Natural emittances of a few nanometres are typical in storage

rings for third generation light sources.

Storage rings for light sources often operate with vertical

emittances of order 1% (or less) of the horizontal (natural)

emittance: this requires careful tuning and correction of

alignment errors.
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Appendices

Low Emittance Machines 57 Part 2: Emittance and Lattice Design



Appendix A: Evaluating I5 in a FODO lattice

In this Appendix, we shall derive an expression for the fifth synchrotron
radiation integral, I5, in a FODO cell, in terms of the dipole length L and
bending radius ρ, and the quadrupole focal length f .

It is assumed that the dipoles completely fill the space between the (thin)
quadrupoles.

In terms of f , ρ and L, the horizontal beta function at the
horizontally-focusing quadrupole is given by:

βx =
4fρ sin(θ)(2f cos(θ) + ρ sin(θ))√
16f4 − [ρ2 − (4f2 + ρ2) cos 2θ]2

, (36)

where θ = L/ρ is the bending angle of a single dipole.

The dispersion at a horizontally-focusing quadrupole is given by:

ηx =
2fρ(2f + ρ tan θ

2
)

4f2 + ρ2
. (37)

By symmetry, at the centre of a quadrupole, αx = ηpx = 0.
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Appendix A: Evaluating I5 in a FODO lattice

We can evolve the lattice functions through a lattice using the transfer
matrices, M .

For the Courant–Snyder parameters:

A(s1) = MA(s0)MT, (38)

where M = M(s1; s0) is the transfer matrix from s0 to s1, and:

A =

(
βx −αx
−αx γx

)
. (39)

The dispersion can be evolved (over a distance ∆s, with constant bending
radius ρ) using:(

ηx
ηpx

)
s1

= M

(
ηx
ηpx

)
s0

+

 ρ
(

1− cos
(

∆s
ρ

))
sin
(

∆s
ρ

)  . (40)

For a thin quadrupole, the transfer matrix is: M =

(
1 0
−1/f 1

)
.

For a dipole, the transfer matrix is: M =

 cos
(
s
ρ

)
ρ sin

(
s
ρ

)
−1
ρ

sin
(
s
ρ

)
cos

(
s
ρ

) .
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Appendix A: Evaluating I5 in a FODO lattice

We now have all the information we need to find an expression for I5 in the
FODO cell.

However, the algebra is rather formidable. The result is most easily
expressed as a power series in the dipole bending angle, θ:

I5

I2
=

(
4 +

ρ2

f2

)−3

2
[
8−

ρ2

2f2
θ2 +O(θ4)

]
. (41)

For small θ, the expression for I5/I2 can be written:

I5

I2
≈
(

1−
ρ2

16f2
θ2

)(
1 +

ρ2

4f2

)−3

2

=

(
1−

L2

16f2

)(
1 +

ρ2

4f2

)−3

2

. (42)

This can be further simplified if ρ� 2f (often the case):

I5

I2
≈
(

1−
L2

16f2

)
8f3

ρ3
, (43)

and still further simplified if 4f � L (less often the case):

I5

I2
≈

8f3

ρ3
. (44)
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Appendix B: Multiple-bend achromats

In this appendix, we shall derive a formula for the natural emittance in a
multi-bend achromat (MBA) lattice.

For simplicity, we consider the case where the dipoles all have the same
bending radius (i.e. they all have the same field strength), but they vary in
length.

Assuming that each arc cell has a fixed number, M , of dipoles, and
θ = 2π/MNcells, the bending angles satisfy:

2α+ (M − 2)β = M. (45)

Since the synchrotron radiation integrals are additive, for an M-bend
achromat, we can write:

I5,cell ≈
2

4
√

15

(αθ)4

ρ
+

(M − 2)

12
√

15

(βθ)4

ρ
=

6α4 + (M − 2)β4

12
√

15

θ4

ρ
,

(46)

I2,cell ≈ 2
αθ

ρ
+ (M − 2)

βθ

ρ
= [2α+ (M − 2)β]

θ

ρ
. (47)
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Appendix B: Multiple-bend achromats

Hence, in an M-bend achromat:

I5,cell

I2,cell
≈

1

12
√

15

[
6α4 + (M − 2)β4

2α+ (M − 2)β

]
θ3. (48)

Minimising the ratio I5/I2 with respect to α gives:

α

β
=

1
3
√

3
,

6α4 + (M − 2)β4

2α+ (M − 2)β
≈
M + 1

M − 1
. (49)

The central bending magnets should be longer than the outer bending
magnets by a factor 3

√
3.

Then, the minimum natural emittance in an M-bend achromat is given by:

ε0 ≈ Cqγ2 1

12
√

15

(
M + 1

M − 1

)
θ3, 2 < M <∞. (50)

Note that θ is the average bending angle per dipole.
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Appendix C: Equations of motion in a coupled storage ring

Our goal is to find the equations of motion for a particle in a coupled
storage ring, and by solving these equations, to show how the horizontal
and vertical emittances depend on the natural emittance, the betatron
tunes, and the strengths of the skew quadrupole fields distributed around
the lattice.

We will use Hamiltonian mechanics. In this formalism, the equations of
motion for the action-angle variables (with path length s as the independent
variable) are derived from the Hamiltonian:

H = H(φx, Jx, φy, Jy; s), (51)

using Hamilton’s equations:

dJx

ds
= −

∂H

∂φx
,

dJy

ds
= −

∂H

∂φy
, (52)

dφx

ds
=
∂H

∂Jx
,

dφy

ds
=
∂H

∂Jy
. (53)

For a particle moving along a linear, uncoupled beamline, the Hamiltonian is:

H =
Jx

βx
+
Jy

βy
. (54)
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Appendix C: Equations of motion in a coupled storage ring

The first step is to derive an appropriate form for the Hamiltonian in a
storage ring with skew quadrupole perturbations.

In Cartesian variables, the equations of motion
in a skew quadrupole can be written:

dpx

ds
= ksy,

dpy

ds
= ksx, (55)

dx

ds
= px,

dy

ds
= py, (56)

where:

ks =
1

Bρ

∂Bx

∂x
. (57)

These equations can be derived from the Hamiltonian:

H =
1

2
p2
x +

1

2
p2
y − ksxy. (58)
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Appendix C: Equations of motion in a coupled storage ring

We are interested in the case where there are skew quadrupoles distributed
around a storage ring.

The “focusing” effect of a skew quadrupole is represented by a term in the
Hamiltonian:

ksxy = 2ks
√
βxβy

√
JxJy cos(φx) cos(φy). (59)

This implies that the Hamiltonian for a beam line with distributed skew
quadrupoles can be written:

H =
Jx

βx
+
Jy

βy
− 2ks(s)

√
βxβy

√
JxJy cos(φx) cos(φy). (60)

The beta functions and the skew quadrupole strength are functions of the
position s. This makes it difficult to solve the equations of motion exactly.

Therefore, we simplify the problem by “averaging” the Hamiltonian:

H = ωxJx + ωyJy − 2κ̄
√
JxJy cos(φx) cos(φy). (61)

Here, ωx, ωy and κ̄ are constants.
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Appendix C: Equations of motion in a coupled storage ring

ωx and ωy are the betatron frequencies, given by:

ωx,y =
1

C

∫ C

0

ds

βx,y
. (62)

For reasons that will become clear shortly, we re-write the coupling term, to
put the Hamiltonian in the form:

H = ωxJx + ωyJy − κ̄−
√
JxJy cos(φx − φy)− κ̄+

√
JxJy cos(φx + φy). (63)

The constants κ̄± represent the skew quadrupole strength averaged around
the ring. However, we need to take into account that the kick from a skew
quadrupole depends on the betatron phase. Thus, we write:

κ̄±e
iχ =

1

C

∫ C

0
ei(µx±µy)ks

√
βxβy ds, (64)

where µx and µy are the betatron phase advances from the start of the ring.
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Appendix C: Equations of motion in a coupled storage ring

Now suppose that κ̄− � κ̄+. (This can occur, for example, if ωx ≈ ωy, in
which case all the skew quadrupole perturbations will add together in
phase.) Then, we can simplify things further by dropping the term in κ̄+

from the Hamiltonian:

H = ωxJx + ωyJy − κ̄−
√
JxJy cos(φx − φy). (65)

We can now write down the equations of motion:

dJx

ds
= −

∂H

∂φx
= κ̄−

√
JxJy sin(φx − φy), (66)

dJy

ds
= −

∂H

∂φy
= −κ̄−

√
JxJy sin(φx − φy), (67)

dφx

ds
=

∂H

∂Jx
= ωx +

κ̄−

2

√
Jx

Jy
cos(φx − φy), (68)

dφy

ds
=

∂H

∂Jy
= ωy +

κ̄−

2

√
Jy

Jx
cos(φx − φy). (69)
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Appendix C: Equations of motion in a coupled storage ring

Even after all the simplifications we have made, the equations of motion are
still rather difficult to solve. Fortunately, however, we do not require the
general solution. In fact, we are only interested in the properties of some
special cases.

First of all, we note that the sum of the actions is constant:

dJx

ds
+
dJy

ds
= 0 ∴ Jx + Jy = constant. (70)

This is true in all cases.

Going further, we notice that if φx = φy, then the rate of change of each
action falls to zero, i.e.:

if φx = φy then
dJx

ds
=
dJy

ds
= 0. (71)

This implies that if we can find a solution to the equations of motion with
φx = φy for all s, then the actions will remain constant.
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Appendix C: Equations of motion in a coupled storage ring

From the equations of motion, we find that if:

φx = φy and
dφx

ds
=
dφy

ds
, (72)

then:

Jy

Jx
=

√
1 + κ̄2

−/∆ω2 − 1√
1 + κ̄2

−/∆ω2 + 1
, (73)

where ∆ω = ωx − ωy.

If we further use Jx + Jy = J0, where J0 is a constant, then we have the
fixed point solution:

Jx =
1

2

1 +
1√

1 + κ̄2
−/∆ω2

 J0, (74)

Jy =
1

2

1−
1√

1 + κ̄2
−/∆ω2

 J0. (75)
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Appendix C: Equations of motion in a coupled storage ring

Note the behaviour of the fixed-point actions as we vary the “coupling
strength” κ̄− and the betatron tunes (betatron frequencies).

The fixed-point actions are well-separated for κ̄− �∆ω, but approach each
other for κ̄− �∆ω.

The condition at which the tunes are equal (or differ by an exact integer) is
known as the difference coupling resonance.
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Appendix C: Equations of motion in a coupled storage ring

Recall that the emittance may be defined as the betatron action averaged
over all particles in the beam:

εx = 〈Jx〉, and εy = 〈Jy〉. (76)

Now, synchrotron radiation will damp the beam towards an equilibrium
distribution. In this equilibrium, we expect the betatron actions of the
particles to change only slowly, i.e. on the timescale of the radiation
damping, whis is much longer than the timescale of the betatron motion.

In that case, the actions of most particles must be in the correct ratio for a
fixed-point solution to the equations of motion. Then, if we assume that
εx + εy = ε0, where ε0 is the natural emittance of the storage ring, we must
have for the equilibrium emittances:

εx =
1

2

1 +
1√

1 + κ̄2
−/∆ω2

 ε0, (77)

εy =
1

2

1−
1√

1 + κ̄2
−/∆ω2

 ε0. (78)

These equations give the horizontal and vertical emittances in terms of the
natural emittance ε0, the betatron tunes (represented by ∆ω) and the skew
quadrupole strengths (characterised by κ̄−).
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Appendix C: Equations of motion in a coupled storage ring

To estimate the effect of a skew quadrupole perturbation on the betatron
tunes, we use the Hamiltonian (65). If we consider a particle close to the
fixed point solution, we can assume that φx = φy, so that the Hamiltonian
becomes:

H = ωxJx + ωyJy − κ̄−
√
JxJy. (79)

The normal modes describe motion that is periodic with a single
well-defined frequency. In the absence of coupling, the transverse normal
modes correspond to motion in just the horizontal or vertical plane. When
coupling is present, the normal modes involve combination of horizontal and
vertical motion.

Let us write the Hamiltonian (79) in the form:

H =
( √

Jx
√
Jy
)
A

( √
Jx√
Jy

)
, where A =

(
ωx −1

2
κ̄−

−1
2
κ̄− ωy

)
. (80)

The normal modes can be constructed from the eigenvectors of the matrix
A, and the frequency of each mode is given by the corresponding eigenvalue.

From the eigenvalues of A, we find that the normal mode frequencies are:

ω± =
1

2

(
ωx + ωy ±

√
κ̄2
− + ∆ω2

)
. (81)
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Appendix C: Equations of motion in a coupled storage ring

If transverse beam oscillations are driven by a kicker (or similar component),
the beam will resonate at the normal mode frequencies ω±.

Hence, measurement of the betatron tunes (by resonant excitation of
transverse beam oscillations) will give values:

ν± =
1

2

(
νx + νy ±

√
κ̄2
− + ∆ν2

)
, (82)

where νx and νy are the betatron tunes in the absence of errors.

Thus, measurement of the tunes provides a way to characterise the coupling
strength in a real lattice: the coupling strength κ̄− is the minimum tune
separation observed if the tunes are scanned across a coupling resonance.
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Appendix D: Vertical emittance from vertical dispersion

Vertical emittance can be generated by vertical dispersion, in the same way
that horizontal emittance can be generated by horizontal dispersion.

Vertical dispersion can come from vertical steering (for example, from
vertical alignment errors on the quadrupoles), or from coupling of the
horizontal dispersion into the vertical plane (for example, by quadrupole tilt
errors, or vertical alignment errors on the sextupoles).

If we know the vertical dispersion all around the ring, then to calculate the
vertical emittance we can simply modify the formula for the natural
emittance (see Lecture 1):

εy = Cqγ
2 I5y

jyI2
, (83)

where jy is the vertical damping partition number (usually, jy = 1), and the
synchrotron radiation integrals are given by:

I2 =

∮
1

ρ2
ds, (84)

and:

I5y =

∮
Hy

|ρ|3
ds, where Hy = γyη

2
y + 2αyηyηpy + βyη

2
py. (85)
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Appendix D: Vertical emittance from vertical dispersion

If the vertical dispersion is generated randomly (for example, by alignment
errors on the quadrupole and sextupole magnets), then we can assume that
it will not be correlated with the curvature 1/ρ of the reference trajectory†.

Then, we can write:

I5y ≈ 〈Hy〉
∮

1

|ρ|3
ds = 〈Hy〉I3. (86)

Hence, we can write for the vertical emittance:

εy ≈ Cqγ2〈Hy〉
I3

jyI2
. (87)

It is convenient to use:

σ2
δ = Cqγ

2 I3

jzI2
, (88)

which gives:

εy ≈
jz

jy
〈Hy〉σ2

δ . (89)

†This is not the case for the horizontal dispersion!
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Appendix D: Vertical emittance from vertical dispersion

Now, note the similarity between the action:

2Jy = γyy
2 + 2αyypy + βyp

2
y , (90)

and the function Hx:

Hy = γyη
2
y + 2αyηyηpy + βyη

2
py. (91)

This implies that we can write:

ηy =
√
βyHy cosφηy, ∴

〈
η2
y

βy

〉
=

1

2
〈Hy〉. (92)

Combining equations (89) and (92) gives a useful (approximate)
relationship, between the vertical dispersion and the vertical emittance (34):

εy ≈ 2
jz

jy

〈
η2
y

βy

〉
σ2
δ .

Since the energy spread, beta function and damping partition numbers are
usually fixed by the lattice design, equation (34) gives a convenient formula
for the rms vertical dispersion that can be tolerated, to achieve a vertical
emittance below a given upper limit.
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Appendix E: The envelope method for computing emittances

It is often useful to be able to make an accurate calculation of the
equilibrium beam emittances in a storage ring including the effects of
magnet errors (for example, to estimate the size of errors that can be
tolerated, to achieve specified emittance goals).

One way of computing the emittances, the “envelope method”, is based on
finding the equilibrium distribution described by the covariance matrix (the
matrix of second order moments of the phase space variables):

Σ =


〈x2〉 〈xpx〉 〈xy〉 〈xpy〉 〈xz〉 〈xδ〉
〈pxx〉 〈p2

x〉 〈pxy〉 〈pxpy〉 〈pxz〉 〈pxδ〉
〈yx〉 〈ypx〉 〈y2〉 〈ypy〉 〈yz〉 〈yδ〉
〈pyx〉 〈pypx〉 〈pyy〉 〈p2

y〉 〈pyz〉 〈pyδ〉
〈zx〉 〈zpx〉 〈zy〉 〈zpy〉 〈z2〉 〈zδ〉
〈δx〉 〈δpx〉 〈δy〉 〈δpy〉 〈δz〉 〈δ2〉

 . (93)

This can be conveniently written as:

Σij = 〈xixj〉, (94)

where Σij is the (i, j) component of the Sigma matrix, and the set xi (for
i = 1 . . .6) are the phase space variables. The brackets 〈·〉 indicate an
average over all particles in the bunch.

In the absence of coupling, the covariance matrix will be block diagonal. We
are interested in the more general case, where coupling is present.
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Appendix E: The envelope method for computing emittances

The emittances and the lattice functions can be calculated from the
covariance matrix, and vice-versa.

Consider the (simpler) case of motion in one degree of freedom. The
covariance matrix in this case is:

Σ =

(
〈x2〉 〈xpx〉
〈pxx〉 〈p2

x〉

)
=

(
βx −αx
−αx γx

)
εx. (95)

Given a covariance matrix, we can compute the emittance as follows. First,
define the matrix S:

S =

(
0 1
−1 0

)
. (96)

Then, the eigenvalues of ΣS are ±iεx. (The proof of this is left as an
exercise.)
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Appendix E: The envelope method for computing emittances

Now, we can show that (under certain assumptions) the emittance is
conserved as a bunch is transported along a beam line.

The linear transformation in phase space coordinates of a particle in the
bunch between two points in the beam line can be represented by a matrix
M : (

x
px

)
7→M

(
x
px

)
, (97)

where the symbol 7→ means “is mapped to”.

If (for the moment) we neglect radiation and certain other effects, and
consider only the Lorentz force on particles from the external
electromagnetic fields, then the transport is symplectic.

Physically, this means that the phase-space volume of the bunch is
conserved as the bunch moves along the beam line.

Mathematically, it means that M is a symplectic matrix, i.e. M satisfies:

MTSM = S. (98)
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Appendix E: The envelope method for computing emittances

Now consider how the covariance matrix transforms. Since it is written as
the product of the phase-space coordinates averaged over the bunch, we
have: (

x
px

)
7→M

(
x
px

)
, ∴ Σ 7→MΣMT. (99)

Since S is a constant matrix, it immediately follows that:

ΣS 7→MΣMTS. (100)

Then, using the fact that M is symplectic, we have:

ΣS 7→MΣSM−1. (101)

This is a similarity transformation of ΣS: the eigenvalues of any matrix are
conserved under a similarity transformation. Therefore, since the
eigenvalues of ΣS give the emittance of the bunch, it follows that the
emittances are conserved under linear, symplectic transport.
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Appendix E: The envelope method for computing emittances

The above discussion immediately generalises to three degrees of freedom.

We define the matrix S in three degrees of freedom by:

Σ =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (102)

The six eigenvalues of ΣS are then:

± iεx, ±iεy, ±iεz. (103)

These quantities are all conserved under linear, symplectic transport.

Even if, as is generally the case, the covariance matrix is not block-diagonal
(i.e. if there is coupling present), then we can still find three invariant
emittances using this method, without any modification.
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If M is a matrix that represents the linear single-turn transformation at
some point in a storage ring, then an invariant or “matched” distribution is
one that satisfies:

Σ 7→MΣMT = Σ. (104)

(In general, all the particles in the bunch change position in phase space
after one turn around the ring: but for a matched distribution, the second
order moments remain the same.)

This is not sufficient to determine the beam emittances – though this
condition will determine the lattice functions (which can be found from the
eigenvectors of ΣS).

In other words, the matched distribution condition determines the shape of
the bunch, but not the size of the bunch. This makes sense: after all, in a
proton storage ring, we can have a matched bunch of any emittance.

However, in an electron storage ring, we know that radiation effects will
damp the emittances to some equilibrium values.

We shall now show how to apply the concept of a matched distribution,
when radiation effects are included, to find the equilibrium emittances in an
electron storage ring.
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In an electron storage ring, we must make two modifications to the
single-turn transformation to account for radiation effects:

1. The matrix M will no longer be symplectic: this accounts for radiation
damping.

2. As well as first-order terms in the transformation (represented by the
matrix M), there will be zeroth-order terms: these will turn out to
correspond to the quantum excitation.

The condition for a matched distribution should then be written:

Σ = MΣMT +D, (105)

where M and D are constant, non-symplectic matrices that represent the
first-order and zeroth-order terms in the single-turn transformation,
respectively.

This equation is sufficient to determine the covariance matrix uniquely - in
other words, using just this equation (with known M and D) we can find the
bunch emittances and the matched lattice functions.
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The envelope method for finding the equilibrium emittances in a storage
ring consists of three steps:

1. Find the first-order terms M and zeroth-order terms D in the
single-turn transformation:

Σ1 = MΣ0M
T +D, (106)

where Σ0 is the initial covariance matrix, and Σ1 is the covariance
matrix after one turn.

2. Use the condition:

Σ1 = Σ0, (107)

to determine the matched covariance matrix (i.e. the covariance matrix
that remains the same after one turn around the ring).

3. Find the equilibrium emittances from the eigenvalues of ΣS.

Note: strictly speaking, since M is not symplectic, the emittances are not
invariant as the bunch moves around the ring. Therefore, we may expect to
find a different emittance at each point around the ring. However, if
radiation effects are fairly small, then the variations in the emittances will
also be small.
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As an illustration of the transformation matrices M and D, we shall consider
a thin “slice” of a dipole.

The thin slice of dipole is an important case:

• in most storage rings, radiation effects are only significant in dipoles;

• “complete” dipoles can be constructed by concatenating the maps for a
number of slices.

Once we have a map for a thin slice of dipole, we simply need to
concatenate the maps for all the elements in the ring, to construct the map
for a complete turn starting at any point.
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Recall that the transformations for the phase space variables in the emission
of radiation carrying momentum dp are:

x 7→ x y 7→ y z 7→ z

px 7→
(

1− dp
P0

)
px py 7→

(
1− dp

P0

)
py δ 7→ δ − dp

P0

(108)

where P0 is the reference momentum. In general, dp is a function of the
coordinates.

To find the transformation matrices M and D, we first find an explicit
expression for dp/P0, and then write down the above transformations to first
order in the phase space variables.
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For an ultra-relativistic particle, the momentum lost through radiation can
be expressed in terms of the synchrotron radiation power, Pγ (energy loss
per unit time):

dp

P0
≈
Pγ

E0
dt ≈

Pγ

E0

(
1 +

x

ρ

)
ds

c
, (109)

where ρ is the radius of curvature of the trajectory of a particle with the
reference energy E0.

Recall (from Lecture 1) that the radiation power from a particle of charge e
and energy E in a magnetic field B is:

Pγ =
Cγ

2π
e2c3E2B2, (110)

where the radiation constant Cγ is (for electrons):

Cγ =
e2

3ε0(mc2)4
≈ 8.846× 10−5 m/GeV3. (111)

The dipole may have a quadrupole gradient:

B = B0 +B1x, (112)

and the particle may have some energy deviation δ:

E = (1 + δ)E0. (113)
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Using (112) and (113) in (110), we find:

Pγ = c
Cγ

2π

(
1

ρ2
+ 2k1

x

ρ

)
(1 + δ)2E4

0, (114)

where k1 is the normalised quadrupole gradient:

k1 =
e

P0
B1. (115)

Hence, the normalised momentum loss can be written:

dp

P0
≈
Cγ

2π

(
1

ρ2
+ 2k1

x

ρ

)
(1 + δ)2E3

0 ds. (116)

Expanding to first order in the phase space variables, we find:

dp

P0
≈
Cγ

2π

E3
0

ρ2
ds+

Cγ

2π

(
1

ρ2
+ 2k1

)
E3

0

ρ
x ds+ 2

Cγ

2π

E3
0

ρ2
δ ds. (117)
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Given the expression (117) for the momentum loss, the transformations
(108) for the canonical momenta become:

px 7→
(

1−
Cγ

2π

E3
0

ρ2
ds

)
px, (118)

py 7→
(

1−
Cγ

2π

E3
0

ρ2
ds

)
py, (119)

δ 7→
(

1− 2
Cγ

2π

E3
0

ρ2
ds

)
δ −

Cγ

2π

(
1

ρ2
+ 2k1

)
E3

0

ρ
x ds−

Cγ

2π

E3
0

ρ2
ds. (120)

The first-order terms in these transformations give us elements of the
transfer matrix M .

The zeroth-order term (in the transformation of δ) gives an element of D
that is of order ds2: this vanishes in the limit ds→ 0.

However, we need to include the effects of quantum excitation: this will lead
to an element in D that is non-zero, even in the limit ds→ 0...
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The only non-zero zeroth-order term in the transformation (through a thin
slice of dipole) of the covariance matrix is:

D66 =

〈(
dp

P0

)2
〉
≈
〈u2〉
E2

0

, (121)

where 〈u2〉 represents the mean square energy of the photons emitted in a
slice of dipole of length ds.

We now use the result (see Lecture 1 Appendix D):

〈Ṅ(u)u2〉 = 2Cqγ
2E0

ρ
Pγ, (122)

where

Cq =
55

32
√

3

~
mc
≈ 3.832× 10−13 m, (123)

is the quantum radiation constant, and Ṅ(u) du is the rate of emission of
photons in the energy range u to u+ du.

Using (122) in (121) we find that, to zeroth-order in the phase space
variables:

D66 ≈ 2Cqγ
2 Cγ

2π

E3
0

ρ3
ds. (124)
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Hence, in a thin slice of dipole of length ds, the radiation effects can be
represented by the matrices:

M =



1 0 0 0 0 0

0 1− Cγ

2π
E3

0

ρ2 ds 0 0 0 0

0 0 1 0 0 0

0 0 0 1− Cγ

2π
E3

0

ρ2 ds 0 0

0 0 0 0 1 0

−Cγ

2π

(
1
ρ2 + 2k1

)
E3

0

ρ
ds 0 0 0 0 1− 2Cγ

2π
E3

0

ρ2 ds


,

(125)
and:

D =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 2Cqγ2 Cγ

2π
E3

0

ρ3 ds

 . (126)

These results (together with the transfer matrices for standard storage ring
components, neglecting radiation effects) provide all the ingredients we need
to apply the envelope method, to find the equilibrium emittances in a
computational model of a storage ring, including effects of alignment errors.
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